Chinese Remainder Theorem

Jonathan Lam

April 4, 2020

This isn't about a proof of the existence or uniqueness, but states the result of the Chinese Remainder Theorem, a method to solve it, and justification for the method. Restating the explanation from Brilliant in my own words. (See https://brilliant.org/wiki/chinese-remainder-theorem/.)

Problem

Given a system of linear congruences:

 $x \equiv a_1 \pmod{n_1}$ $x \equiv a_2 \pmod{n_2}$ $x \equiv a_3 \pmod{n_3}$ \vdots $x \equiv a_k \pmod{n_k}$

where $\{n_i\}$ is pairwise coprime (i.e., pairwise/mutually relatively prime).

Result (Chinese Remainder Theorem)

There is a unique solution $x \in \mathbb{Z}_N$, where $N = \prod_{i=1}^k n_i$. (Thus, there is a periodic solution in \mathbb{Z} with period N.)

Method

1. Compute N (as stated in the result):

$$N = \prod_{i=1}^{k} n_i$$

2. Compute y_i for each congruence relation:

$$y_i = \frac{N}{n_i} = \prod_{\substack{j=1\\j \neq i}}^k n_j$$

- 3. Compute $z_i = y_i^{-1} \mod n_i$ for each congruence relation. (z_i exists since $\{n_i\}$ is pairwise coprime, and thus y_i and n_i are coprime.)
- 4. Compute x, the unique solution in \mathbb{Z}_N to this system:

$$x = \left(\sum_{i=1}^{k} a_i y_i z_i\right) \bmod N$$

In words:

- 1. Compute the product of all of the divisors.
- 2. For each congruence relation, calculate the product of all of the other divisors, and find the inverse of that product modulo the current divisor.
- 3. Sum the products of the a_i and the two numbers calculated in the previous step for each congruence relation.

Proof of method

(This isn't a proof of the CRT, but a proof that the method gives the correct answer.) We can find $x \mod n_i$:

$$x \equiv a_i y_i z_i + \sum_{\substack{j=1\\j \neq i}}^k a_j y_j z_j \pmod{n_i}$$

Since (by construction)

$$y_i z_i \equiv 1 \pmod{n_i}$$

then

$$a_i y_i z_i \equiv a_i \pmod{n_i}$$

For a different term $j, n_i | y_j$ by construction. Thus:

$$y_j \equiv 0 \pmod{n_i}$$

and thus

$$a_j y_j z_j \equiv 0 \pmod{n_i}$$

Thus $x \equiv a_i \pmod{n_i}$.

Further comments

Two details are left unclear:

- What happens when $\{n_i\}$ is not pairwise coprime? See https://math.stackexchange.com/questions/1644677.
- Calculate inverse modulo n_i using extended Euclidean algorithm (general case solves all linear Diophantine equations)?