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1 Purpose

Geometric optics provides simple relationships between objects and their images
through a spherical or parabolic lens. In particular, the thin lens equation relates
focal length, image distance, and object distance through a simple inverse-sum
law. This lab explores the use of symmetry of the relationship between the
image and object distance to focus an image with the source and screen a given
distance apart at two distinct lens positions, and how this may be used with
Bessel’s method (a reformulation of the thin lens equation) to experimentally
determine focal length of a lens.

Secondly, two lenses are placed apart at a distance nearly the sum of their
focal lengths to explore the application of lenses in a refracting telescope, and
the empirical angular magnification compared to the calculated value.
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2 Data

Each lens had a two-character identifier scratched onto it. From now on, these
will the lenses will be consistently referred to as lenses 1 and 2, respectively.

Table 1: Lens identifiers

Lens 1 identifier Lens 2 identifier
F1 77

2.1 Variable reference

pso (corrected) source position

pl1 (corrected) lens position 1

pl2 (corrected) lens position 2

psc (corrected) screen position

f calculated trial focal length

δf uncertainty for calculated focal length

f̄ mean calculated focal length for lens

δf̄ uncertainty for mean calculated focal length for lens

l1 length of longer tape

l2 length of shorter tape

mθ empirical (angular) magnification

2.2 Part A Data

Table 2: Estimated lens focal lengths

Lens 1 estimated f (cm) Lens 2 estimated f (cm)
5.50 28.00
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Table 3: Positions of source, lens, and image for lens 1

Trial pso (cm) pl1 (cm) pl2 (cm) psc (cm) f (cm) δf (cm)
1 77.85 84.58 113.71 120.04 5.519 0.0606
2 66.98 73.69 113.91 120.04 5.643 0.0657
3 96.61 105.80 111.62 120.04 5.496 0.0311
4 87.88 96.44 113.29 120.04 5.833 0.0487
5 73.52 80.29 113.82 120.04 5.588 0.0629
6 62.31 69.05 113.96 120.04 5.698 0.0673

Source distance offset (cm) 1.80
Lens distance offset (cm) 0.00

Screen distance offset (cm) 0.00
Instrumental error (cm) 0.05

f̄ (cm) 5.6
δf̄ (cm) 0.14

Table 4: Positions of source, lens, and image for lens 2

Trial pso (cm) pl1 (cm) pl2 (cm) psc (cm) f (cm) δf (cm)
1 1.85 40.01 83.22 120.04 25.598 0.0383
2 10.12 51.92 79.62 120.04 25.735 0.0314
3 14.50 59.95 76.79 120.04 25.713 0.0261
4 8.29 49.00 79.98 120.04 25.790 0.0329
5 3.81 42.18 82.16 120.04 25.619 0.0370
6 17.88 64.70 72.10 120.04 25.406 0.0214

Source distance offset (cm) 1.80
Lens distance offset (cm) 0.00

Screen distance offset (cm) 0.00
Instrumental error (cm) 0.05

f̄ (cm) 25.64
δf̄ (cm) 0.08
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2.3 Part B Data

Table 5: Expected angular magnification

Expected angular magnification (cm) -4.6
Error for mean angular magnification (cm) 0.1

Table 6: Refracting telescope tape lengths

Trial Distance between lenses (cm) l1 (cm) l2 (cm) Trial mθ

1 31.00 82.20 20.90 3.933
2 31.00 92.10 18.90 4.873
3 31.10 58.50 11.55 5.065

Mean angular magnification (cm) -4.62
Error for mean angular magnification (cm) 0.04
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3 Calculations

Note that the full precision of each measurement is kept until the final result
of each calculation, in which the results are rounded to the proper number of
significant digits.

3.1 Instrumental Error

Measurements for (Part A) of this lab were taken with the linear scale on the
optical bench, and measurements for (Part B) of this experiment (lengths of
tape) were taken using the meter stick. Both instruments had markings to the
nearest 0.1cm, so the instrumental uncertainty is δS = ±0.05cm for every read-
ing. Distance measurements (e.g., l1, l2) are the function of two uncertainties
and the error δl1 = δl2 = 0.05

√
2cm reflects this.

3.2 Sample mean and random error

For each position measurement px (i.e., psc, pso, pl1, pl2), the mean p̄x and
standard error σpx may not be calculated, as these measurement are not centered
around a mean value; the only mean and standard deviation may be calculated
for the focal lengths, as these should be centered around the true value of the
focal length of the lens.

3.3 Calculation of the focal length using Bessel’s method

Figure 1: Schematic of setup to determine f using Bessel’s method

The focal length of the lenses is calculated using Bessel’s method. Given the
setup indicated in (Figure ), Bessel’s method uses (Equation 1) to solve for the
focal length f of the lens, and is derived in (Section 6.1).

f =
D2 − d2

4D
(1)

In short, the source and screen are set up more than four focal lengths away from
each other on the optical bench, and their positions (pso and psc, respectively)
measured. There should be two positions that the lens may be placed (pl1 and
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pl2), such that the image of the source is focused on the screen. In this setup,
we make the substitutions

D = |psc − pso|

d = |pl2 − pl1|

to obtain

f =
|psc − pso|2 − |pl2 − pl1|2

4|psc − pso|
Since the measurements for each trial are not centered around any particular
value and may vary dramatically, this method may not be used to calculate
average f̄ using average values for each position measurement, but rather only
the focal length based on the measurements for a single trial. The average
calculated focal length may be found as a mean of the sample values:

f̄ =
1

n

n∑
i=1

fi

3.3.1 Error propagation

The measurements psc and pso are independent, as the distance between source
and image is arbitrarily chosen. However, the values for pl1, pl2, and D are de-
pendent, as the arbitrary choice of D determines the two possible lens positions.
This inspires a two-part error propagation calculation.

δD =

√(
∂D

∂pso
δpso

)2

+

(
∂D

∂psc
δpsc

)2

δf =

∣∣∣∣ ∂f∂DδD
∣∣∣∣+

∣∣∣∣ ∂f∂pl1 δpl1
∣∣∣∣+

∣∣∣∣ ∂f∂pl2 δpl2
∣∣∣∣

In this case, the partial derivatives are (signs are not important because the
error is always positive):

∂D

∂pso
=

∂D

∂psc
= 1

∂f

∂D
=
D2 + d2

4D2

∂f

∂pl1
=

∂f

∂pl2
=

d

2D

Making all substitutions, the error calculation for f is

δf =

∣∣∣∣D2 + d2

4D2

√
δp2so + δp2sc

∣∣∣∣+

∣∣∣∣ d2Dδpl1
∣∣∣∣+

∣∣∣∣ d2Dδpl2
∣∣∣∣

This is the error calculation for a single fi calculation, where δpx is the in-
strumental error for the px measurement. Note that since all positions were
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measured with the same instrument, δpx = δp are equal, that all terms inside
the absolute value bars are positive, and the first term includes the f calculation,
and thus the calculation may be simplified to

δf =

((
f +

d2

2D

)√
2 + d

)
δp

D

Since each sample focal length calculation fi is independently calculated, the
error for the mean δf̄ is the RMS of the fi errors, i.e.,

δf̄ =

√√√√ n∑
i=1

(δfi)2

3.3.2 Sample Bessel’s law focal length and error propagation calcu-
lations

The calculation for the focal length for sample 1 using Bessel’s law is shown
below.

f1 =
(120.04cm− 77.85cm)2 + (113.71cm− 84.58cm)2

4(120.04cm− 77.85cm)
= 5.5̄19cm

The calculation for the error for the focal length for sample 1 is shown below.

δf1 =

((
5.519cm +

(113.71cm− 84.58cm)2

4(120.04cm− 77.85cm)

)√
2 + (113.71cm− 84.58cm)

)
× 0.05cm

120.04cm− 77.85cm
= 0.06cm

The average and average uncertainty are as calculated below.

f̄ =
1

6
(5.5̄19cm+5.6̄43cm+5.4̄96cm+5.8̄33cm+5.5̄88cm+5.6̄98cm) = 5.6̄30cm

δf̄ =
√

(0.06̄06cm)2 + (0.06̄57cm)2 + · · · (0.06̄73cm)2 = 0.14cm

3.4 Calculation of angular magnification using focal lengths

The expected angular magnification for the telescope is

mθ = − fobj
feye

3.4.1 Error propagation

The focal lengths of the two lenses are independent of one another, so

δmθ =

√(
∂mθ

∂fobj
δfobj

)2

+

(
δmθ

δfeye
δfeye

)2

=

√(
1

feye
δfobj

)2

+

(
fobj
f2eye

δfeye

)2

where fobj , feye are obtained in (Section 3.3.1).
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3.4.2 Calculation for angular magnification and error propagation

mθ = − 5.6̄30cm

25.64̄4cm
= −4.5̄55

δmθ =

√(
1

5.630cm
0.0777cm

)2

+

(
25.644cm

(5.630cm)2
0.141cm

)2

= 0.11

3.5 Calculation of angular magnification using empirical
tape lengths

The angular magnification for the telescope is the ratio of the lengths of tape
(such that the shorter piece of tape viewed through the telescope appears as
long as the longer piece of tape viewed without the telescope). Denote this
mθemp.

mθemp =
l1
l2

A mean is taken over the three trials for the empirical angular magnifications
to get the mean empirical angular magnifications.

A percent error calculation is performed to check the closeness of this angular
magnification from the angular magnification calculated using focal lengths.

% Err. =
|m̄θemp −mθ|

mθ
× 100%

3.5.1 Error propagation for calculation of angular magnification us-
ing empirical tape lengths

Since this equation is of the same form as the previous calculation for angular
magnification, the error propagation (for a single trial) is of the same form.

δmθemp =

√(
1

l2
δl1

)2

+

(
l1
l22
δl2

)2

Again, the error for the mean value is the RMS of the trial errors.

3.5.2 Sample calculation of empirical angular magnification and er-
ror propagation

For trial 1, the empirical angular magnification calculation is

mθemp1
=

82.20cm

20.90cm
= 3.93̄3

Note that δl1 = δl2 = 0.05
√

2cm, since it is a distance measurement and not a
single reading. The error for this trial is thus

δmθemp1
=

√(
1

20.9cm
0.07cm

)2

+

(
82.2cm

(20.9cm)2
0.07cm

)2

= 0.014
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The mean empirical angular magnification is

m̄θemp =
1

3
(3.933 + 4.873 + 5.065) = 4.62̄4

The error for the mean empirical angular magnification is

δm̄θemp =
√

0.01372 + 0.01862 + 0.03162 = 0.04

The percent error calculation is:

% error =
|4.62̄4− 4.5̄55|

4.5̄55
= 1.5%
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4 Results summary

The results from Part A of the lab are summarized in (Table ).

Table 7: Focal lengths summary

Lens f (cm)
1 5.6± 0.14cm
2 25.64± 0.08cm

The results from Part B are summarized in (Table ).

Table 8: Angular magnification summary

Method Angular magnification
Using focal lengths from Part A −4.6± 0.1
Using tape lengths from Part B −4.62± 0.04

% error 1.5%

10



5 Error analysis

This section should be precluded by the fact that all measurements were per-
formed at a certain configuration of the lens(es) with objects that are visually
determined to be in focus or of equal length. There is inherent error in this, as
the human eye is not especially precise with determining either of these.

5.1 Part A sources of error

In the original estimate of focal lengths, an estimation takes place assuming
that the focal length is approximately the length of a lens from a screen that
it aims to focus an image onto. The derivation for this estimation is present in
Section 7.2, as well as an argument for why it is an overestimation – thus there
is an inherent modeling error. Moreover, there is also large error introduced by
the method used to measure this distance; e.g., if the meter stick is not held
perfectly perpendicular to the ground, if the image is not precisely focused,
or if the reading is not taken at the center of the lens (as was hard to do, as
one of the lenses has a short focal length and thus was positioned very near the
ground), then these are all sources of random error. The reasons why procedural
precautions were not made is because this was only a rough estimate for the
next stages. Thus no proper error analysis is made for this section.

There is an offset for each of the lens, screen, and source. To attempt to
measure this offset, we held a straight edge (meter stick) flat on the surfaces
of the source and screen, perpendicular to the optical bench, and attempted
to read the difference between the surface’s position and the optical bench’s
reading. For the lens and the screen (which is almost flat; a sheet of paper),
we were unable to measure a discernible difference between the two values, and
made the (reasonable) assumption that the error contributed by these offsets
is very small compared to the distances between them (which would ultimately
be used in all of the calculations). However, the source offset was significant,
1.80cm, and was added to each source measurement. These small offsets may
add some systematic error to the calculations, but we performed the a correction
to the best of our knowledge with only the source offsets. A better method to
measure offsets would have been to use a more precise measuring tool, such as
calipers.

There was a significant amount of light pollution from other groups’ flash-
lights, which made it more difficult to determine precisely at what lens position
the image was clearly focused, which may introduce some degree of random
error.

5.2 Part B sources of error

The procedure failed to provide an exact measure for the distance between the
two lenses (only dictating that the two lenses be slightly less than the sum of
the two focal lengths apart). We experimented with lenses 31.0cm to 31.1cm
away, with a large standard deviation of results. It is difficult to say whether
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this small difference in lens distance may have contributed a significant error, or
if it was the inconsistency of the human eye to determine when the two pieces
of tape were indeed the same length, one being viewed inside the telescope and
one viewed outside. The latter is much more likely to be the overwhelmingly
larger source of error, as there is no way to put both images side-to-side within
the same viewing frame, which is how it is easiest to compare objects visually;
instead, either the telescope has to be moved into view and overwriting the
non-telescope image, or both eyes may be used simultaneously, but it is difficult
to compare items when each eye is seeing a different image.

Another possible source of random error is the changing of viewing distance
from the telescope wielder to the pieces of tape. This was not measured during
the experiment, but there was a wide range of viewing distances used (in an
attempt to make the visual comparison between the lengths easier), and its
effect is not measured or known. Theoretically, this should make no difference
to the outcome if the eye was accurate in its comparison, but it may likely have
introduced differences in perception that lead to random error.
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6 Conclusion

By using Bessel’s method, the focal lengths of the eyepiece lens and the object
lens were 5.6± 0.14cm and 25.64± 0.08cm. Although the true focal lengths of
these lenses is unknown, the small standard deviations (on the order of 1mm)
indicate that Bessel’s method produces fairly reliable results. The initial esti-
mated focal length for lens 1 (5.50cm) is captured within the error bars, but
the estimated focal length for lens 2 (28.00cm) is not, but off by less than 10%.
Given that the initial estimate is really a rough estimate, this error is acceptable.

This result is further strengthened by Part B’s verification of the angular
magnification of a telescope formed using the lenses. The expected angular
magnification calculated using the focal lengths in Part A is −4.6 ± 0.1, while
the average angular magnification calculated using tape lengths is −4.62±0.08.
yielding only a 1.5% error. While these error margins do not overlap, the mag-
nification factors are very close (the difference is only 0.2) and the errors are
very small, so this may be interpreted as both methods converging towards a
similar, precise result.

There is, as expected for a method with large visual estimation and un-
certainty, a large standard deviation between trials, and thus many trials are
recommended to obtain a more precise result through this method.
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7 Answers to questions

7.1 Derivation of Bessel’s law

If the distance between the source and object is fixed, then the distance p
between the lens and the object, and the distance i between the lens and the
projected image is related by the thin lens equation

1

f
=

1

p
+

1

i
(2)

Since the relationship between p and i is symmetric, if the lens focuses the image
when it is at distance p from the source, it will also focus it at length i from
the source. We have two other relations that can be determined from (Figure ):
firstly, since the images are real and the distance between the source and image
is the sum of p and i,

p+ i = D

Since the lens may focus an image at position p or position i from the source,
the distance between the two focusing positions of the lenses is

p− i = d

Solving for f from (Equation 2), we get

f =
1

1
p + 1

i

=
pi

p+ i

With some algebraic manipulation:

pi =
(p2 + 2pi+ i2)− (p2 − 2pi+ i2)

4
=

(p+ i)2 − (p− i)2

4
=
D2 − d2

4

Substituting in for pi, we get Bessel’s equation for focal length

f =
D2 − d2

4D

We can rearrange Bessel’s equation into the following quadratic inequality, given
that D, d > 0 (D > 0 clearly, and d > 0 for the separation of lens positions).
This inequality demonstrates the reason for requiring that D is greater than
four times the focal length.

D2 − 4fD − d2 = 0⇒ D2 − 4fD > 0⇒ D(D − 4f) > 0⇒ D > 4f

(Bessel’s equation also works in the degenerate case of d = 0, corresponding to

the scenario in which i = p, in which f = D2−0
4D = D

4 , as expected; however, the
experimental procedure for this lab expected two lens positions producing clear
images to use the nontrivial form of Bessel’s equation.)
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7.2 Initial overestimation of focal length

To estimate focal length, a sharp image of an object far away was produced –
for this experiment, an image of the overhead lights was produced on the floor.
We used the approximation that the object was at infinite distance (i.e., p =∞)
to make the following approximation from the thin lens equation:

1

f
= lim
p→∞

(
1

p

)
+

1

i
⇒ 1

f
= 0 +

1

i
⇒ f ≈ i

Of course, p is finite, especially considering the measurable distance to the ceiling
lights, so 1

p = ε > 0. Thus, a more accurate representation using the thin lens
equation is

1

f
=

1

i
+ ε⇒ f =

1
1
i + ε

< i

Therefore i is an overestimation for the focal length. Since the ratio p
i was very

large and this approximation was only used to get a rough estimate of the focal
length to be more accurately measured in the next part of the procedure, this
approximation should not contribute any error to the final results of this lab.
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