
1 Purpose

The laws of reflection and refraction are observed and quantified in this lab.
The main result of the measurements and calculations is the index of reflection
of glass and tap water. Two methods are used, and their outputs are compared
to the standard values within error bars.

In Part A, the calculation of the index of reflection of glass and tap water
are tackled through an application of Snell’s Law called Pfund’s method, which
is based on diffuse scattering and the critical refraction angle along the glass-air
and glass-liquid boundaries. A petri dish is used as the glass sample, a laser
used as the light source, and a paper with markings as the diffuse scatterer and
the source of markings to measure; its thickness is measured with a micrometer,
and the diameter of the boundaries of the rings caused by the scattering is
measured indirectly with a vernier caliper. This also brings into light many
possible sources of error, such as the method for indirect measurement.

In Part B, Snell’s law is used more directly by measuring angles and using
the Snell’s law relationship to find the index of refraction of the liquid. This
method explores using geometric construction to correctly measure the angles,
as well as a different method of error propagation due to the fact that the angles
cannot be simply averaged like the other measurement types.
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2 Data

Table 1: Petri Dish Thickness

Sample Measured thickness (cm) Corrected thickness (cm)
1 0.2369 0.2354
2 0.2651 0.2636
3 0.2460 0.2445
4 0.2568 0.2553
5 0.2355 0.2340
6 0.2240 0.2225

Zero offset (cm) 0.0015
Instrumental error (cm) 0.0005

Random error (cm) 0.006
Mean (cm) 0.243

Uncertainty for the mean (cm) 0.006

Table 2: Ring diameter without liquid

Sample Diameter (cm)
1 0.772
2 0.750
3 0.756
4 0.785
5 0.806
6 0.750

Zero offset (cm) 0.000
Instrumental error (cm) 0.002

Random error (cm) 0.009
Mean (cm) 0.770

Uncertainty for the mean (cm) 0.009

Table 3: Ring diameter with liquid

Sample Diameter (cm)
1 1.814
2 1.850
3 1.950
4 1.884
5 1.834
6 1.840

Zero offset (cm) 0.000
Instrumental error (cm) 0.002

Random error (cm) 0.02
Mean (cm) 1.86

Uncertainty for the mean (cm) 0.02

2



Table 4: Snell’s law method measured incident and refracted angles

Sample Incident angle (deg) Refracted angle (deg)
1 43.0 29.7
2 44.0 30.1
3 22.0 15.2
4 21.9 15.3
5 53.0 36.1
6 56.5 35.5

3 Calculations

Note that the full precision of each measurement is kept the final result of each
calculation, in which the results are rounded for brevity.

3.1 Instrumental error

The vernier caliper has markings to the nearest 0.002cm, and reading it involves
choosing the closest matching margin. Since there is no approximation between
the markings, the instrumental uncertainty is δS = ±0.002cm.

The micrometer has markings to the nearest 0.001cm. Reading it involves
visual estimation between markings, so the instrumental error for a reading is
δS = ±0.0005cm. The micrometer had a nonzero zero-offset of 0.0015cm, so
this value was subtracted from all of the measured values to yield the corrected
values displayed in (Table 1).

The protractor has markings to the nearest 0.5◦, so each angle reading has
accuracy δAread = 0.25◦. Since each angle measurement is a function of two
readings (the degree readings of the two rays that contain the angle), the error
for a single angle measurement δA is calculated from the (independent) errors
of the left and right readings.

δA =
√
δA2

left + δA2
right =

√
(0.25◦)2 + (0.25◦)2 = 0.354◦ = 0.4◦ (1)

3.2 Sample mean and random error

For each sample of length measurements (Part A), the measurement is recorded
with both a “best value” and a specified random error. The “best value” is the
mean x̄, and the random error is reported as standard deviation of the mean
(STDOM) σx.

For (Part B), calculating sample mean and standard deviation of the raw
measured data was not applicable, as the angle values were not centered around
a common point and did not have a common spread.
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3.3 Calculation of ng and error using Pfund’s method

The calculation for the average index of refraction of glass, n̄g, is shown below
in (2). This is derived in (Figure 2).

ng =

√
d2 + 16t2

d
(2)

where d is the average diameter of the boundary between the gray and the bright
ring, and t is the average thickness of the petri dish.

The error propagation for the calculation of ng is shown below in (3). The
values of d and t are dependent (i.e., a thicker petri dish would cause a change
in ring diameter by the geometry of the problem; see (Figure 2)), and thus the
absolute values of their errors are added. δd and δt are the larger of the random
error and instrumental error for the respective metrics.

∂ng
∂d

=
−16t2

d2
√
d2 + 16t2

∂ng
∂t

= − 16t

d
√
d2 + 16t2

δng =

∣∣∣∣∂ng∂d δd
∣∣∣∣+

∣∣∣∣∂ng∂t δt
∣∣∣∣ (3)

Sample calculations

The calculation for ng is shown below.

ng =

√
(0.770cm)2 + 16(0.243cm)2

0.770cm
= 1.61

The calculation for δng is shown below.

δng =

∣∣∣∣∣ 0.770cm2 − 16(0.243cm2)

0.770cm2
√

0.770cm2 + 16(0.243cm)2
0.009cm

∣∣∣∣∣+

∣∣∣∣∣ 16(0.243cm)

0.770cm
√

0.770cm2 + 16(0.243cm)2
0.006cm

∣∣∣∣∣ = 0.0367

3.4 Calculation of nl and error using Pfund’s method

The calculation for the index of refraction of the liquid, nl, is shown below in
(4). This is derived from (Figure 3).

nl =
ng d√

d2 + 16t2
(4)

where d is the diameter of the boundary between the gray and the bright sta-
tionary ring, and t is the thickness of the petri dish.
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As before, d is dependent on t because of the geometry of the calculation.
Since ng is a function of t, it is also dependent on t. Thus, the absolute values
of the errors are added. δd and δt are the larger of the random error and
instrumental error for the respective metrics.

∂nl
∂ng

=
d√

d2 + 16t2

∂nl
∂d

=
16ngt

2

(d2 + 16t2)
3
2

∂nl
∂t

= − 16ngdt

(d2 + 16t2)
3
2

δnl =

∣∣∣∣ ∂nl∂ng
δng

∣∣∣∣+

∣∣∣∣∂nl∂d
δd

∣∣∣∣+

∣∣∣∣∂nl∂t δt
∣∣∣∣ (5)

Sample calculations

The calculation for nl is shown below.

nl =
1.61(1.86cm)√

1.86cm2 + 16(0.243cm2)
= 1.431

The calculation for the error for nl is shown below.

δnl =

∣∣∣∣∣ 1.86cm√
1.86cm2 + 16(0.243cm2)

0.0367cm

∣∣∣∣∣+

∣∣∣∣∣ 16(1.61)(0.243cm)2√
1.862 + 16(0.243cm)

3 0.02cm

∣∣∣∣∣+

∣∣∣∣∣− 16(1.61)(1.86cm(0.243cm))√
1.86cm2 + 16(0.243cm)2

3 0.006cm

∣∣∣∣∣ = 0.0436

3.5 Calculation of nl and error using Snell’s law method

Snell’s law is stated in (6).

n1 sin θ1 = n2 sin θ2 (6)

In the case of this lab, let medium 1 (na, θa) be air, and medium 2 (nl, θl) be
the liquid. Approximating na ≈ 1, then the index of refraction of the liquid can
be rewritten in terms of the two angles:

nl =
sin θa
sin θl

(7)

Both the mean and error propagation are more difficult to calculate here
than with the two methods from (Part A), since the raw measurements (angle
values) cannot be averaged, and the mean and error calculations calculated from
the means and errors of the measurements. This is because the angles are not
centered around the same value, and do not have a similar spread – they vary
widely between different samples. Therefore, the index of refraction of the liquid
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and its error have to be calculated for each sample, and then this set of data
must be appropriately aggregated.

The aggregation for the mean is fairly intuitive: average the calculated nl
for each sample.

n̄l =
1

6

6∑
i=1

nli (8)

For the error calculation, the error of a single sample can be calculated as
shown in (9). The error calculation sums the absolute values of the errors, since
the two angle values are dependent on one another, by Snell’s law.

∂nl
∂θi

=
cos θi
sin θr

∂nl
∂θr

=
sin θi cos θr

sin2 θr

δnl =

∣∣∣∣∂nl∂θi
δθi

∣∣∣∣+

∣∣∣∣∂nl∂θr
δθr

∣∣∣∣ (9)

where δθ1 and δθ2 are the instrumental error for the protractor measurements
(see (1)). Since the mean is a function of six independent calculations, the error
of the mean can be calculated by summing the errors of each calculation in
quadriture, as shown in (10).

δn̄l =
1

6

√√√√ 6∑
i=1

(
∂n̄l
∂nli

δnli

)2

=
1

6

√√√√ 6∑
i=1

δn2li (10)

For all error calculations in this section, the angles are necessarily converted
to their respective radian equivalents: The trigonometric and differential re-
lations of sin and cos are derived from the radian interpretations of angles.
Furthermore, using degrees will leave the error calculation with the wrong units
(in degrees, rather than being dimensionless as nl is) and will change the value
of the error. The conversion from radians to degrees is shown in (??), and the
converted angle values from (Table 4) are shown in (Table 5).

θrad = θ◦ ×
π

180◦
(11)

Sample calculations

An sample calculation for nl (for the first sample of (Table 4)) is shown below.

nl1 =
sin 0.750

sin 0.518
= 1.38

The calculation for the error for this sample, δnl, is shown below.

δnl1 =

∣∣∣∣cos 0.750

sin 0.518
0.006

∣∣∣∣+

∣∣∣∣ sin 0.750 cos 0.518

sin2 0.518
0.006

∣∣∣∣ = 0.0145

6



Table 5: Angle values, converted from degrees to radians

Sample Incident angle (rad) Refracted angle (rad)
1 0.750 0.518
2 0.768 0.525
3 0.384 0.265
4 0.382 0.267
5 0.925 0.630
6 0.986 0.620

This calculation is repeated once for each sample. The calculated index of
refraction and error for each sample are shown in (Table 6).

Table 6: Index of refraction of liquid and error for each sample using Snell’s law

Sample nl δnl
1 1.376 0.0240
2 1.385 0.0236
3 1.429 0.0543
4 1.414 0.0536
5 1.355 0.0178
6 1.436 0.0183

The mean index of refraction is a simple arithmetic mean of the nl values
from (Table 6).

n̄l =
1

6
(1.376 + 1.385 + 1.429 + 1.414 + 1.355 + 1.436) = 1.399

The error calculation for the mean is shown below.

δnl =
1

6

√
0.02402 + 0.02362 + 0.05432 + 0.05362 + 0.01782 + 0.01832 = 0.0145
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4 Results

The calculated indices of refraction, along with their reported errors, are sum-
marized in (Table 7), and a visual summary is provided in (Figure 1).

Table 7: Summary of indices of refraction

Material Pfund’s method Snell’s law method Literature value
Liquid (tap water) 1.43± 0.04 1.40± 0.015 1.331

Glass 1.61± 0.04 – –

As can be seen in (Figure 1), neither the error of the mean for Pfund’s
method nor Snell’s method captured the literature value.

Figure 1: Comparison of indices of refraction with literature value

1at 20◦C, http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html
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5 Conclusion

The calculated index of refraction using Pfund’s method is 1.61±0.04cm. While
the exact composition of the petri dish is not known, the index of refraction of
glasses is typically between 1.52 (crown glass) and 1.65 (heavy flint glass)2, so
it can be deduced that this calculated value is reasonable.

The calculated index of refraction of the liquid (tap water) was 1.43± 0.04
using Pfund’s method, and 1.40 ± 0.015 using the Snell’s law method. The
literature value is 1.33. Neither of the calculated values’ error intervals capture
the literature value – however, the two calculated error intervals are small (0.04
and 0.015) and overlap, which may suggest that some part of the procedure
caused a systematically high calculation for indices for refraction.

There were many sources of error, delineated below.
For Pfund’s method, the index of refraction of air was approximated to be

1 to make calculations simpler. However, the literature value of air at STP is
1.000292. Since, in the calculation for critical angle of the glass, n2 = na

sin θc
, this

would cause the resulting answer to be systematically lower but a small factor
( 1
1.00029 of the value obtained using the literature value). This likely had a very

small factor, judging by the fact that the results were mostly reported to only
three significant figures.

The procedure for Pfund’s method asked for many indirect measurements,
and this was likely the source of the largest (random and overall) error in the
results since the measurement tools are very precise, even if not quantifiable and
thus not factored into the error propagation. The procedure asks to visually
determine the diameter of a ring, by visually ”copying” the ring onto a second
sheet of paper, which was then measured by a Vernier caliper. It is not certain if
this error is random or systematic, because it cannot be quantified – there is no
way to check what the true diameter of the rings are. Adding to the difficulty of
the visual determination of ring diameter is that sometimes the edge of the rings
were blurry, and the paper was broken at some places, causing the reflection
and the edge of the ring to be less strongly-defined in those sections.

In Pfund’s method, the thickness of the bottom of the petri dish is mea-
sured. However, while the model assumes that the thickness is only of glass,
the measurement obtained with the micrometer caliper also included a layer of
paper, and in some places, tape. This makes the value of t systematically higher
than the true value, which in turn makes ng systematically higher (but has no
effect on nl, since it cancels out).

In the Snell’s law procedure, there is much random error introduced by the
procedure. Firstly, a circle had to be drawn around the petri dish such that the
edge of the petri dish was right above the circle, but small deviations in pencil
angle when drawing the circle could make the circle larger or smaller than the
actual petri dish diameter. There is some random error in pin placement and
the construction of the center of the circle (using perpendicular bisectors) that
wasn’t accounted for, because it doesn’t quantifiably affect any measurement

2http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html
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(but it does affect the angle measurements with the protractor).
For both methods, the tap water seemed to be a little cloudy (have some

particulate matter). This may have introduced some systematic error in the true
nl value, making it deviate from the literature value. This may help explain
the high precision but low accuracy (relative to the literature value) for both nl
calculations.

10



6 Answers to questions

6.1 Derivation of ng formula for Pfund’s method

Figure 2: Schematic of setup to determine ng

We begin with Snell’s law:

na sin θa = ng sin θg

We assume that na ≈ 1. At the critical angle in the glass θgc , θa = 90◦. The
Snell’s law equation becomes

ng =
(1) sin 90◦

sin θgc
= csc θgc =

√
((d/2)/2)2 + t2

(d/2)/2
=

√
d2 + 16t2

d

(The calculation of csc comes from the right-triangle geometry in the schematic.)
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6.2 Derivation of nl formula for Pfund’s method

Figure 3: Schematic of setup to determine nl

The bright ring caused by the reflection on the left is caused by the internal
reflection by the liquid-air boundary. We are interested instead on the reflection
on the right, which uses the glass-liquid boundary. Again, we begin with Snell’s
law.

ng sin θg = nl sin θl

At the critical angle for this boundary from the glass ngc , we get θg = 90◦

Solving for nl, we get:
nl sin 90◦ = ng sin θgc

The rest of the derivation follows similarly for that previously shown for ng:

nl = ng
(d/2)/2√

((d/2)/2)2 + t2
=

ngd

4
√

(d/4)2 + t2
=

ngd√
d2 + 16t2

(This again uses the right-angle geometry of the schematic.)

6.3 Assumptions made by the Snell’s law technique

The Snell’s law technique approximated the refraction to be between air and
liquid on the edge of the petri dish, assuming that the refraction caused by
the petri dish glass is trivial. This approximation can be justified by the fact
that the light beam passing through the petri dish passes through a thin layer of
glass, with two nearly-parallel refracting surfaces and two refractions in opposite
directions.
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6.4 Derivation of nl formula for Pfund’s method

Figure 4: Path of light ray through petri dish wall

There are two Snell’s law relevant to the setup in (Figure 4):

na sin θ1 = ng sin θ2

ng sin θ3 = nl sin θ4

Note that, while the petri dish is curved, if you zoom in on a small region, the
inner and outer edge are essentially parallel, thus θ3 ≈ θ4, so

na sin θ1 ≈ nl sin θ4
This demonstrates that the glass’s refraction is small and can be approximated
away by assuming that the glass is thin and not overly curved. From this
diagram it can also be intuited that the effects of this are that the two inner
angles within the glass are slightly different and, since there are two points of
refraction, the path of light may be offset a little bit from if there was only
an air-liquid boundary. This approximation is reasonable by the justification
above, and by the small error of the mean for the Snell’s law calculations of
0.015.

As with the Pfund’s law method, the Snell’s law technique also assumes that
the liquid is transparent or translucent, and that na = 0. These are reasonable,
given that the liquid in question is transparent and the index of refraction of
air is known to be very close to 1.

6.5 Will Pfund’s method work for liquids of all n?

Pfund’s method used here to calculate nl is not applicable for liquids of all n.
It uses the property of total internal reflection of the glass, and total internal
reflection only occurs if the liquid has a lower n than glass. In other words, the
critical angle (only after which exists the phenomenon of total internal reflection)
only exists if the refracted angle is shallower from the surface than the incident
angle, which happens only if the index of refraction of the second medium is
lower than that of the first.
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6.6 Extra credit: depth of water

Figure 5: Schematic of setup to determine d

Let R1 be the radius of the ring caused by the total internal reflection of water
with air, R2 be the radius of the ring caused by total internal reflection of glass
with water (the quantity measured in Pfund’s method for nl).

For θ2, which is the critical angle of water with air:

nl sin θ2 = na sin 90◦ = 1 (12)

For θ1, which is the refracted angle of the light ray from liquid to glass with
incident angle θ2:

ng sin θ1 = nl sin θ2 = 1 (13)

By trigonometry:

sin θ1 =
y√

y2 + t2
(14)

sin θ2 =
x√

x2 + d2
(15)

By (13), (14):

ng
y√

y2 + t2
= 1

n2gy
2 = y2 + t2

y =
t√

n2g − 1
(16)

Similarly, by (13), (15):

x =
d√
n2l − 1

(17)
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By definition of x, y in the diagram, 2(x+ y) = R1. Thus:

2

 d√
n2l − 1

+
t√

n2g − 1

 = R2 (18)

Solving for d:

d =

R2 −
2t√
n2g − 1

 √n2l − 1

2
(19)
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