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1 Purpose

Optical diffraction is used to estimate the width of a human hair. This involved
the calculation of the wavelength of a light source (a laser) by measuring at-
tributes of an N-slit diffraction spectrum. This calculated wavelength is used to
estimate the human hair’s width by measuring attributes of a wide single-slit
diffraction pattern.
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2 Data

Note 1: The position of the front of the laser was measured, not the position
of the diffraction grating, single slit, or hair. However, the objects or slits
were put with a ring stand and clamp as close as possible to the laser (≈1
to 3mm) in front of the laser to reduce this error.

Note 2: The reported instrumental errors are those of a single reading, before
any calculations; e.g., the instrumental error for the optical bench is not
equal to the error for a length measurement (which involves two readings,
and whose error is taken into account in the error propagation sections).

Note 3: (Table 5) and (Table 8) are identical, as the setup was not changed
between these parts (except that the Vernier caliper was replaced with
a hair). This also shows the flexibility of this setup to determine either
wavelength or slit width, as well as the fascinating result that an object
and a slit of the same thin finite width can generate the same diffraction
pattern.

Note 4: The wavelength of the lasers used in this experiment have wavelengths
known to be approximately 650nm, but the exact value is not known (i.e.,
there was no sticker on our laser indicating its wavelength),

2.1 Part A. N-slit diffraction pattern

Table 1: Bench measurements

Pos. screen (cm) 121.82
Pos. laser (cm) 105.03

Laser offset (cm) 1.06
Dist. laser to screen (cm) 15.73

Instrumental error (cm) 0.05

Table 2: Distances from center to intensity maxima

Diff. grating line density (lines/mm) 1000
Dist. center to left maximum (cm) 12.999

Dist. center to right maximum (cm) 13.548
Instrumental error (cm) 0.002

2.2 Part B. (Wide) single-slit diffraction pattern
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Table 3: Measured distances from fourth minima to the left to other minima

a (cm) d−4,4 (cm) d−4,3 (cm) d−4,2 (cm) d−4,1 (cm) d−4,−1 (cm) d−4,−2 (cm) d−4,−3 (cm)
0.02 2.458 2.236 1.962 1.610 0.920 0.638 0.300
0.03 2.080 1.810 1.634 1.300 0.796 0.628 0.300
0.04 1.472 1.298 1.098 0.942 0.648 0.414 0.178

Table 4: Distances of minima to center of diffraction pattern (h)

a (cm)
h (cm)

p = 4 p = 3 p = 2 p = 1
left right left right left right left right

0.02 1.283 1.265 0.971 0.965 0.697 0.627 0.345 0.345
0.03 1.032 1.048 0.762 0.748 0.586 0.420 0.252 0.252
0.04 0.677 0.795 0.503 0.617 0.303 0.381 0.147 0.147

Table 5: Distance from laser to screen

Pos. screen (cm) 124.70
Pos. laser (cm) 8.65

Laser offset (cm) 1.06
Dist. laser to screen (cm) 114.99

Instrumental error (cm) 0.05

2.3 Part C. Hair diffraction pattern

Table 6: Measured distances from fourth minima to the left to other minima

Owner d−4,4 (cm) d−4,3 (cm) d−4,2 (cm) d−4,1 (cm) d−4,−1 (cm) d−4,−2 (cm) d−4,−3 (cm)
Andrew 8.748 7.750 6.792 5.450 3.422 2.298 1.780

Jon 7.278 6.300 5.300 4.412 2.704 1.830 0.914
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Table 7: Distances of minima to center of diffraction pattern (h)

Owner
h (cm)

p = 4 p = 3 p = 2 p = 1
left right left right left right left right

Andrew 4.312 4.436 3.314 2.656 2.356 2.138 1.014 1.014
Jon 3.720 3.558 2.742 2.644 1.742 1.728 0.854 0.854

Table 8: Distance from laser to screen

Pos. screen (cm) 124.70
Pos. laser (cm) 8.65

Laser offset (cm) 1.06
Dist. laser to screen (cm) 114.99

Instrumental error (cm) 0.05
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3 Explanation of errors

If the backplane holding the paper is not normal (i.e., perpendicular) to the
incident rays, it may cause asymmetry and random error in the measurements
(it will systematically increase the values of h on one side and decrease the values
of h on the other). We didn’t realize or attempt to quantify or correct this source
of error. While there is a large deviation from the two intensity maxima from
the center in Part A, it is less clear from Part B whether the backplane was
tilted, as the measurements from one side are not notably systematically higher
or lower than the other.

There is also the possibility of systematic error from errors with measuring
offsets. We did not measure the offset of the paper screen from the center of
the backplane (thus considering the paper to have zero offset from its holding
device), but this may cause l to be systematically small. Similarly, we estimated
the distance between the slit(s) or object and the paper as the distance between
the tip of the laser and the paper, and placed the slit(s) or object very close to
the tip of the laser, and this may cause l to be systematically large. However,
these offsets (on the order of roughly 1-3mm) are deemed insignificant compared
to the distance l (on the order of dozens of centimeters). To further mitigate
this relative error, we made l large (15.73cm for Part A and 114.99cm for Parts
B and C) by increasing the distance between the laser and the screen.

There is some random error introduced by marking the position of the inten-
sity maxima (in Part A) or minima (in Parts B and C) on the paper. For either
intensity extrema, it is difficult to pinpoint the exact position of the extrema,
even if the bright or dark spots are fairly small (an estimate of this visual error
may be ±0.5mm). Furthermore, the intensity minima is not exactly at the cen-
ter of the bright or dark regions because of each extrema’s asymmetry (except
the central peak); however, this is likely dwarfed by visual and instrumental
uncertainties.

It was difficult to get correct measurements with the calipers, as we were
measuring between penciled lines on paper and it is difficult to measure the per-
pendicular distance because of the nature of the calipers. This should add some
small, unquantifiable random error to the caliper’s instrumental uncertainty.
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4 Calculations

4.1 Instrumental and length errors

Two measurement tools were used: the optical bench and a Vernier caliper. The
instrumental error for lengths obtained using the Vernier caliper is 0.002cm. (See
the note in the Explanation of errors section about additional error introduced
when using the Vernier calipers.)

The instrumental error for the optical bench is 0.05cm. For lengths obtained
using the optical bench, the error is 0.07cm, because lengths are obtained by
the difference of two independent measurements with an instrumental error of
0.05cm each, i.e., for a length measurement s obtained using the optical bench,

s = s2 − s1

δs =
√
δs2

2 + δs2
1 =

√
0.05cm2 + 0.05cm2 = 0.07cm

4.2 Mean and standard deviation of the mean (STDOM)

The best for a variable x is calculated is given by the mean.

x̄ =
1

N

N∑
i=1

xi

The error propagation for the mean, assuming values of x are independent, is
given by the RMS of the errors.

δx̄ =
1

N

√√√√ N∑
i=1

δx2
i

The STDOM is another interpretation of the error of the mean and is given by
the following equation.

σx̄ =
1√
N

(
1

N − 1

N∑
i=1

(xi − x̄2)

)
Where applicable (i.e., in Parts B and C), both the error propagation for the
mean and STDOM are calculated, and the larger error is reported and/or used
for aggregated error propagation calculations, i.e.:

x = x̄±max(δx̄, σx̄)

4.3 Calculation of wavelength from diffraction grating

In section 7.1, we derive (Eq. 8) for the positions of the intensity maxima for a
laser’s light from an N-slit grating.

sin θ =
mλ

d
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where d is the slit density, and θ is the angle from the optical (horizontal) axis
to the m-th intensity maximum on either side. In particular, since only one
intensity maxima region was viewed on either side, we have two samples for the
m = 1 case, with the same d value and differing θs. Rearranging the equation,
we solve for λ.

λ = d sin θ

in the case where m = 1. sin θ is calculated from the ratio of lengths rather
than calculating the sine of a measured angle, as can be viewed in (Fig. 1).

Figure 1: Setup for estimation of wavelength from diffraction grating

Thus

sin θ =
h√

l2 + h2
(1)

4.3.1 Calculation of l

The calculation of the distance l from laser tip (which is placed roughly a mil-
limeter away from the diffraction grating) to screen is simply the difference of
the position of the screen and laser positions, plus the offset of the tip of the
laser from the center of the reading. In other words, let ps be the screen posi-
tion, pl be the laser position, and ol be the laser offset from the reading be from
(Table 1); then

l = ps − (pl − ol) (2)

and thus

δl =
√
δp2
s + δp2

l + δo2
l

Since ps and pl were estimated from the optical bench (instrumental uncertainty
0.05cm) and ol was estimated with the Vernier caliper (instrumental uncertainty
0.002cm), the error δl is

δl =
√

(0.05cm)2 + (0.05cm)2 + (0.002cm)2 = 0.07cm (3)
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4.3.2 Error propagation for wavelength from diffraction grating

We first calculate δ(sin θ), which will also be used in error calculations for sub-
sequent sections.

δ(sin θ) =

√(
∂(sin θ)

∂h
δh

)2

+

(
∂(sin θ)

∂l
δl

)2

(4)

=

√√√√( l2δh
√
l2 + h2

3

)2

+

(
hlδl

√
l2 + h2

3

)2

=

√
(l2δh)2 + (hlδl)2

(l2 + h2)3

We don’t perform an error propagation on d, so the error propagation for λ is
straightforward.

δλ = dδ(sin θ)

Another interpretation for uncertainty is half of the range of the two wave-
lengths.

δλ =
|λ1 − λ2|

2

4.3.3 Sample calculations

Using (Table 1), we obtain l:

l = 121.82cm− (105.03cm + 1.06cm) = 15.73cm

Now we calculate sin θ and λ, using the above calculated results and (Table 1).

sin θ =
12.999cm√

(12.999cm)2 + (15.73cm)2
= 0.637

λ = (0.001mm)(0.637) = 637nm

Now we calculate error propagation. δh is the instrumental error for the Vernier
caliper, and δl is as calculated in (Eq. 3).

δ(sin θ) =

√
((15.73cm)2(0.002cm))2 + ((15.73cm)(12.999cm)(0.07cm))2

((15.73cm)2 + (12.999cm)2)3

= 0.002

δλ = (0.001mm)(0.002) = 2nm

The average value of the two calculated wavelengths and the uncertainty (half
of the range) are displayed below.

λ̄ =
637− 653

2
= 645nm
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δλ̄ =
653− 637

2
= 8nm

This value is much larger than the calculated error propagation uncertainties of
1̄.7nm and 1̄.4nm (respectively) of the two trials, which hints that there is some
larger, unaccounted-for error in the error propagation (see explanation of errors
section, particularly about the screen’s slant).

4.4 Calculation of wavelength from single slit

In section 7.2, we derive (Eq. 10) for the positions of the intensity minima of a
laser’s light from a single finite-width slit.

sin θ =
pλ

a

where a is the width of the slit and θ is the angle from the optical (horizontal)
axis to the p-th minima. The equation is rearranged to solve for wavelength.

λ =
a

p
sin θ

where sin θ is calculated as in (Eq. 1).

4.4.1 Calculation of l and h

l is calculated the same way as in (Eq. 2).
Measurements for h use measurements from (Table 3) to obtain the values

in (Table 4). All length measurements were taken with respect to the fourth
minimum on the left side (i.e., length from fourth to third minima, length from
fourth to second minima, . . . , length from fourth to fourth minima on oppo-
site sides); therefore, seven length measurements were taken for each aperture
width. The distance from the fourth minimum to the center was approximated
as halfway between the first minima on each side of the center, and each value
for h is the difference between the length of the fourth minimum and the de-
sired minimum and the length between the fourth minimum and the center. For
clarity, denote the minima on the left to have negative indices (i.e., minima -1,
-2, -3, -4) and the minima on the right to have positive indices (i.e., minima 1,
2, 3, 4), denote the distance between the i-th and j-th minima as di,j , and call
the center the minimum with index 0. Thus:

d−4,0 =
d−4,−1 + d−4,1

2

and
hi = di,0 = |d−4,i − d−4,0|

Since all lengths were measured with respect to minimum -4,

δd−4,i = 0.002cm ∀i ∈ −4,−3, . . . , 4

9



and thus

δh =

√
(0.002cm)2 +

(
0.002cm

2

)2

+

(
0.002cm

2

)2

= 0.002̄4cm (5)

4.4.2 Error propagation for calculation of wavelength from single
slit

This calculation is very similar to that of the previous section, except now a
is also a measured value with an uncertainty. Since measurement error in a
affects the error of h, a and θ are dependent. Embedding the error expression
for δ(sin θ) from (Eq. 4), we have

δλ =

∣∣∣∣∂λ∂aδa
∣∣∣∣+

∣∣∣∣ ∂λ

∂(sin θ)
δ(sin θ)

∣∣∣∣ =

∣∣∣∣ (sin θ)δap

∣∣∣∣+

∣∣∣∣aδ(sin θ)p

∣∣∣∣
Since all of the terms will be positive, this simplifies to

δλ = p−1((sin θ)δa+ aδ(sin θ)) (6)

4.4.3 Sample calculation

The sample calculation shown is that of the fourth minimum on the right. We
calculate h, l, and sin θ, and λ, for a = 0.002cm in that order.

h =

∣∣∣∣2.548cm− 1.962cm + 1.610cm

2

∣∣∣∣ = 1.283cm

l = 124.70cm− (8.65cm + 1.06cm) = 114.99cm

sin θ =
1.283cm√

(1.283cm)2 + (114.99cm)2
= 0.0112

λ =
(0.02cm)(0.0112)

4
= 558nm

We calculate the error next. δh is given by (Eq. 5), and δl is given by (Eq. 3).
δa is the instrumental error of the Vernier caliper.

δ(sin θ) =

√
((114.99cm)2(0.002cm))2 + ((1.283cm)(114.99cm))2

((1.283cm)2 + (114.99cm)2)

3

= 0.00002̄24

δλ =
(0.0112)(0.002cm) + (0.02cm)(0.0000224)

4
= 5̄6.9nm

The mean, standard deviation of the mean (STDOM), and error propagation
for the mean is taken for each aperture size. For a = 0.02cm, the calculations
are shown below.

λ̄a=0.02cm =
558nm + 563nm + · · ·+ 550.nm

8
= 573nm
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σλ̄a=0.02cm =

√
(558nm− 573nm)2 + (563nm− 573nm)2 + · · ·+ (550.nm− 573nm)2

(8− 1)
√

8

= 8̄.83nm

δλ̄a=0.02cm =

√
(57nm)2 + (58nm)2 + · · ·+ (56nm)2

8
= 2̄1nm

Thus λ̄a=0.02cm = 570± 20nm.
Next, the best value from all aperture sizes is aggregated by taking the mean

of the calculated λ̄ from each aperture size, and the error calculation is calculated
likewise (calculate STDOM and error propagation for the mean and reporting
the larger error). The calculations are similar to those shown above for each
aperture size and thus omitted. The results for this section are summarized in
(Table 10).

4.5 Calculation of width of human hair

Optical diffraction predicts that the diffraction pattern for a thin finite-width
gap is the same as that produced by a thin object of the same finite width. (Eq.
10) is used like in the preceding section, and manipulated to solve for the a, the
width of the object.

a =
pλ

(sin θ)

where sin θ is calculated as in (Eq. 1).

4.5.1 Error propagation for the width of human hair

The errors δ(sin θ) (calculated in (Eq. 4)) and δλ (calculated in (Eq. 6)) are
independent and thus added in quadrature.

δa =

√(
∂a

∂λ
δλ

)2

+

(
∂a

∂(sin θ)
δ(sin θ)

)2

=

√(
pδλ

(sin θ)

)2

+

(
pλδ(sin θ)

(sin θ)2

)2

=
p

(sin θ)2

√
((sin θ)δλ)2 + (λδ(sin θ))2

4.5.2 Sample calculation

The sample calculation shown is that for Andrew’s hair using the fourth mini-
mum on the right. The process is very similar to the previous sample calculation,
and it uses the best value for λ calculated in the previous section.

h =

∣∣∣∣8.748cm− 5.450cm + 3.422cm

2

∣∣∣∣ = 4.312cm

l = 124.70cm− (8.65cm + 1.06cm) = 114.99cm

sin θ =
4.312cm√

(4.312cm)2 + (114.99cm)2
= 0.0375
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a =
4(611nm)

0.0375
= 65.2µm

For the error propagation, δh and δl are known, as in the previous section. δλ
is the error for λ calculated in the previous section.

δ(sin θ) =

√
((114.99cm)2(0.002cm))2 + ((114.99cm)(4.312cm)(0.07cm))2

((114.99cm)2 + (4.312cm)2)3
= 0.00003̄13

δa =
4

0.03752

√
(0.0375 ∗ (14nm))2 + ((611nm) ∗ 0.0000237) = 1.48µm

The mean, STDOM, and error propagation for the mean are identical calcu-
lations as those in the preceding section for each aperture size, so no sample
calculations will be shown here. The results from this section are summarized
in (Table 11).
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5 Results

5.1 Part A

Table 9: Calculation of wavelength from N-slit diffraction

Sample 1 λ (nm) Sample 2 λ (nm) λ̄ (nm)
637 653 645± 8

5.2 Part B

Table 10: Wavelength calculated from single-slit diffraction

a (cm) λ̄ (nm) δλ̄ (err. prop.) (nm) δλ̄ (STDOM) (nm)
0.02 570 20 9
0.03 660 20 20
0.04 60̄0 12 30

Reported λ̄ (nm) 610± 14

5.3 Part C

Table 11: Width of human hair calculated by single-slit diffraction

Owner ā (µm) δā (err. prop.) (µm) δā (STDOM) (µm) Reported ā (µm)
Andrew 66.9 0.5 2 67± 2

Jon 79.8 0.7 0.9 79.8± 0.9
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6 Conclusion

Reasonable values were obtained from Parts A and B for the wavelength of
the laser, 645 ± 8nm and 610 ± 14nm, respectively. While the latter doesn’t
capture the expected approximate true wavelength of roughly 650nm within
one standard deviation, the 6% error is small.

In Part B, the diameter of Andrew’s and Jon’s hairs were determined to be
67 ± 2µm and 79.8 ± 0.2µm, respectively. These are reasonable values; Brian
Ley from The Physics Factbook estimates that most human hair falls in the
range of 17 to 181µm1. The small standard deviation and the small error of
the slit method in Part B indicates that this method has a high precision for
very thin objects, most much higher than can be achieved with Vernier calipers,
linear scales, or more coarse instruments (and perhaps similar to or better than
micrometer calipers).

1https://hypertextbook.com/facts/1999/BrianLey.shtml

14



7 Answers to questions

7.1 Intensity maxima in N-slit diffraction

The intensity pattern of an N-slit pattern, with slits spaced d distance away on
a distant screen is given by (Eq. 7), as defined in class.

I(δ) = I0

[
sin Nδ

2

sin δ
2

]2

(7)

where δ = 2π
λ d sin θ (the phase delay) and θ is the angle between the ray pointing

to the position of interest on the screen and the central ray. While it seems
plausible that the maxima lie elsewhere, the maxima lie in the most obvious
positions: where the denominator of the fraction is zero. Thus x = πm, m =
±1,±2, . . . .

δ

2
= mπ ⇒ 2π

λ
d sin θ = 2πm⇒ sin θ =

mλ

d
(8)

We may calculate the maximum intensity at the points. Let x = δ
2 . We use

L’Hopital’s rule twice to evaluate this limit.

Imax = lim
x→0

I0

[
sinNx

sinx

]2

= I0 lim
x→0

2N sin(Nx) cos(Nx)

2 sin(x) cos(x)
= I0

N sin(2Nx)

sin(2x)

= I0N lim
x→0

2N cos 2Nx

2 cos 2x
= I0N

2 cos(0)

cos(0)
= I0N

2

7.2 Intensity minima in single-slit diffraction

The intensity pattern of a (finite-width) single-slit diffraction, using the same
variable conventions as in the previous section, is given by (Eq. 9).

I(β) = I0

(
sinβ

β

)2

(9)

where β = π
λa sin θ. This clearly has minima when sinβ = 0, or, equivalent,

when β = pπ, p = ±1,±2, . . .

π

λ
a sin θ = pπ ⇒ sin θ =

pλ

a
(10)
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