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1 Appendix C: Fields

DEF binary operation A binary operation is a mapping of two elements of
the same set to the same set, i.e., opbin(x1, x2) : S × S → S.

DEF field A field F is a set on which the binary operators addition (+) and
multiplication (·) are defined, such that addition and multiplication are
closed on the set and the five field axioms apply:

1. Commutativity of addition and multiplication

2. Associativity of addition and multiplication

3. Existence of (distinct) identity elements for addition (0) and multi-
plication (1)

4. Existence of inverse elements for addition and multiplication (except
with 0 for multiplication)

5. Distributivity of multiplication over addition

THM C.1 (Cancellation Laws for Fields) For arbitrary elements a, b ∈ F ,
the following statements are true:

• a+ b = c+ b⇒ a = c

• a · b = c · b⇒ a = c

THM C.1 COR 1: Uniqueness of identity and inverse elements (Proof
straightforward)

DEN: additive and multiplicative inverse ∀a ∈ F , a’s additive and mul-
tiplicative inverses exist (F4) and are unique (THM C.1 COR 1), and are
denoted −a and a−1, respectively.

THM C.2 Given a, b ∈ F , then the following statements are true:

• a · 0 = 0

• (−a) · b = a · (−b) = −(a · b)
• (−a) · (−b) = a · b

THM C.2. COR 1 The additive identity of a field has no multiplicative in-
verse.

DEF characteristic The characteristic of a field is defined as the smallest
p ∈ Z+ s.t. 1 + 1 + · · ·+ 1 = 0 (p summands). Notes:

• If no integer exists, then field has characteristic zero.

• Fields of characteristic 2 are problematic.

• If p 6= 0, the sum ∀x ∈ F , x+ x+ · · ·+ x = 0 (p summands).
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2 1.2. Vector Spaces

DEF external binary NOT SURE ABOUT THIS DEF. IS IT V × F → V ,
or is more general than for v.s.es?

DEF vector space (v.s.) A vector space (linear space) V over a set F consists
of a set on which two operations (addition (binary) and scalar multiplica-
tion (external binary)) are defined s.t. addition and scalar multiplication
are closed over the v.s., and the following eight vector space axioms hold.

1. Commutativity of vector addition

2. Associativity of vector addition

3. Existence of the identity 0 for vector addition

4. Existence of the inverse for vector addition

5. ∀x ∈ V, 1x = x

6. ∀a, b ∈ F, ∀x ∈ V, (ab)x = a(bx)

7. ∀a ∈ F, ∀x, y ∈ V, a(x+ y) = ax+ ay

8. ∀a, b ∈ F, ∀x ∈ V, (a+ b)x = ax+ bx

THM 1.1. Cancellation Law for Vector Addition Let x, y, z ∈ F . Then
x+ y = y + z ⇒ x = z.

THM 1.1. COR 1 Uniqueness of the 0 vector.

THM 1.1. COR 2 Uniqueness of the additive inverse.

THM 1.2. Let V be a v.s. Then:

• 0x = 0

• (−a)x = −(ax) = a(−x)

• a0 = 0

2.1 Examples of common v.s.

Fn set of n-tuples over elementwise addition and scalar multiplication

Mn×m(F ) matrices over elementwise addition and scalar multiplication

F(S, F ) set of functions mapping from a set S to a field F. Examples of this
include sequences, which are F(Z+, F )

P (F ), Pn(F ) set of polynomials of infinite or finite degree
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3 1.3. Subspaces

DEF subspace A subset W of a v.s. V over a field F is a subspace of V if W
is a v.s. over F with the +, · defined on V.

THM 1.3. Sufficient conditions for a subspace Let V be a v.s., W ⊆ V .
Then W subsp. V IFF:

• 0 ∈W
• x+ y ∈W ∀x, y ∈W
• cx ∈W ∀c ∈ F, ∀x ∈W

THM 1.4. Intersection of subspaces Any intersection of subspaces of a v.s.
is a subspace.

3.1 Notes on subspaces

• For any v.s. V , {0}, V subsp. V .

3.2 Examples of subspaces

• The set of symmetric n×n matrices, diagonal n×n matrices, and matrices
M s.t. trace(M) = 0 over F are subspaces of Mn×n(F ).

• Even and odd functions in the set of functions over a field.

• Pn is the direct sum of the even and odd polynomials in Pn.

3.3 Results from the homework

20. Union of subspaces W1 ∪W2 subsp. V IFF W1 ⊆W2 or W2 ⊆W1.

DEF set sum Let S1, S2 be non-empty subsets in V. The sum S1 + S2 =
{x+ y : x ∈ S1, y ∈ S2}.

DEF direct sum A v.s. V is the direct sum V = W1

⊕
W2 if W1, W2 subsp.

V s.t. W1 ∩W2 = {0}, W1 +W2 = V .

23. Set sum of subspaces Let W1, W2 subsp. V. Then W1 +W2 subsp. V,
and W1, W2 ⊆ W1 + W2. Also, any subsp. of V containing W1 and W2

contains W1 +W2.

30. Uniqueness of representation in direect sum If W1

⊗
W2 = V , then

∀v ∈ V , v can be uniquely be expressed as w1 + w2, w1 ∈W1, w2 ∈W2.

1. Null set vs. zero subspace The null set is never a subspace (all spaces
must include the zero vector, so it is the smallest subspace)

9, 10. Good ways to check for subspaces:
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• Check if the subspace has the zero vector. This is very easy to see
and happens any time a linear combinations equals a nonzero vector.

• If the condition is that a linear combination equals zero, then it is
the null space of a linear transformation, which is a v.s.

4 1.4. Linear Combinations and Systems of Lin-
ear Equations

DEF linear combination (l.c.) Let V be a v.s., S ⊆ V nonempty subset
of V. A vector v ∈ V is a lin. comb. of vectors in S if there exist
a finite number of vectors in S and a finite number of scalars in F s.t.
v =

∑n
i=1 anun.

DEF span Let S be a nonempty subset of v.s. V. The span of S is the set of
all lin. combs. of the vectors in S. Define span(∅) = {0}.

THM 1.5 The span of any subset S of a v.s. V subsp. V. Moreover, any subset
of V containing S must also contain span(S).

DEF generate A subset S of a v.s. V generates (or spans) V if span(S)=V.

4.1 Notes about linear combinations

• 0 is a possible linear combination of any set.

• To find whether a vector is a linear combination of others, write it as lin.
comb. and solve for coefficients w/ system of equations.

4.2 Results from the homework

17. Number of generating subsets card(V ) = n ⇐⇒ V has finitely many
generating subsets.

5 1.5. Linear dependence and linear indepen-
dence

DEF linear dependence A subset S of a v.s. V is called linearly dependent
if there exists a nontrivial lin. comb. over S that yields 0; i.e., there exists
a nontrivial lin. comb. over S that equals 0.

DEF linear independence A subset S of a v.s. that is not linearly dependent
is linearly dependent; i.e., lin. ind. IFF the only representations of 0 as
linear combinations over S are trivial representations.

THM 1.6. Let V be v.s., S1 ⊆ S2 ⊆ V . If S1 lin. dep, then S2 lin. dep.
Corollary (contrapositive): If S2 lin. ind., then S1 lin. ind.
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THM 1.7. Let S be a lin. ind. subset of a v.s. V, let v be a vector in V not in
S. Then S ∪ {v} lin. ind. IFF v ∈ span(S).

5.1 Notes and results from the homework

• Any subset containing the 0 vector is linearly dependent.

• The empty set is linearly independent.

• A set consisting of a single nonzero vector is linearly independent.

• To show lin. ind., set lin. comb. of all vectors to 0, show all coefficients 0.

1a. Not every vector from a linearly dependent set may be expressable as a
linear combination of the other vectors in that set.

6 1.6. Bases and dimension

DEF basis A basis β for a v.s. V is a lin. ind. subset of V s.t. span(β) = V .

THM 1.8 Let V be a v.s., β = ui, 1 ≤ i ≤ n. Then β basis for V IFF each
v ∈ V can be uniquely expressed as a lin. comb. of vectors of β.

THM 1.9 If a v.s. V is generated by a finite set S, then some subset of S is
a basis for V. Hence V has a finite basis. (”A finite spanning set can be
reduced to a basis for V”)

THM 1.10 Replacement theorem Let V be a v.s. generated by a set G
containing n vectors, let L be a lin. ind. subset of V containing m vectors.
Then m ≤ n and ∃H ⊆ G, card(H) = n−m s.t. span(L ∪H) = V .

THM 1.10 Corollary 1 Dimension of bases Let V be a v.s. having a finite
basis. Then every basis for V contains the same number of vectors.

DEF dimension A v.s. is finite-dimensional if it has a basis consisting of a
finite number of vectors. The unique number of vectors in each basis for V
is called the dimension of V. A v.s. that is not finite-dimensional is called
infinite-dimensional.

THM 1.10 Corollary 2 Let V be a v.s., dim(V ) = n. Then:

• Any finite generating set for V contains at least n vectors, and a
generating set for V that contains exactly n vectors is a basis for V.

• Any linearly independent subset of V that contains exactly n vectors
is a basis for V.

• Every linearly independent subset of V can be extended to a basis
for V.

(i.e., think: generating set always greater cardinality than lin. ind. set)
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THM 1.11 Dimension of subspaces Let W subsp. finite-dimensional v.s.
V. Then W is finite-dimensional, dim(W ) ≤ dim(V ). If dim(W ) =
dim(V ), then W = V .

THM 1.11 Corollary 1 If W subsp. a finite-dimensional v.s. V, then any
basis for W can be extended to a basis for V.

6.1 Example bases

• ∅ is the basis for {0}.

• {ei}, 1 ≤ i ≤ n is the standard basis for Fn. Standard bases are also
defined for Mm×n(F ), Pn(F ).

• The Lagrange polynomials. STUDY THIS

6.2 Results from the HW

20. Extension of THM 1.9 to arbitrary subspaces Let V be a v.s. hav-
ing dimension n, and let S be a subset of V that generates V. Then there
is a subset of S that is a basis for V. (S can be infinite.)

24. Polynomial and derivatives If f ∈ Pn(F ) has degree n, then {f, f ′, f ′′, · · · f (n)}
is a basis for Pn(F ).

29. Dimension of set sum Two results:

• If W1, W2 finite-dimensional, subsp. V, then dim(W1 + W2) =
dim(W1) + dim(W2)− dim(W1 ∩W2).

• Let W1, W2 be finite-dimensional subspaces of v.s. V, let V = W1 +
W2. Then V = W1

⊕
W2 ⇐⇒ dim(V ) = dim(W1) + dim(W2).

Examples 11, 12 from chapter The dimension of a v.s. may depend on its
field; i.e., the v.s. of complex numbers may have dimension 1 over a field
of C, and dimension 2 over a field of R.

6.3 Lagrange Interpolation Formula

Probably not on the tests, but a very interesting example nonetheless.
Given a finite set of distinct scalars c0, c1, · · · , cn in an infinite field F .

Then the polynomials f0, f1, · · · , fn, where fi(x) =
n∏

k=0,k 6=i

x−ck
ci−ck , are a basis

for Pn(F ), and fi(cj) =

{
0 i 6= j,

1 i = j
. Thus

n∑
i=1

aifj(cj) = aj . We can show that

{fi} is a basis by assuming
n∑
i=1

aifi = 0; then, at each cj we have an equation

that asserts that cj equals zero, i.e.,
n∑
i=1

aifi(cj) = 0 = cj . Since {fi} is a basis,
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then ∀g ∈ Pn(F ), g(cj) =
n∑
i=1

bifi(cj) = bj ⇒ g =
n∑
i=1

g(ci)fi. This can be ap-

plied to any set of ordered pairs of coordinates, (ci, g(ci)), 1 ≤ i ≤ n to express
(exactly) some polynomial g.

7 2.1. Linear Transformations, Null Spaces, and
Ranges

DEF linear transformation Let V, W be v.s. over F. Then, the function
T : V → W is called a linear transformation from V to W , if ∀x, y ∈ F ,
∀c ∈ F , T (x+ y) = T (x) + T (y) and cT (x) = T (cx)).

Properties of a linear transformation Useful properties:

T linear, then T (0) = 0

•• T linear IFF T (cx+y) = cT (x) +T (y) (easier to check this than two
things).

• The linear map over a linear combination preserves its structure,
yielding a lin. comb. over the images of the vectors in the lin. comb
with the same coefficients.

DEF kernel (null space) and range (image) Let V, W be v.s., T : V →
W is linear. Define the null space (kernel) N(T ) = {x ∈ V : T (x) = 0}.
Also, define the range (image) R(T ) = {T (x) : x ∈ V }.

THM 2.1 Let V, W be v.s., T : V → W linear. Then R(T ), N(T ) subsp. W ,
V , respectively.

THM 2.2 Let V, W be v.s., T : V → W linear, and β is a basis for V. Then
span(T (β)) = span(R(T )).

DEF nullity, rank Let V, W be v.s., T : V →W linear. If N(T ), R(T ) finite
dimensional, then define rank(T ) = rank(R(T )), nullity(T ) = rank(N(T )).

THM 2.3 Dimension Theorem Let V, W be v.s., T : V → W is linear. If
V finite-dimensional, then nullity(T ) + rank(T ) = dim(V ).

THM 2.4 Null space of 1-1 transforms Let V, W be v.s. T : V → W
linear. Then T is 1-1 IFF N(T ) = {0}.

THM 2.5 Equivalence of 1-1, onto transforms Let V, W be v.s. of equal
(finite) dimension, and let T : V → W be linear. Then the following are
equivalent:

• T 1-1 (injective)

• T onto (surjective)

• rank(T ) = dim(V )
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THM 2.6 Let V , W be v.s. over F , suppose {v1, v2, · · · , vn} is a basis for V .
∀w1, w2, · · · , wn ⊆W, ∃! T ∈ L(V,W ) : T (vi) = wi, 1 ≤ i ≤ n.

THM 2.6 Corollary 1 Let V, W be v.s., suppose V has the basis {v1, v2, · · · , vn}.
If U, T ∈ L(V,W ) and U(vi) = T (vi), 1 ≤ i ≤ n, then U = T .

7.1 Examples of linear transformations

rotation in cartesian coordinates in R2 Tθ(a, b) = (a1 cos θ−a2 sin θ, a1 sin θ+
a2 cos θ)

zero and identity transforms den. 0V , 1V or IV

7.2 Notes from the homework

1. Finding a transform that maps a given set to a given image You can-
not always find a linear map s.t. for some given vi ⊂ V , wi ⊂ W ,
T (vi) = wi.

2. 1-1 doesn’t imply onto It is possible for two transforms to be onto but
not 1-1; THM 2.5 only holds if the domain and codomain are of the same
dimension.

DEF T-invariant Let V be a v.s, and let T : V → V be linear. A subspace
W of V is said to be T-invariant if T (x) ∈W ∀x ∈W ; i.e., T (W ) ⊆W . If
W is T-invariant. we define the restriction of T on W to be the function
TW : W →W , TW (x) = T (x) ∀x ∈W .

7.3 Notes on linear transforms

• (THM 2.5) doesn’t apply for infinite-dimensional v.s.; i.e., onto isn’t equiv-
alent to 1-1 in this case. Also, (THM 2.4) and (THM 2.5) rely on linearity
of T .

• (THM 2.6 Corollary 1) indicates that the mapping of any linear transform
on the basis of its domain is unique. (THM 2.6) allows us to find a
transform if a mapping of its basis is known, since it must be unique.

8 2.2 The Matrix Representation of a Linear
Transformation

DEF ordered basis Let V be a finite-dimensional v.s. An ordered basis for
V is a basis endowed with a specific order. For some v.ses, a standard
ordered basis is defined. For our purposes, the choice of standard basis is
arbitrary but must be consistent.
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DEF coordinate vector Let β = u1, u2, · · · , un be an O.B. for a finite-dimensional
v.s. V. ∀x ∈ V x can be represented as a lin. comb. over β, i.e.,
x =

∑n
i=1 aiui, 1 ≤ i ≤ n. We define the coordinate vector of x rela-

tive to β as [x]β = HOW TO USE MATRICES

DEF matrix representation of a linear transform Let β = v1, v2, · · · , vn
be an O.B. for V, γ = w1, w2, · · · .wn be an O.B. for W. Let T ∈ L(V,W ).
Then T (vj) =

∑n
i=1 aijwi. The matrix representation of T in the ordered

bases β and γ is defined by Aij = aij , and denote A = [T ]γβ . In other
words, it is the partitioned matrixA = [ [T (v1)]γ | [T (v2)]γ | · · · | [T (vn)]γ ].

DEF addition and scalar multiplication over lin. trans. Define addition
and multiplication over linear transforms as the addition and scalar mul-
tiplication in the field of the results of the transforms.

THM 2.7 Set of linear transf. is a vector space Let V, W be v.s. over
F. Let T : V →W be linear. Then:

• ∀a ∈ F, aT + U is linear.

• The collection of all linear transformations from V to W is a v.s. over
F. We’ll denote this L(V,W ).

THM 2.8 Correspondence of lin. trans. with matrix representations
Let V, W be finite-dim. v.s. with O.B.s β, γ, respectively, and let
T,U ∈ L(V,W ). Then:

• [T + U ]γβ = [T ]γβ + [U ]γβ

• [aT ]γβ = a[T ]γβ

DO EXERCISES

9 2.3. Composition of Linear Transformations
and Matrix Multiplication

THM 2.9 Linearity of composition of lin. trans. Let V , W , Z be v.s. over
F , and let T ∈ L(V,W ), U ∈ L(W,Z). Then UT ∈ L(V,Z).

THM 2.10 Properties of compositions of lin. trans. Let V be a v.s. Let
T,U1, U2 ∈ V. Then:

• T (U1 + U2) = T (U1) + T (U2), (U1 + U2)T = U1T + U2T

• T (U1U2) = (TU1)U2

• TI = IT = T

• a(U1U2) = (aU1)U2 = U1(aU2), ∀a ∈ F

DEF matrix product Let A ∈Mm×p(F ), B ∈Mp×n(F ). Define the product
AB ∈Mm×n(F ) s.t. (AB)ij =

∑p
k=1AikBkj .
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THM 2.11 Matrix representation of composition Let V , W , Z be finite-
dimensional v.s. with O.B.s α, β, γ, respectively. Let T : V → W and
U : W → Z be linear transformations. Then [UT ]γα = [U ]γβ [T ]βα.

Kronecker delta and In Define:

δij =

{
1, i = j

0, i 6= j

Define In ∈ Mn×n(F ) s.t. Iij = δij , and call this the n-by-n identity
matrix.

THM 2.12 Properties of matrix multiplication LetM ∈Mm×n(F ), B,C ∈
Mn×p(F ), D,E ∈Mq×m(F ). Then:

• A(B + C) = AB +AC, and (D + E)A = DA+ EA

• a(AB) = (aA)B = A(aB) ∀a ∈ F
• ImA = A = AIn

• If V v.s. with dim. n and O.B. β, then [IV ]β = In

THM 2.13 Let A ∈ Mm×n(F ), B ∈ Mn×p(F ). Let uj be the jth column of
AB, vj be the jth column of B ∀1 ≤ j ≤ p. Then:

• uj = Avj

• vj = Bej

THM 2.14 Linear transformations as matrix multiplication Let V , W
be finite-dimensional v.ses with bases O.B.s β, γ, respectively. Let T ∈
L(V,W ). Then, ∀u ∈ V, [T (u)]γβ = [T ]γβ [u]β .

DEF Left-multiplication Transformation Let A ∈ Mm×n(F ). Define the
transformation LA, called the left-multiplication transformation, by LA :
Fn → Fm, LA(x) = Ax ∀x ∈ Fn.

THM 2.15 Properties of the left-multiplication transformation LetA ∈
Mm×n(F ). Then LA is linear. Furthermore, let B ∈ Mm×n(F ), β, γ
S.O.B.s for Fn, Fm, respectively, then:

• [LA]γβ = A

• LA = LB ⇐⇒ A = B

• LA+B = LA + LB , and LaA = aLA ∀a ∈ F
• If T : Fn → Fm is linear, then ∃!C s.t. T = LC , and C = [T ]γβ .

• If E ∈Mn×p(F ), then LAE = LALE .

• m = n⇒ LIn = IFn .

THM 2.16 Let A, B, C be matrices s.t. A(BC) is defined. Then so is (AB)C,
and multiplication is associative.
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9.1 Notes about matrix multiplication

• The transpose of a matrix product is the product of the transposes of the
factors in reverse order, i.e., (AB)T = BTAT .

• The cancellation law is not valid for matrices, since two different matrices
may multiply the same matrix to get the same product. (E.g., some non-
zero matrices square to 0.)

10 2.4. Invertibility and Isomorphisms

DEF invertible linear transformation Let V and W be v.ses, and let T ∈
L)(V,W ). A function U ∈ L(W,V ) is said to be an inverse of T if TU =
IW and UT = IV . If T has an inverse, it is said to be invertible, and its
inverse is unique (by properties of invertible functions). Some properties
for inverse linear transformations hold from the study of inverse functions
(from Appendix B, can be used without proof):

• (TU)−1 = U−1T−1

• (T−1)−1 = T (and thus T−1 is invertible)

• T is invertible IFF it is one-to-one (and thus onto, rank(T ) = dim(V ),
etc.)

THM 2.17 Let V , W , be v.ses, and let T ∈ L(V,W ) be invertible. Then T−1

is also linear.

DEF. invertible matrix Let A ∈ Mn×n(F ). Then A is invertible if ∃B ∈
Mn×n(F ) s.t. AB = BA = In.

LEM. Dimensions of domain and codomain of invertible transformations
Let T ∈ L(V,W ) invertible. Then V is finite-dimensional IFF W is finite-
dimensional. In this case, dim(V ) = dim(W ).

THM 2.18 Matrix representation of inverse transformation Let V , W
be finite-dimensional v.ses with O.Bs β and γ, respectively. Let T ∈
(V,W ). Then T invertible IFF [T ]γβ invertible, and [T ]γβ = ([T−1]βγ )−1.

THM 2.18 COR 2 Let A ∈Mn×n(F ). Then A invertible IFF LA invertible,
and L−1A = LA−1 .

DEF isomorphic, isomorphism Let V , W be v.ses. We say that V is iso-
morphic toW if there ∃T ∈ L(V,W ) invertible. T is called an isomorphism
from V onto W .

THM 2.19 Let V , W be finite-dimensional v.ses. (over the same field). Then
V isomorphic to W IFF dim(V ) = dim(W ).
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THM 2.20 Let V , W be finite-dimensional v.ses over F of dimensions n and
m, respectively, and let β and γ be the respective O.Bs. Then the function
Φ : L(V,W )→Mm×n(F ), defined by Φ(T ) = [T ]γβ for T ∈ L(V,W ), is an
isomorphism.

THM 2.19 COR 1 Let V , W be finite-dimensional v.ses of dimensions n, m,
respectively. Then L(V,W ) has dimension nm.

DEF standard representation function Let β be an O.B. for an n-dimensional
v.s. V over the field F . The standard representation of V w.r.t. β is the
function φβ : V → Fn defined by φβ(x) = [x]β ∀x ∈ V .

THM 2.21 For any finite-dimensional v.s. V with O.B. β, φβ is an isomor-
phism.

Commutativity diagram: performing matrices indirectly φγT = L[T ]γβ
φβ .

Note that φβ , φγ invertible (but not necessarily T or LA), so this has more
possibilities open.

11 2.5. The Change of Coordinate Matrix

THM 2.22 Let β, β′ be O.Bs for a finite dimensional v.s. V , and let Q =
[IV ]ββ′ . Then:

• Q is invertible

• For any v ∈ V , [v]β = Q[v]β′

DEF linear operator A linear operator is a linear map with the same domain
and codomain.

THM 2.23 Let T be a linear operator on a finite-dimensional v.s. V , and let β
and β′ be O.Bs for V . Suppose that Q is the change of coordinate matrix
changing β′ coordinates to β coordinates. Then [T ]β′ = Q−1[T ]βQ.

THM 2.23 COR 1 Let A ∈ Mn×n(F ), and γ be an O.B. for Fn. Then
[LA]γ = Q−1AQ, where Q is the n × n matrix whose jth column is the
jth vector of γ.

DEF similar Let A, B be matrices in Mn×n(F ). We say that B is similar to
A if there exists an invertible matrix Q s.t. B = Q−1AQ.

12 2.6. Dual Spaces (covered in brief)

DEF linear functional A linear functional is a linear transformation from a
v.s. V to its field of scalars F .

DEF dual space For a v.s. V over F , define the dual space of V to be L(V, F ),
denoted by V ∗.

14



13 3.1. Elementary Matrix Operations and El-
ementary Matrices

DEF elementary row [column] operation Let A ∈Mm×n. Any one of the
following operations on the rows [columns] of A is called an elementary
row [column] operation:

1. interchanging any two rows [columns] of A

2. multiplying any row [column] of A by a nonzero scalar

3. adding any scalar multiple of a row [column] of A to another row
[column]

DEF elementary matrix An n × n elementary matrix is a matrix obtained
by performing an elementary operation on In. The elementary matrix
is called type 1, type 2, or type 3, depending on the type of elementary
operation applied to it.

THM 3.1 Let A ∈Mm×n(F ), and suppose B is obtained from A by performing
an elementary row [column] operation. Then there exists an m×m [n×n]
elementary matrix E s.t. B = EA [B = AE]. In fact, E is obtained
from Im [In] by performing the same elementary row [column] operation
performed on A to get B. The converse is also true.

THM 3.2 Elementary matrices are invertible, and the inverse of an elementary
matrix is also an elementary matrix.

13.1 Notes about elementary matrices

• Each elementary matrix can be obtained by either a row or column oper-
ation.

14 3.2. The Rank of a Matrix and Matrix In-
verses

DEF. rank If A ∈Mm×n(F ), we define rank(A) = rank(LA).

THM 3.3 Let T ∈ L(V,W ) be a lin. trans. between finite-dim. v.ses, and let
β, γ be respective O.Bs for V , W . Then rank(T ) = rank([T ]γβ).

THM 3.4 Let A ∈ Mm×n. If P ∈ Mm×m, Q ∈ Mn×n invertible, then:
rank(PA) = rank(A) = rank(AQ) = rank(PAQ).

THM 3.4 COR 1 Elementary operations are rank-preserving.

THM 3.5 The rank of any matrix equals the maximum number of its linearly
independent columns; that is, the rank of a matrix is the dimension of
Col(A).

15



THM 3.6 Let A ∈ Mm×n(F ) of rank r. Then r ≤ m,n, and, by means of
(a finite number of) elementary operations, A can be transformed into a

matrix s.t. Aij =

{
1 i = j, i ≤ r
0 else

THM 3.6 COR 1 Let A ∈Mm×n(F ). Then ∃B ∈Mm×m(F ), C ∈Mn×n(F )
invertible s.t. BAC is the matrix described in the statement of the theo-
rem.

THM 3.6 COR 2 For a matrix A, rank(A) = rank(At) = rank(Row(A)) (=
rank(Col(A))).

THM 3.6. COR 3 Every invertible matrix is a product of elementary matri-
ces.

THM 3.7 Let T ∈ L(V,W ), U ∈ L(W,Z) on finite dim. v.s.es V , W , and Z,
and let A, B be matrices s.t. AB is defined. Then:

• rank(UT ) ≤ rank(U), rank(T )

• rank(AB) ≤ rank(A), rank(B)

DEF augmented matrix Let A ∈ Mm×n(F ), B ∈ Mm×p(F ). By the aug-
mented matrix (A|B), we mean the m× (n+ p) matrix (AB).

Use of augmented matrix to find inverse IfA ∈Mm×n(F ) invertible, and
the augmented matrix (A|B) is converted to (In|B) by means of a finite
number of elementary row operations, then A−1 = B. (If A is not invert-
ible, then the rank will be less than n, which means that there will be a
row of zeros on the left side).

15 3.3. Systems of Linear Equations – Theoret-
ical Aspects

DEF system of m linear equations over n unknowns in the field F known

DEF coefficient matrix (of a system) known

DEF solution (of a system) known

DEF (in)consistent (describing a system) known

DEF homogeneous (describing a system) known

THM 3.8 Let Ax = 0 be a homogeneous lin. sys. of m lin. equations in n
unknowns over a field F . Let K denote the set of all solutions to the
system. Then K = N(LA); hence, K is a subspace of Fn of dimension
n− rank(LA) = n− rank(A).

THM 3.8 COR 1 If m < n, then the system Ax = 0 has a nonzero solution.

16



THM 3.9 Let K be the sol’n set of a system Ax = b, and let KH be a solution
of the corresponding homogeneous system Ax = 0. Then for any solution
s to Ax = b, K = {s}+KH = {s+ k : k ∈ KH}.

THM 3.10 Let Ax = b be a system of n linear equations in n unknowns. If
A is invertible, then the system has exactly one solution, namely, A−1b.
Conversely, if the solution has exactly one solution, then A is invertible.

THM 3.11 Let Ax = b be a system of linear equations. Then the system is
consistent IFF rank(A) = rank(A|b). (i.e., b ∈ R(LA)).

16 3.4. Systems of Linear Equations – Compu-
tational Aspects

DEF equivalent systems Two systems of linear equations are called equiva-
lent if they have the same solution set.

THM 3.13 Let Ax = b be a system of m linear equations in n unknowns, and
let C be an invertible n × n matrix. Then the system (CA)x = Cb is
equivalent to Ax = b.

THM 3.13 COR 1 Let Ax = b be a system of m linear equations and n un-
knowns. If (A′|b′) is obtained from (A|b) by a finite number of elementary
row operations, then the system A′x = b′ is equivalent to the original
system.

DEF reduced row echelon form A matrix is said to be in reduced echelon
if the following three conditions are satisfied:

• Any row containing a nonzero entry precedes any row in which all
the entries are zero (if any).

• The first nonzero row in each row is the only nonzero entry in its
column.

• The first nonzero entry in each row is 1 and it occurs in a column to
the right of the first nonzero entry in the preceding row.

DEF Gaussian elimination back-substitution is more efficient than Gauss-
Jordan elimination method

THM 3.14 Gaussian elimination transforms any matrix into its RREF form.

16.1 Notes about systems of linear equations

• Consistent solutions can have more than one, but a finite number of solu-
tions (if a finite field).

17



17 Ways to prove v.s.

• Use 8 v.s. axioms.

• Show subspace of another v.s.

• Show it is R(T) or N(T) for some l.t. T.

18 Ways to prove basis

• Prove linearly independent, generating set.

• Prove linearly independent, correct dimension.

• Prove generating set, correct dimension.

• Image of a 1-1 linear transformation (i.e., isomorphism) on a basis.

19 Ways to show set equality

• Show set containment both ways

20 Methods for proofs

• Find all cases of (some condition): i.e., Be able to show IFF.

• Proof by contrapositive: p ⇒ q ≡ ¬q ⇒ ¬p. Often useful for showing
reverse direction in IFF.

• Induction: show base and inductive steps.

21 Questions

• Notation: {T (v)} vs. T (v) if v is a set of vectors?

• Notation: If T ∈ L(V,W ), are R(T ) and T (V ) equivalent and/or inter-
changeable?

• When proving invertibility by finding an inverse and multiplying it, do you
have to show that it multiplies to In with both left and right multiplication,
or is one side sufficient?

• Is example in 2.5 backwards?
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