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4.1. Determinants of order 2

DEF. 2× 2 determinant If

A =

(
a b
c d

)
∈M2×2(F )

then we define the determinant of A, denoted det(A) or |A| to be the
scalar ad− bc.

THM 4.1. The function det : M2×2(F ) → F is a linear function of each row
of a 2× 2 matrix when the other row is held fixed. That is, if u, v, w ∈ F 2

and k is a scalar, then

det

(
u+ kv
w

)
= det

(
u
w

)
+ kdet

(
v
w

)
(and the same for the other row.)

THM 4.2. Let A ∈M2×2(F ). Then the determinant of A 6= 0 ⇐⇒ A invert-
ible. If A invertible, then

A−1 =
1

det(A)

(
A22 −A12

−A21 A11

)

Other results

Area of a parallelogram The determinant is equal to the area of a parallel-
ogram (why?) formed by (u1, u2) and (v1, v2) is∣∣∣∣u1 u2

v1 v2

∣∣∣∣
This works for n-dimensional volumes of n-dimensional parallelpipeds.
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4.2. Determinants of order n

DEF. higher-order determinant by cofactor expansion along the first row
Let A ∈ Mn×n(F ). If n = 1, then |A| = (A11). See (THM. 4.4.) with
i = 1. (This is not the most useful/general form.)

THM 4.3. This is an extension of (THM 4.1.) to higher-order matrices.

Corollary If a square matrix A has a row consisting entirely of zeroes, then
det(A) = 0.

THM 4.4. The determinant of a square matrix can be evaluated by cofactor
expansion along any row i.

det(A) =

n∑
j=1

(−1)i+jAijdet(Ãij)

Corollary If A ∈Mn×n(F ) has two identical rows, then det(A) = 0.

THM 4.5. Swapping two rows means flipping the sign of the determinant.

THM 4.6 Adding a multiple of one row to another doesn’t change the deter-
minant.

Corollary If A ∈Mn×n(F ) has rank less than n, then det(A) = 0.

Other results

Determinant of an upper-triangular matrix The determinant of an upper-
triangular matrix is the product of its diagonal entries.

4.3. Properties of determinants

THM 4.7. ∀A,B ∈Mn×n(F ), det(AB) = det(A) · det(B).

Corollary A matrixA ∈Mn×n(F ) is invertible IFF det(A) 6= 0. IfA invertible,
then det(A−1) = 1

det(A)
.

THM. 4.8. ∀A ∈ Mn×n(F ), det(A) = det(AT ). This means that cofactor
expansions can occur along any row or column (generalizing (THM 4.4.)
even further).

THM 4.9. (Cramer’s rule) Let Ax = b be a linear system in n unknowns.

If det(A) 6= 0, then xk = det(Mk)

det(A)
., where Mk is the matrix obtained by

replacing column k of A by b.
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4.4. Summary – important facts about determi-
nants

(Not much new is introduced in this section.)

• The determinant of similar matrices is the same.

5.1. Eigenvalues and Eigenvectors

DEF. diagonalizable A linear operator T on a finite-dimensional v.s. V is
called diagonalizable if there is an O.B. β for V s.t. [T ]β is a diagonal
matrix. A square matrix A is called diagonalizable if LA is diagonaliz-
able.

DEF. e-val and e-vect Let T be a linear operator on a v.s. V . A nonzero
vector v ∈ V is called an eigenvector of T if ∃λ ∈ F : T (v) = λv. The
scalar λ is called the eigevalue corresponding to the eigenvector v.

THM 5.1. A linear operator T on a finite-dimensional v.s. V is diagonalizable
IFF there exists an O.B. for V consisting of eigenvectors of T . Further-
more, if T is diagonalizable, β = {v1, v2, . . . , vn} is an O.B. of e-vects
of T , and D = [T ]β , then D is a diagonal matrix and Djj is the e-val
corresponding to vj for 1 ≤ j ≤ n,

THM 5.2. Let A ∈ Mn×n(F ). Then a scalar λ is an e-val of A IFF det(A −
λIn) = 0.

DEF. characteristic polynomial LetA ∈Mn×n(F ). The polynomial f(t) =
det(A− tIn) is called the characteristic polynomial of A. (Similar for
T – characteristic polynomial is the characteristic polynomial of [T ]β).

THM 5.3. Let A ∈Mn×n(F ).

• The characteristic polynomial of A is a polynomial of degree n with
leading coefficient (−1)n.

• A has at most n distinct eigenvalues.

THM 5.4. Let T be a linear operator on a v.s. V , and let λ be an eigenvalue
of T . A vector v ∈ V is an e-vect of T corresponding to λ IFF v 6= 0 and
v ∈ N(T − λI)).

5.2. Diagonalizability

THM 5.5. Let T be a linear operator on a vector spacce V , and let λ1, λ2, . . . , λk
be distinct e-vals of T . If v1, v2, . . . , vk are e-vects of T s.t. λi corresponds
to vi(1 ≤ i ≤ k). then {v1, v2, . . . , vk} is linearly independent.
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Corollary Let T be a linear operator on an n-dimensional v.s. V . If T has n
distinct e-vals, then T is diagonalizable.

THM 5.6. The characteristic polynomial of any diagonalizable linear operator
splits.

DEF. Let λ be an e-val of a linear operator or matrix with characteristic poly-
nomial f(t). The (algebraic) multiplicity of λ is the largest positive
integer k is the largest positive integer k for which (t− λ)k divides f(t).

DEF. e-space Let T be a linear operator on a v.s. V , and let λ be an e-val of
T . Define Eλ = {x ∈ T : T (x) = λx} = N(T − λIV ). The set Eλ is called
the eigenspace of T corresponding to the e-val λ.

THM. 5.7. Let T be a linear operator on a finite-dimensional v.s. V , and let
λ be an eigenvalue of T having multiplicity m. Then 1 ≤ dim(Eλ) ≤ m.

THM 5.8. Let T be a linear operator on a v.s. V , and let λ1, λ2, . . . , λk be
distinct e-vals of T . For each i = 1, 2, . . . , k, let Si be a finite linearly
independent subset of the eigenspace Eλi . Then S = S1 ∪ S2 ∪ · · · ∪ Sk is
a linearly independent subset of V .

THM. 5.9. Let T be a linear operator on a finite-dimensional v.s. V s.t. the
characteristic polynomial T splits. Let λ1, λ2, . . . , λk be the distinct eigen-
values of T . Then

1. T is diagonalizable IFF the multiplicity of λi is equal to dim(Eλi)
for all i.

2. If T is diagonalizable and βi is an O.B. for Eλi
for each i, then

β = β1 ∪ β2 ∪ · · · ∪ βk is an O.B. for V consisting of e-vects of T .

DEF. sum of subspaces Let W1,W2, . . . ,Wk be subspaces of a v.s. V . We
define the sum of these subspaces to be the set

{v1 + v2 + · · ·+ vk : vi ∈Wi ∀1 ≤ i ≤ k}

which we denote by
∑k
i=1Wi.

DEF. direct sum of subspaces Let W1,W2, . . . ,Wk be subspaces of a v.s.
V . We call V the direct sum of the subspaces of W1,W2, . . . ,Wk and
write V =

⊕k
i=1Wi if V is the sum of those subspaces and

Wj ∩
∑
i 6=j

Wi = {0} ∀1 ≤ j ≤ k

THM 5.10. Let W1,W2, . . . ,Wk be subspaces of a finite-dimensional v.s. V .
The following conditions be equivalent.

• V is the direct sum of subspaces {Wi}.
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• V =
∑k
i=1Wi, and for any vectors v1, v2, . . . , vk s.t. vi ∈ Wi, if

v1 + v2 + · · ·+ v + k = 0, then vi = 0 ∀i.
• Each vector v ∈ V can be uniquely written as v = v1 + v2 + · · ·+ vk,

where vi ∈Wi.

• If γi is an O.B. for Wi, then γ1 ∪ γ2 ∪ · · · ∪ γk is an O.B. for V .

• For each i = 1, 2, . . . , k, there exists an O.B. γi for Wi s.t. γ1 ∪ γ2 ∪
· · · ∪ γk is an O.B. for V .

THM 5.11. A linear operator T on a finite-dimensional v.s. V is diagonalizable
IFF V is the direct sum of the eigenspaces of T .

5.4. Invariant subspaces and the Cayley-Hamilton
theorem

DEF. T-invariant subspace Let T be a linear operator on a v.s. V . A
subspace W of V is called a T − invariantsubspace of V if T (W ) ⊆ W ,
that is, if T (v) ∈W ∀v ∈W .

DEF. T-cyclic subspace Let T be a linear operator on a v.s. V , and let x
be a nonzero vector in V . The subspace W = span({x, T (x), T 2(x), . . . })
is called the T-cyclic subspace of V generated by x.

THM 5.21. Let T be a linear operator on a finite-dimensional v.s. V , and let
W be a T-invariant subspace of V . Then the characteristic polynomial of
TW divides the characteristic polynomial of T .

THM 5.22. Let T be a linear operator on a finite-dimensional v.s. V , and
let W denote the T-cyclic subspace of V generated by a nonzero vector
v ∈ V . Let k = dim(V ). Then

1. {v, T (v), . . . , T k−1(v)} is a basis for W .

2. If a0+a1T (v)+· · ·+ak−1T k−1(v)+T k(v) = 0, then the characteristic
polynomial of TW is f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t

k−1 + tk).

THM 5.23. Cayley-Hamilton. Let T be a linear operator on a finite-dimensional
v.s. V , and let f(t) be the characteristic polynomial of T . Then f(T ) = T0,
the zero transformation. That is, T “satisfies” its characteristic equation.

Corollary Let A ∈Mn×n(F ), and let f(t) be the characteristic polynomial of
A. Then f(A) = 0.

THM 5.24. Let T be a linear operator on a finite-dimensional v.s. V , and sup-
pose that V = W1

⊕
W2

⊕
· · ·
⊕
Wk, where Wi is a T -invariant subspace

of V for each i (1 ≤ i ≤ k). The characteristic polynomial of V is the
product of the characteristic polynomials of the T-invariant subspaces.

DEF. direct sum of matrices Direct sum of matrices eww
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THM 5.25. Let T be a linear operator on a finite-dimensional v.s. V . Let V
be a direct sum. Then for A = [T ]β , Bi = [TWi ]βi , then A is the direct
sum of {Bi}.
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