
PSET 5 Jonathan Lam
Prof. Hakner

ECE 357
Computer OS

11/20/19

Problem 1 – Page Tables

a) Identfy the type of each memory region, based on the clues.

1) text (clues: map r/x/private, contains opcodes)
2) data (clues: map r/w/private, not empty)
3) bss (clues: map r/w/private, zero-filled)
4) bss – mmapped in (clues: map r/w/shared, zero-filled)
5) stack (clues: high address, map r/w/private/anon/growsdown, filled at end)

b) Draw out the PGD and any PTs that the kernel would have allocated.

c) Compose a brief program to reach the above state.

Note: From the diagram, we only know that these PTEs are marked not present,
which can mean either that they have never been accessed (read from/written
to/executed) or were paged in at some point and are currently paged out. This
program (and the following answers) assumes that none of the non-present,
mmap-ed in virtual pages (i.e., 0x40001000, 0x40003000, and 0x08044000) have
never been accessed.

 1 // assume compiler doesn't optimize out useless statements/functions
 2
 3 // .data
 4 unsigned long i = 1, j = 1;
 5
 6 // two-page .bss
 7 char l[8192];
 8
 9 int main(void) {
 10 // keep accessing this to keep .stack accessed
 11 int k;
 12 char *m;
 13
 14 // create mmap-ed region
 15 // assume 0x40001000 was chosen by mmap, not chosen explicitly
 16 m = (char *) mmap(NULL, 12288, PROT_READ|PROT_WRITE,
 17 MAP_ANONYMOUS|MAP_SHARED, -1, 0);
 18
 19 // dirty .data; assume little-endian (shows correctly in core dump)
 20 i = 0x45334543, j = 0x00003537;
 21
 22 // rapidly access both .bss and .stack regions so that PFRA doesn't
 23 // try to reclaim it and access bit stays set
 24 while(1) {
 25 l[4096];
 26 m[4096];
 27 k;
 28 }
 29 }

d) Explain each page fault incurred by the program and resolution.

First, there is the minor page fault to create space for the PGD. Next, there
is the mmap of the .text, .data, .bss, and .stack regions. These mmaps set up
the valid memory regions but do not incur page faults.

Program execution begins in the .text region, so this region gets read,
leading into the minor page fault to create the PT (0x00301000) and a major
page fault (reading from a.out mapped to VA 0x08040000). The .text region has
an instruction to add main to the stack, which causes a minor page fault for
the PT (0x00302000) and a minor page fault in the stack, writing to a virgin
anonymous page mapped to VA 0xBFFFF000.

In the program in part (c) above, next is a mmap to region 4 (no page fault).
After that, there is a major page fault after writing to the data region
(reading from a.out mapped to VA 0x08042000). On accessing (reading) the bss
region, a minor page fault occurs mapping VA 0x08045FFF to the dedicated
kernel page of all zeros (for COW optimization). For the mmap-ed region, a
minor page fault occurs for the PT (0x00303000) and a minor page fault to
read the data with VA 0x40002000 (similar to above, mapped to dedicated
kernel page of all zeros).

This is a total of 2 major and 7 minor page faults.

e) What evidence from the diagram above shows that the PFRA has been recently
active? Which page frame(s) might be a candidate for paging-out and reclamation?

Region 2 has been written to (dirty) and is not shared, but not accessed,
which means that something (which can only be the PFRA) cleared the accessed
bit. The PFRA must have run recently since it would claim pages for paging
out if they have the accessed bit left unchecked for too long. Because this
page is the only one with the accessed bit unset, it is the most likely
candidate for being paged out.

There are no clear candidates for page reclamation just based on this diagram
alone. However, if the valid memory regions that are not mapped to any page
table have been swapped out (contrary to the assumption made in part (c)),
these may be candidates for reclamation.

Problem 2 – mmap test programs

Test program (mtest.c)

 1 #include <errno.h>
 2 #include <fcntl.h>
 3 #include <signal.h>
 4 #include <stdio.h>
 5 #include <stdlib.h>
 6 #include <string.h>
 7 #include <sys/mman.h>
 8 #include <unistd.h>
 9
 10 // test program vars; chosen arbitrarily and tweakable
 11 #define TMP_PATH "/tmp/mtest.tmp"
 12 #define TST_IND 3
 13 #define TST_LEN 324
 14 #define TST_CHR 'A'
 15
 16 // less strict error reporting, since these errors shouldn't happen
 17 int err_chk(int res, char *cmd_name) {
 18 if(res<0) {
 19 dprintf(2, "./mtest: ERROR: failed on %s: %s.\n",
 20 cmd_name, strerror(errno));
 21 exit(EXIT_FAILURE);

 22 }
 23 dprintf(2, "./mtest: Performing %s.\n", cmd_name);
 24 return res;
 25 }
 26
 27 // auxiliary fns
 28 void sig_trap(int sig_num) {
 29 dprintf(2, "./mtest: Received signal %d: %s. Exiting.\n",
 30 sig_num, strsignal(sig_num));
 31 exit(sig_num);
 32 }
 33 void trap_all_sigs() {
 34 for(int i=1; i<=31; i++)
 35 signal(i, sig_trap);
 36 }
 37 int create_tmp_file() {
 38 int fd;
 39 char buf[] = "Hello, world!";
 40
 41 // create and fill with some (known) bytes
 42 fd = err_chk(open(TMP_PATH, O_CREAT|O_RDWR|O_TRUNC), "creat tmpfile");
 43 err_chk(write(fd, buf, sizeof buf), "fill some data to tmpfile");
 44 err_chk(unlink(TMP_PATH), "unlink tmpfile");
 45
 46 return fd;
 47 }
 48
 49 // test 1: PROT_READ violation
 50 void test_1() {
 51 char *p, prev, post;
 52
 53 trap_all_sigs();
 54 p = (char *) mmap(NULL, 4096, PROT_READ, MAP_ANON|MAP_SHARED, -1, 0);
 55 err_chk(-(p==MAP_FAILED), "mmap tmpfile with MAP_ANON|MAP_SHARED");
 56
 57 prev = p[TST_IND];
 58 dprintf(2, "./mtest: p[TST_IND]==%x.\n", prev);
 59 dprintf(2, "./mtest: attempting write p[TST_IND]=%x.\n", prev+1);
 60 post = ++p[TST_IND];
 61
 62 // diagnostic message and cleanup
 63 err_chk(munmap(p, 4096), "munmap tmpfile");
 64 dprintf(2, "./mtest: test byte: pre-write: %x post-write %x.\n", prev, post);
 65 exit(-(prev==post));
 66 }
 67
 68 // tests 2/3: writing to MAP_SHARED/MAP_PRIVATE
 69 void test_23(int is_shared) {
 70 int fd;
 71 char *p, prev, post;
 72
 73 fd = create_tmp_file();

 74 p = (char *) mmap(NULL, 4096, PROT_READ|PROT_WRITE,
 75 MAP_FILE|(is_shared?MAP_SHARED:MAP_PRIVATE), fd, 0);
 76 err_chk(-(p==MAP_FAILED), "mmap tmpfile with MAP_SHARED or MAP_PRIVATE");
 77
 78 prev = p[TST_IND];
 79 post = ++p[TST_IND];
 80
 81 // see if regular read call works
 82 err_chk(lseek(fd, TST_IND, SEEK_SET), "lseek in tmpfile");
 83 err_chk(read(fd, &post, 1), "read in tmpfile");
 84
 85 // diagnostic messae and cleanup
 86 err_chk(munmap(p, 4096), "munmap tmpfile");
 87 err_chk(close(fd), "close tmpfile");
 88 dprintf(2, "./mtest: test byte: pre-write: %x post-write %x.\n", prev, post);
 89 exit(prev==post);
 90 }
 91
 92 // test 4: writing into a hole
 93 void test_4() {
 94 int fd;
 95 char *p, post;
 96
 97 fd = create_tmp_file();
 98 p = (char *) mmap(NULL, TST_LEN, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED,
 99 fd, 0);
 100 err_chk(-(p==MAP_FAILED), "mmap tmpfile with MAP_SHARED");
 101
 102 p[TST_LEN] = TST_CHR;
 103 err_chk(lseek(fd, TST_LEN+16, SEEK_SET), "lseek to TST_LEN+16 in tmpfile");
 104 err_chk(write(fd, " ", 1), "write to TST_LEN+16 in tmpfile");
 105 err_chk(lseek(fd, TST_LEN, SEEK_SET), "lseek to TST_LEN in tmpfile");
 106 err_chk(read(fd, &post, 1), "read in tmpfile");
 107
 108 // diagnostic messae and cleanup
 109 err_chk(munmap(p, TST_LEN), "munmap tmpfile");
 110 err_chk(close(fd), "close tmpfile");
 111 dprintf(2,"./mtest:test byte: %x; byte at pos TST_LEN+1:%x.\n",TST_CHR,post);
 112 exit(1-(TST_CHR==post));
 113 }
 114
 115 // usage: ./a.out [TEST_NUM]
 116 int main(int argc, char **argv) {
 117 if(argc > 1)
 118 switch(**(argv+1)) {
 119 case '1': test_1(); break;
 120 case '2': test_23(1); break;
 121 case '3': test_23(0); break;
 122 case '4': test_4(); break;
 123 }
 124 exit(EXIT_FAILURE);
 125 }

Sample Output

(base) [jon@archijon prog5]$./mtest 1
./mtest: Performing mmap tmpfile with MAP_ANON|MAP_SHARED.
./mtest: p[TST_IND]==0.
./mtest: attempting write p[TST_IND]=1.
./mtest: Received signal 11: Segmentation fault. Exiting.
(base) [jon@archijon prog5]$ echo $?
11
(base) [jon@archijon prog5]$./mtest 2
./mtest: Performing creat tmpfile.
./mtest: Performing fill some data to tmpfile.
./mtest: Performing unlink tmpfile.
./mtest: Performing mmap tmpfile with MAP_SHARED or MAP_PRIVATE.
./mtest: Performing lseek in tmpfile.
./mtest: Performing read in tmpfile.
./mtest: Performing munmap tmpfile.
./mtest: Performing close tmpfile.
./mtest: test byte: pre-write: 6c post-write 6d.
(base) [jon@archijon prog5]$ echo $?
0
(base) [jon@archijon prog5]$./mtest 3
./mtest: Performing creat tmpfile.
./mtest: Performing fill some data to tmpfile.
./mtest: Performing unlink tmpfile.
./mtest: Performing mmap tmpfile with MAP_SHARED or MAP_PRIVATE.
./mtest: Performing lseek in tmpfile.
./mtest: Performing read in tmpfile.
./mtest: Performing munmap tmpfile.
./mtest: Performing close tmpfile.
./mtest: test byte: pre-write: 6c post-write 6c.
(base) [jon@archijon prog5]$ echo $?
1
(base) [jon@archijon prog5]$./mtest 4
./mtest: Performing creat tmpfile.
./mtest: Performing fill some data to tmpfile.
./mtest: Performing unlink tmpfile.
./mtest: Performing mmap tmpfile with MAP_SHARED.
./mtest: Performing lseek to TST_LEN+16 in tmpfile.
./mtest: Performing write to TST_LEN+16 in tmpfile.
./mtest: Performing lseek to TST_LEN in tmpfile.
./mtest: Performing read in tmpfile.
./mtest: Performing munmap tmpfile.
./mtest: Performing close tmpfile.
./mtest: test byte: 41; byte at pos TST_LEN+1: 41.
(base) [jon@archijon prog5]$ echo $?
0

