PH112 Quiz 5 Review Review Session 2/27/19

Chapter 7: Work and Kinetic Energy $W = F * \Delta x$ $= \mathbf{F} \cdot \mathbf{dx}$ = $Fcos(\theta) * x$ $= \int F(x) dx$ = area under F-x curve $= \Lambda K$ (for chapter 7 perspective, no U) (external work on system for chapter 8 perspective) $= \Delta E$ total = -dUif E mec is conserved) $=\Sigma W$ W g = $-mg\Delta h$ = integral of -mg $W_k = -1/2kx^2 = integral of -kx$ $K = 1/2mv^2$ P = dW/dt $= \mathbf{F} \cdot \mathbf{v}$ **Chapter 8: Potential Energy** $U = -F \cdot dx$ = negative of work done by a force to get to a particular configuration $U_g = mgh$ U s = $1/2kx^2$ Force is conservative if total work along a closed path is 0; these are path-independent - Else nonconservative Energy is always conserved - Mechanical energy is not always conserved, but when it is then E mec 2 = E mec 1E mec = U + K $\Delta E_mec = \Delta U + W$ (here work is an "internal work" equal to ΔK , not work done on the system) - if E mec conserved, $\Delta U = -W$ - then dU = -W = -Fdx = F = -dU/dx- useful b/c intermediate states do not have to be considered - conservation of E mec if no deformation of material, heat loss, (kinetic) friction $E_total = E_mec + E_th + E_int$ $\Delta E_{total} = \Delta E_{mec} + \Delta E_{th} + \Delta E_{int}$ (most general form) - pretty much ignore E_int, E_th is applicable if there is friction/heat - potential energy diagrams - turning points and equilibrium points (neutral, stable, unstable) $W = \Delta E$ total (work done on the system)

Chapter 9: Linear momentum & COM COM = $1/M * \int r dm$ - or, for constant density: COM = $1/P * \int r dP$ Choose a good reference pt for COM for easy calculation Take advantage of symmetries (spherical, linear) F_net = M * a_com

= dp/dv

- Net force can be thought of as concentrated at center of mass -- internal forces have no effect $p = M * v_com$ (momentum of system) J = ∫ F(t) dt

 $= \Delta p$

(impulse on system)

Make sure to think about when energy and linear momentum are conserved. They are not mutually inclusive/exclusive!

- If both are conserved, you may need to end up using both

- If only one is conserved, make sure you do not use the wrong one.

Problems from class Set up center of mass of two sticks Spring and a dome question Rockets Two boats w/ coal Boat with dog and person on both ends, switch sides Conveyor belt Ballistic pendulum