Test 3 Outline
MA240 — Differential Equations

7.1. Definition of the Laplace Transform

¢ Definition 7.1.1.: Let focl?e a function defined for ¢ > 0. Then
F(s)=L{f(t)} = / e ®' f(t) dt is the Laplace Transform of f.
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* Theorem 7.1.2.: Sufficient conditions for existence: If f is piecewise continuous on [0, c0) and
of exponential order, then the Laplace transform of f exists for s > ¢
o f of exponential order if | f(¢)| < Me®, fort > T, M, c, T constants

* Theorem 7.1.3. lim F(s) = 0, assuming F'(s) exists
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7.2. Inverse Transforms and Transforms of Derivatives
* Factor functions with distinct linear factors using partial fraction decomposition
* Theorem 7.2.2. Transform of a derivative: If f and first (n — 1) derivatives PC and of
exponential order, then £{f (™ (t)} = s"F(s) — s" 1 f(0) — - -- — f™=D(0)

7.3., 7.4. Operational Properties of the Laplace Transform
 Theorem 7.3.1. Translation on s: L{e f(t)} = F(s — a)
* Theorem 7.3.2.: Translation on t: L{f(t — a)U(t —a)} = e “*F(s)
o Alternative form: L{f(t)U(t —a)} = e **L{f(t + a)} (only useful in forward direction)
o To write a function using the unit step function, for each piecewise section A (x) from a to b,
add h(t)(U(t —a) —U(t — b))

o L{UEt—a)} = PT

n
* Theorem 7.4.1. Derivatives of transforms: L{t" f(¢)} = (—1)" acli" F(s)

o Because this is a multiplicative rule like shifts on s, can use either to do L{t" e}
© Methodology for inverse:

= Integrate F'(s) n times until you get a function G(s) that you can take the inverse

Laplace transform of

= L7HF(s)} = (=t)"g(t)

o Inverse useful when powers of almost-usable form in the denominator (e.g.,

s
(s? + 16)2)

* Theorem 7.4.2. Laplace of convolution: £{f ® g} = L{f} L{g} = F(s)G(s)
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o feg= / f()g(t - 7)dr

t
= Ifg(t) =1, then L {/ f(T)dT} = @ (Laplace of integral)
0

» Useful in reverse form, can solve for integral when Laplace transform has a — factor;
5

then integrate f(t)
= Useful for Volterra integral equations or interrodifferential equations
T
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* Theorem 7.4.3. Transform of a periodic function: £{f(¢)} = TRy / e U f(t)dt
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7.5. The Dirac Delta Function
0 0<t<ty—a

* Unit impulse: §,(t — tp) = 2a’ to—a<t<ty+a
0, t>th+a

* Dirac delta function: (¢ — tg) = lin% dq(t — o)
a—r
¢ Theorem 7.5.1. L{§(t —to)} = e ", t;3 >0

7.6. Systems of Linear Differential Equations

11.1. Orthogonal Functions
* Properties of the inner product (functional, complex analogue of dot product)
(u,v) = (v, u) (commutativity)
(ku,v) = k(u,v), kis a scalar (constants can be pulled out)
(u,u) = O if LL =0, (u u) > 0 otherwise (positivity)
(u+ v, w) ) + (v, w) (distributivity of dot product over addition)

o(@))][? = /¢ \da

= Can normalize a function by dividing by its norm

o O O O

o

* Definition of inner product of functions: (fi, f2) = / fi(z) fo(x) dx

o Definition of orthogonality of functions: ( f1, f2) =0
o Note that the zero function is orthogonal to every function

o A set of real-valued functions is an orthogonal set if every pair of functions in that set is
orthogonal
= An orthonormal set is an orthogonal set where ||¢,,(x)|| = 1
* Expressing vectors/functions in terms of orthogonal basis
© Vector analogue: can use an orthogonal set of n vectors as a basis with which to express any
n-space vector as a linear combination of them
= To find coefficient of a basis vector, dot the entire expression with the basis vector and

solve for the coefficient (which is also the projection): ¢,, =

@ =2 oL@

» This is called the orthogonal series expansion or the generalized Fourier series




* Definition (l))f orthogonality with a weight function: (“orthogonal with respect to weight function
w(@)if [ w(@)on(0)6n(x)de =0, m £ n

© In general, can include a weight function in an inner product — for our purposes, usually
w(zx) =1

11.2. Fourier Series
* Definition: the Fourier series of a function f on the interval (—p, p) is given by:

o 2—|—Z<ans1n——|—b Slﬂ%)
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° @, =-— f(x) cos — dx
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o b, =-— f(x)sin — dx
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* Definition: Piecewise continuous (PC) over a closed interval:
© Has a finite number of jump discontinuities
o f is continuous over each interval

« Convergence theorem for Fourier series: Let f and f’ be PC on [—p, p]. For all z in (—p, p),
series converges at a point continuity. At a point of discontinuity the series converges to the
average of the left- and right-hand limits

* 2p is the fundamental period of the sum; Fourier transform not only reflects function on (—p, p)
but also the periodic extension of f outside the interval.

o Atz =p+ 2n, n € Z, converges to f+p-) ; f(=pt) (average of left-hand limit of

x = p and right-hand limit of x = —p)

11.3. Fourier Cosine and Sine Series
* Even function can be represented with only a( term and a,, (cosine) terms

* Odd function can be represented with only b,, (sine terms)

o Will convergeto O atz = —p, 0, p
* Gibbs phenomenon (not covered in our class): overshooting of curve at a discontinuity;

overshooting stays almost constant (doesn’t go away) when n — oo, but width gets narrower
* Half-range extensions: for a function defined only over (0, L):
o 1. Can reflect the graph about the y-axis, now even

2 [ 2 [P
= Choose p=L,nowb, =0, a¢ = —/ f(x)dz, a, = —/ f(x) cos (m) dx;
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period is 2p
o 2. Can rotate the graph about the origin, now odd

= Choose p = L,now ag =a,, =0, b, = / f(x)sin ( ) dx, period is 2p
o 3. Repeat function by defining f(x + L) = —L,0)
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= Choose p = 5 and also integrate over (0, L); ag = T / f(x)de,
0
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g T / f(x) cos < 7 > dx , same with b,, (procedure works out to be the same
0

as doing even and odd half-range extensions), period is L
* Fourier series can be used as a solution to a DE where solution is periodic
o (Can use half-range extensions if only positive/negative domain known
oo

. . [ nmx ..
o Assume solution in the form E B,, sin | —— |, match coefficients
b
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12.1. Separable Partial Differential Equations
* A partial differential equation (pde) given by the a function u(z, y) and can any first or second
partial derivatives of u
* Focus is on finding particular solutions to pdes (more useful in real-life applications)
* Method of separation of variables:
o Write: u(x,y) = X (2)Y (y) and substitute into original pde
X Y
o Separate variables: now have some expression like Xx-7v - —A
= Equal to some constant (X is the separation coefficient) because the ratios are functions
of two different variables; for them to be equal must be equal to (the same) constants
o Rewrite as linear equations, and solve. The A will lead to an eigenvalue problem. Solve for
eigenfunctions of one variable using BVPs, and plug those into the second equation.
* General solution is the sum of all nontrivial component solutions (superposition principle)
* C(Classifying pdes:
o hyperbolic if B> — 4AC > 0
o parabolic if B2 — 4AC =0
o elliptic if B2 —4AC < 0

12.2.,12.3., 12.4., 12.5. Classical PDEs

* Heat equation: ku,, = us, k>0

»  One-dimensional wave equation: a?u,, = U

¢ Two-dimensional Laplace’s equation: t;, + ty, = 0

* Boundary conditions (can specify any of these at a boundary):
o Dirichlet condition:
©  Neumann condition: u,
o Dirichlet condition: u, + hu




