
Test 3 Outline
MA240 – Differential Equations

7.1. Definition of the Laplace Transform
• Definition 7.1.1.: Let  be a function defined for . Then

 is the Laplace Transform of .

•   is a linear transform
• Theorem 7.1.1. Transforms of basic functions

◦

◦

◦

◦  

◦

◦

• Theorem 7.1.2.: Sufficient conditions for existence: If  is piecewise continuous on  and 
of exponential order, then the Laplace transform of  exists for 
◦  of exponential order if , for , , ,  constants

• Theorem 7.1.3. , assuming  exists

7.2. Inverse Transforms and Transforms of Derivatives
• Factor functions with distinct linear factors using partial fraction decomposition
• Theorem 7.2.2. Transform of a derivative: If  and first  derivatives PC and of 

exponential order, then 

7.3., 7.4. Operational Properties of the Laplace Transform
• Theorem 7.3.1. Translation on : 
• Theorem 7.3.2.: Translation on t: 

◦ Alternative form:  (only useful in forward direction)
◦ To write a function using the unit step function, for each piecewise section  from  to ,

add 

◦

• Theorem 7.4.1. Derivatives of transforms: 

◦ Because this is a multiplicative rule like shifts on , can use either to do 
◦ Methodology for inverse:

▪ Integrate   times until you get a function  that you can take the inverse 
Laplace transform of

▪

◦ Inverse useful when powers of almost-usable form in the denominator (e.g., )

• Theorem 7.4.2. Laplace of convolution: 

 

 



◦

▪ If , then  (Laplace of integral)

• Useful in reverse form, can solve for integral when Laplace transform has a  factor;

then integrate 
▪ Useful for Volterra integral equations or interrodifferential equations

• Theorem 7.4.3. Transform of a periodic function: 

7.5. The Dirac Delta Function

• Unit impulse  : 

• Dirac delta function  :  

• Theorem 7.5.1.  

7.6. Systems of Linear Differential Equations
• … 

11.1. Orthogonal Functions
• Properties of the inner product (functional, complex analogue of dot product)

◦  (commutativity)
◦  is a scalar (constants can be pulled out)
◦  if ,  otherwise (positivity)
◦  (distributivity of dot product over addition)

◦

▪ Can normalize a function by dividing by its norm

• Definition of inner product of functions: 

◦ Definition of orthogonality of functions:  
◦ Note that the zero function is orthogonal to every function
◦ A set of real-valued functions is an orthogonal set if every pair of functions in that set is 

orthogonal
▪ An orthonormal set is an orthogonal set where 

• Expressing vectors/functions in terms of orthogonal basis
◦ Vector analogue: can use an orthogonal set of  vectors as a basis with which to express any

-space vector as a linear combination of them
▪ To find coefficient of a basis vector, dot the entire expression with the basis vector and 

solve for the coefficient (which is also the projection): 

◦

▪ This is called the orthogonal series expansion or the generalized Fourier series



• Definition of orthogonality with a weight function: (“orthogonal with respect to weight function

) if 

◦ In general, can include a weight function in an inner product – for our purposes, usually

11.2. Fourier Series
• Definition: the Fourier series of a function  on the interval  is given by:

◦

◦  

◦  

◦

• Definition: Piecewise continuous (PC) over a closed interval:
◦ Has a finite number of jump discontinuities
◦  is continuous over each interval

• Convergence theorem for Fourier series  : Let  and  be PC on . For all  in , 
series converges at a point continuity. At a point of discontinuity the series converges to the 
average of the left- and right-hand limits

•  is the fundamental period of the sum; Fourier transform not only reflects function on 
but also the periodic extension of  outside the interval.

◦ At , converges to  (average of left-hand limit of

 and right-hand limit of )

11.3. Fourier Cosine and Sine Series
• Even function can be represented with only  term and  (cosine) terms
• Odd function can be represented with only  (sine terms)

◦ Will converge to  at 
• Gibbs phenomenon   (not covered in our class): overshooting of curve at a discontinuity; 

overshooting stays almost constant (doesn’t go away) when , but width gets narrower
• Half-range extensions  : for a function defined only over :

◦ 1. Can reflect the graph about the y-axis, now even

▪ Choose , now , , ; 

period is 
◦ 2. Can rotate the graph about the origin, now odd

▪ Choose , now , , period is 

◦ 3. Repeat function by defining  on 

 



▪ Choose  and also integrate over ; ,

, same with  (procedure works out to be the same 

as doing even and odd half-range extensions), period is 
• Fourier series can be used as a solution to a DE where solution is periodic

◦ Can use half-range extensions if only positive/negative domain known

◦ Assume solution in the form , match coefficients

12.1. Separable Partial Differential Equations
• A partial differential equation (pde) given by the a function  and can any first or second 

partial derivatives of 
• Focus is on finding particular solutions to pdes (more useful in real-life applications)
• Method of separation of variables  :

◦ Write:  and substitute into original pde

◦ Separate variables: now have some expression like 

▪ Equal to some constant (  is the separation coefficient) because the ratios are functions 
of two different variables; for them to be equal must be equal to (the same) constants

◦ Rewrite as linear equations, and solve. The  will lead to an eigenvalue problem. Solve for 
eigenfunctions of one variable using BVPs, and plug those into the second equation.

• General solution is the sum of all nontrivial component solutions (superposition principle)
• Classifying pdes:

◦ hyperbolic if 
◦ parabolic if 
◦ elliptic if 

12.2., 12.3., 12.4., 12.5. Classical PDEs
• Heat equation  : 
• One-dimensional wave equation  : 
• Two-dimensional Laplace’s equation  : 
• Boundary conditions (can specify any of these at a boundary):

◦ Dirichlet condition  : 
◦ Neumann condition  : 
◦ Dirichlet condition  : 


