Differential Equations — MA240
Test 2 Outline

4.1. Preliminary Theory

* Theorem 4.1.1. Existence of solutions for IVPs: If the coefficient functions a,,(z) - - - ap(x) and
g(x) are continuous throughout the interval and a,,(x) # 0 throughout the interval, then a
solution y(x) exists on the interval and is unique.

* Boundary value problems have no existence theorem.

* To solve nth-order ODE, need to solve associated homogeneous equation first

» Differential operator (including differential polynomial operator) is linear
o Can write DEs as L(y) = 0 or L(y) = g(z)

* Theorem 4.1.2. Superposition principle — Homogeneous Equations: linear combination of
homogeneous solutions is also a solution to the homogeneous ODE
o Constant multiple of solution to homogeneous ODE also solution.
© y = 01is always a solution to a homogeneous ODE.

* Definition 4.1.1. Linear dependence/independence: A set of functions is linearly independent if
there exists a set of constants c; - - - ¢,,, not all 0, such that a linear combination of the functions
with the constants, then linearly independent; otherwise, linearly dependent

* Definition 4.1.2. Wronskian: If each of the functions f;(z)--- f,(x), determinant of functions
and their derivatives (up to n — 1th derivative) is called the Wronskian

* Theorem 4.1.3. Set of solutions is linearly independent on I IFF W = 0 for every x in the
interval

* Definition 4.1.3. Any set of n linearly independent solutions of the homogeneous nth-order
linear ODE on I is called a fundamental set of solutions

* Theorem 4.1.4. There exists a fundamental set of solutions for the homogeneous nth-order
linear ODE on the interval I

* Theorem 4.1.5. The general solution of the linear homogeneous ODE is
y=c1y1(x) + - + cpyn()

* Any solution of a linear ODE free of arbitrary parameters is called a particular solution

* General solution of a linear ODE is y = y. + y,

* Theorem 4.1.7. Superposition principle for nonhomogeneous linear ODEs: If L(y,,) = ¢i(z),

and y, = Yp, + -+ + Yp,, then L(y) = g1(z) + - - - + gn(x)

4.2. Reduction of Order
* If one solution to linear homogeneous ODE known, then second solution can be found by
substituting yo(z) = u(z)y1(z).
— [ P(z)dz

© o) =ule) [ e

o (know how to derive this one)

4.3. Homogeneous Linear Equations with Constant Coefficients
* Auxiliary equation (in m)
* Three cases:
o For distinct roots: y = c1e™'* 4 coe™?*
o For repeated roots: y = c1e™* + coxe™*
o For complex roots: y = c1€** cos fx + c2¢™** sin fx

4.4. Undetermined Coefficients — Superposition Approach



Approach to find y,, of a constant-coefficient non-homogeneous linear ODE with g(x) being of
constant, polynomial exponential, sin/cos, or product or linear combination of these forms
Make sure to check the y. to make sure there are no repeated terms; if there are, multiply by =

For cosine and sine, make sure to have both cosine and sine terms in the y,, (because they
generate one another as derivatives.)

4.6. Variation of Parameters
* No restrictions on finding y,, from the problem
* Based around finding y, (z) = w1 (z)y1 (z)

e u; = Wzda:
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W i dz for second-order
Make sure ODE is in standard form before getting f(z)

4.7. Cauchy-Euler Equation
© "Dy +a,_12" D"y + -+ agy =0

o Auxiliary equationm(m —1)---(m—n+1)+---+1=0
e Three cases:

o Distinct real roots: y = c1 """ + coz™?"
o Repeated real root: y = c12™* + cox™* Inx
o Complex roots: y = c12** cos(f1Inz) + coz™” cos(flnx)

Reduction to constant-coefficients (generally easier to solve):
o Substitution: z = e!, t = Inx

dy _ldy d’y 1 (d% dy
dt  xdr dr?2  z2 \dx?2 dx

Only works for solutions with ¢ > 0; for negative solutions use t = —z

@)

5.1. Linear Models: IVPs
k

x
This will yield a sinusoidal solution (constant coefficients, m has complex roots)
o x(t) = ¢ cos(wt) + ¢z sin(wt)

o Alternate form with amplitude: (t) = Asin(wt + ¢), A = /¢ + %, ¢ = tan™* a

67
Free damped motion: ma + 2\& + w?z = 0, 2\ = B

m

° m=-A+t VI —w?
o Three cases:

= A% —w? > 0: overdamped

» A2 — w? = 0: critically damped

= A% — w? < 0: underdamped
o z(t) = Ae M sin(Vw? — A2t + ¢)
Driven damped motion: m# + 2\i + w?z = f(z)
o

Free undamped motion: m# + w?z = 0, w =

o

Complimentary function is transient term, particular solution is steady-state solution

If period of driven motion is same as period of object’s motion, then resonance occurs
. o1

Series circuit analogue to damping: L§ + R+ —q = E(t)

C
o If E(t) = 0, electrical vibrations of the circuit are free

o




o If R = 0, then simple harmonic motion

o Discriminant is R? — %
= R%Z % > 0: overdamped
= R?— % = 0: critically damped
= R*— % < 0: underdamped

o

Steady-state current analogous to steady-state solution of motion

5.2. Linear models: BVPs
4
o FI= M = 0 for beam deflection
dzt

o For boundary points: p
= Embedded: y = 0, & _ 0

dzr
d?y d3y
= Free:—= =0,— =0

ree dx? dx3 2
= Simply supported (hinged): y = 0, d—y =0

T

o y(x)=c1 + cox + csx? + cax® + &o z?
24F1

* Eigenvalues and eigenfunctions

o Two-point BVP involving linear ODE with parameter A: try to find values that lead to any
non-trivial solutions

o eg,j+Ay=0,y0)=0,y(L)=0

. . . . nm 2
= for A > 0, only trivial solution; for A < 0, nontrivial solutions A = ( f) ; A values
that produce nontrivial solutions are called eigenvalues, and corresponding functions

dependent on these eigenvalues are eigenfunctions (constant not important)

5.3. Nonlinear models ,
d
E.g., nonlinear pendulum, estimate sin # ~ 6 in lw = —gsinf
d %% /
* E.g., catenary, & _ ps’ substitute u = -2 (result is a hyperbolic cosine)
dx T1 T1 dx
* E.g., rocket motion ***

d
E.g., variable mass, F' = 7 (muv), determine formula for m, do some substitutions

6.1. Review of Series
* Ratio test to determine interval (and radius) of convergence

Identity Property: If an infinite power theorem is equal to 0, then every coefficient c,, is 0

A function is analytic at a point if it can be represented by a power series with R > 0 centered
at that point (basically if differentiable)




* Sample Maclaurin series on right —>

Interval

6.2. Solutions about ordinary points Mackurinberies o Comermence

* Definition 6.2.1. A point x = xq is an RO A S S (0, )
ordinary point of the DE (in standard form) '\' o "
if both P(z) and Q(x) are analytic at . A cosv =1 -3+ T o "i”‘-[;?':!"_\-:-- (=0, a0)
non-ordinary point is singular. e ' o

* Theorem 6.2.1. If x = z is an ordinary shx=x—J+g-ptoo=Io S| e
point of the DE, can find two linearly- 8 sy,
independent power series solutions of the T T Sy T T T A (=14
formy = Z cn(x — x0)™ that converges coshx =1+ T+t ot = _..:.r_:fln!"':'" (—e0,0)

n e s

at least on |z — zg| < R, R is the distance simhy = x + 3T b= Do | ()
to the closest singular point 2 B e (_1pt!

* Solving an ODE is “the method of n(l +2) =x == I (=111
undetermined series coefficients,” with a e - S o

recurrence relation and using the identity L= n=0
property; then collect and group terms at the end
» This can work with nonpolynomial coefficients as well, using series multiplication

6.3. Solutions about singular points

 Asingular point z = x is regular if p(x) = (x — 2¢)P(x) and ¢(z) = (z — 2¢)?Q(z) are both

analytic at x¢. If not, irregular.

* Theorem 6.3.1. Frobenius’ Theorem: Igo x = x¢ is a regular singular point of the DE, there exists

at least one equation of the form y = Z ¢ (x — x9)"*". The series will converge on at least

n

O<zxz—a290< R.

o Need to find r before solving recurrence relation

© No assurance of two linearly-independent solutions
* Indicial equation in 7, roots are solutions for r
* Three cases:

o If r1 # ro and differ by non-integer, then two linearly-independent solutions of the regular

form.

(2)

o If r; # ro and differ by integer, then y; of regular form, y» = cy; (z) Inz + (regular form),

c can be 0
o Ifry =79 yo = y1(x) Inx + (regular form) (analogous to that of Cauchy-Euler with
repeated roots)

Random things from discussion questions
« D"z""!'=0,D"z" =nl
. g'j+k2 =0=y =cicoskx + cosinkx
s §j—k* =0=y =c coshkx + cysinh kx



