MAZ224: Probability Test 2 Outline

Sections covered: 2.6, 3.1, 3.3-6, 4.1, some of 4.2, some of 5.1, 5.3-5.7.

2.6. The Poisson Distribution
* Def. 2.6.1. Let the number of changes that occur in a given continuous interval be counted.
Then we have an approximate Poisson distribution with parameter A > 0 if the conditions are
satisfied:
o The numbers of changes occurring in nonoverlapping intervals are independent
o Probability of exactly one change occurring in short time interval 5 is A\h
o Probability of two or more changes in short time interval is 0

* Poisson distribution is binomial distribution b <n, —
n

© Do n trials, so average is A

ATe™A
o lim f(x)=
n—o0o Q’;'
o SRR (At)re M
= For a time interval ¢, distribution is f(x) = —

o u=M©0)=\=0?
* Can approximate binomial distribution with high n, p (and therefore \) should be small

T ,—np
% ~ < Z )p“"(l —p)"~* = b(n,p) (replace \ with np)
x!

© In turn can be used to approximate hypergeometric distribution with high n and small p
(i.e., Ny = np, No = n — np)

3.1. Continuous-Type Data, 3.2. Exploratory Data Analysis
* (not useful)

3.3. Random Variables of the Continuous Type
* Probability density function (p_glf) of a continuous random variable X is an integratable function

such that P(a < X < b) = / f(z)dx
o f(x)=0whenz &S _
* Cumulative density function is F'(z) = P(X < x) = / f(x)dx

o P(X=0=0
°© Pla< X <b)=F(b)— F(a)
* Same other definitions that were based on pdfs for discrete-type variables:

o u=E(x) :/O:owf(x)dx

e o]

o P =E[(X-w]= [ @-pPfa)ds

J — 00

o M(t) =E (e) :/OO e f(x)dr, —h <t<h

* (From exercise 12) For function R(t) = In M (t):
° p=R(0)
o ¢%=R"(0)

* Median found by using cdf: F'(z) = 0.5



3.4. The Uniform and Exponential Distributions
*  Uniform distribution:
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f(z) = ,a<x<b

F(x) = a<z<b
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* Exponential distribution:
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Fluy=1—e=1-
" S P(X>x)=e 0
= = m (median) = #1n2
1
M) = —— -
D=9 '3
fw)y=Xe™=-e"5, 0==,0>0

i.e., while A is average changes per unit time, 6 is average waiting time between changes

(makes sense; should be inversely proportional)

“Failure rate is constant™: i.e., conditional probability over the same change in time is

constant, i.e., P(X > t; +t|X > t;) = P(X > t) (= (P(X > t|X > 0))); has real-world

application that its not worth replacing an object with constant failure rate

= Similar to (discrete) geometric distribution; no other continuous distribution has this
“forgetfulness” property

3.5. The Gamma and Chi-Square Distributions
* Gamma distribution:
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Let W be the time until the a-th change occurs
A(Aw)a_l —Aw
Flw)= ————

e
(a —1)!

= fw<0,F(w)=0,F(w)=0

Definition of gamma function, useful in writing the pdf of the distribution:

F(t)_/ Yl Vdy = (t— 1)), >0
0

flz) = % le ™%, 0<z < o0

1

p=ab, o = ab?

* Chi-square distribution: Gamma distribution with § = 2, o = 7 7 IS a positive integer
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f@) =X*(r) = sz e? e ?
I(3)22
P(x (r)) = « (use lookup table for this)

> X2(r)) =
T, 0% =2
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M) = ———, t < =
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o Exponential distribution with 1 = 6 = 2 is x*(2)

3.6. The Normal Distribution

. 1 (x — p)?
f(l') = O_m eXp |:—222T dx
* M(t) =exp (ut + %)

+ pand o? are given in the pdf
* N(0,1) is called the standard normal distribution
* Sometimes want to find inverse of standard normal distribution function
© Te., normally find P(X < z) = p, but now find = given p (use lookup tables)
Also sometimes want to find P(z > z,) = « (find z,, the upper percent)
P(Z < —z,) = P(Z > z,) = «a (because of symmetry)
Zl—a = —Za
Think of z, as the z-score of the normal distribution where « of the distribution is greater
than that z-scores
+ Theorem 3.6-1. Standardizing a normal distribution. If X is N (y, 0%), then

Z=27F _ N1

o (Basically taking z-score of distribution)
 Theorem 3.6-2. If the random variable X is N (u,0?), ¢ > 0, then the random variable

X—uz .
Vzi( 02) = Z%is x*(1).

O O O O

4.1. Distributions of Two Random Variables
* Definition 4.1-1. Joint pmf f(z,y) = P(X =z,Y =y)
o Z Z(m,y)ES f(z,y) =1 (do a double summation instead of a single one)

* Marginal pmf of X is fy(z) = Zf(:v,y) =PX=2x2), €5
y

o i.e., sum it over the other axis to add up all of its variability
© X and Y are independent IFF f(z,y) = fi(z)f2(x)
= Independence can only happen if the support is “rectangular”
* Mathematical expectation:
° py = E(u(z,y)) = E(z)
° o3 =E(u(z,y)) = E((x — n)?)
© u, and o2 can be calculated either from joint pmf or marginal pmf
* Continuous analogue with integrals
* Examples:
o Hypergeometric pmf of multiple variables; marginal pmfs are also hypergeometric and are
dependent
© Binomial pmf to trinomial distribution pmf: marginal pmfs are also binomial and dependent

4.2. The Correlation Coefficient
o If U(Xth) = (Xl — ,ul)(Xz — Mg), E(U(Xl, XQ)) =012 (covariance of Xl and X2)

* p= 2 is called the correlation coefficient (if the stdevs are positive)
0102




© Need the joint pmf to compute (not a marginal one)
®* 012 = E(Xng)
o E(X1X2) = pipe + porog

5.1. Functions of One Random Variable
* Two methods to find the distribution of a function of a random variable (also a random variable)
o Distribution function technique
= Plug in the function into the cdf of the second variable
= e.g., if X is arandom variable, and Y = u(X), express
P(Y <y)=Pu(X) <y)=P(X <u'(y)), and plug into the cdf of X, and then
differentiate to get the pdf of Y
» e.g., loggamma is the substitution of Y = ¢ if X is the gamma distribution,

B 1 (Iny)e—1
g(y) = F(Oz)@o‘ y1+%
1 5 1 1

P=a—g«? T 1 —_200 (1_0p
= e.g., Cauchy pdf (p. 217)
o Change of variable technique: shortcut for distribution function technique (same
methodology)

= g(y) = flv@)] ' (y)]

5.3. Several Independent Variables
* Dealing with the pmf resulting from repeated mutually-independent trials (i.e., each marginal
pmf/pdf is the same)
» If all n distributions are the same, then called random sample of size n_from that common
distribution, and g(x1, z2, -+ , ) = f(x1) f(z2) - - f(xy)
. Theorem 5.3-1. Generalization of expected value (discrete form)

Zyg ZZ Z (21,22, ) fi(z1) fa(22) -+ fol@n)

*  Theorem 5 3-2.IfY = ul(Xl)ug(Xg) Un (Xn),
E(Y) = E(u1(X1))E(uz (X)) -- E(U(Xn))

e IfY = ZazX,, then py = ZazluZ and ay = Za
o

2
For a random sample of n samples, where X is a function of the samples, j1¢ = i, o =

5.4. The Moment-Generating Function Technique

* Theorem 5.4-1. The moment-generating function Y = Z a; X; is My (t) = H My, (a;t)
i=1 i=1
o Corollary: for Y = Z Xy My (t) = [M(t)]"
. 1 AV
© Corollary: for X = —X;, Mx(t)=|M| —
orollary: for Zn < (1) { (n)}
* Examples:

o For a bernoulli trial, M (t) = g + pe’. For Y = Z X;, get My (t) = (g + pe’)"” (b(n,p))

o For a Chi-square trial, Y is sum of trials, get X2 (Z ri>



o If samples of normal standard distributions (/N (0, 1)), and W = Z Z2, then W = x*(n)
i=1
(using theorem 3.6-2)
(X — p)?
o If samples X; = N(u;,0?), then W = Z % = x*(n) (using theorem 3.6-1 and
o*
i=1 i

above corollary)

5.5. Random Functions Associated with Normal Distributions

e Theorem 5.5-1. If random samples X; are independent normal distributions, then Y = Z ;i X

i=1
n n
has the distribution N <Z Cilli, Y clo7 >

i=1 i=1
2
o Corollary: distribution of X is N (,u, U—)
n

5.6. The Central Limit Theorem

e Theorem 5.6-1. Central Limit Theorem. The distribution of
X A

lim W= lim P = gy 2=t Ny

Nn— 00 n— 00 n— 00 \/ﬁo'

(0,1). (W is a function of X, which is in

S

turn a function of X).
1

° P<W§w)*/_:m

= e.g, for X = N(u,o) approximation for

_ — X — h—
Pla<X<b =P a—F s M)

T dz = o(w)

*  CLT useful when distribution is symmetric, unimodal, and continuous
o General rule of thumb is that it is a good approximation for large n (n > 25), but can be
smaller if unimodal and symmetric

—H can be used to create a Normal distribution to
ag

* For a single distribution of X, W =
approximate X
° G(z)=F(oz+p), g(x) = of(ox + p)

5.7. Approximations for Discrete Distributions
* ... Working here ...



