MA224: Probability Test 2 Outline

Sections covered: 2.6, 3.1, 3.3-6, 4.1, some of 4.2, some of 5.1, 5.3-5.7.

2.6. The Poisson Distribution

- Def. 2.6.1. Let the number of changes that occur in a given continuous interval be counted. ٠ Then we have an approximate Poisson distribution with parameter $\lambda > 0$ if the conditions are satisfied:
 - 0 The numbers of changes occurring in nonoverlapping intervals are independent
 - Probability of exactly one change occurring in short time interval *h* is λh
 - Probability of two or more changes in short time interval is 0
- <u>Poisson distribution</u> is binomial distribution $b\left(n,\frac{\lambda}{n}\right)$

• Do *n* trials, so average is
$$\lambda$$

$$\circ \quad \lim_{n \to \infty} f(x) = \frac{\lambda^x e^{-x}}{x!}$$

• For a time interval *t*, distribution is
$$f(x) = \frac{(\lambda t)^x e^{-\lambda t}}{x!}$$

$$\circ \quad \mu = M'(0) = \lambda = \sigma^2$$

Can approximate binomial distribution with high *n*, *p* (and therefore λ) should be small

$$\circ \quad \frac{(np)^{x}e^{-np}}{x!} \approx \binom{n}{x} p^{x}(1-p)^{n-x} = b(n,p) \text{ (replace } \lambda \text{ with } np)$$

• In turn can be used to approximate hypergeometric distribution with high *n* and small *p* (i.e., $N_1 = np, N_2 = n - np$)

3.1. Continuous-Type Data, 3.2. Exploratory Data Analysis

٠ (not useful)

3.3. Random Variables of the Continuous Type

<u>Probability density function (pdf)</u> of a continuous random variable *X* is an integratable function such that $P(a < X < b) = \int_{a}^{b} f(x) dx$

•
$$f(x) = 0$$
 when $x \notin S$

<u>Cumulative density function</u> is $F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$ $\circ P(X = b) = 0$

$$P(X = b) = 0 P(a \le X \le b) = F(b) - F(a)$$

Same other definitions that were based on pdfs for discrete-type variables:

$$\mu = E(x) = \int_{-\infty}^{\infty} xf(x) dx$$

$$\sigma^2 = E\left[(X-\mu)^2\right] = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$$

$$M(t) = E\left(e^{tx}\right) = \int_{-\infty}^{\infty} e^{tx} f(x) dx, \ -h < t < h$$

- (From exercise 12) For function $R(t) = \ln M(t)$: $\stackrel{\circ}{}_{\circ} \quad \mu = R'(0) \\ \stackrel{\circ}{}_{\circ} \quad \sigma^2 = R''(0)$
- Median found by using cdf: F(x) = 0.5

3.4. The Uniform and Exponential Distributions

Uniform distribution: $\circ \quad F(x) = \frac{\overline{x-a}}{b-a}, \ a \le x \le b$ $\circ \quad f(x) = \frac{1}{b-a}, \ a \le x \le b$ $\circ \quad M(t) = \frac{e^{bt} - e^{at}}{t(b-a)}$ $\circ \quad \mu = \frac{a+b}{2}$ $\circ \quad \sigma^2 = \frac{(b-a)^2}{12}$ Exponential distribution: • $F(w) = 1 - e^{-\lambda w} = 1 - e^{-\frac{w}{\theta}}$

٠

- $\Rightarrow P(X \ge x) = e^{-\frac{x}{\theta}}$
- $\Rightarrow m \text{ (median)} = \theta \ln 2$ $M(t) = \frac{1}{1 \theta t}, \ t < \frac{1}{\theta}$ • $f(w) = \lambda e^{-\lambda w} = \frac{1}{\theta} e^{-\frac{w}{\theta}}, \ \theta = \frac{1}{\lambda}, \ \theta > 0$

$$\circ \quad \mu = \theta, \, \sigma^2 = \theta^2 \Rightarrow \sigma = \theta$$

- i.e., while λ is average changes per unit time, θ is average waiting time between changes (makes sense; should be inversely proportional)
- "Failure rate is constant": i.e., conditional probability over the same change in time is constant, i.e., $P(X > t_1 + t | X > t_1) = P(X > t)$ (= (P(X > t | X > 0))); has real-world application that its not worth replacing an object with constant failure rate
 - Similar to (discrete) geometric distribution; no other continuous distribution has this "forgetfulness" property

3.5. The Gamma and Chi-Square Distributions

Gamma distribution:

٠

- Let *W* be the time until the α -th change occurs $F(w) = \frac{\lambda (\lambda w)^{\alpha 1}}{(a 1)!} e^{-\lambda w}$ • If w < 0, F(w) = 0, F'(w) = 0
- Definition of gamma function, useful in writing the pdf of the distribution:

$$\Gamma(t) = \int_0^\infty y^{t-1} e^{-y} \, dy = (t-1)!, \ t > 0$$

$$\circ \quad f(x) = \frac{1}{\Gamma(\alpha)\theta^\alpha} x^{\alpha-1} e^{-\frac{x}{\theta}}, \ 0 \le x < \infty$$

$$\circ \quad M(t) = \frac{1}{(1-\theta t)^\alpha}, \ t < \frac{1}{\theta}$$

$$\circ \quad \mu = \alpha\theta, \ \sigma^2 = \alpha\theta^2$$

<u>Chi-square distribution</u>: Gamma distribution with $\theta = 2$, $\alpha = \frac{r}{2}$, r is a positive integer

$$f(x) = \chi^{2}(r) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$$

$$P(x \ge \chi^{2}_{\alpha}(r)) = \alpha \text{ (use lookup table for this)}$$

$$\mu = r, \ \sigma^{2} = 2r$$

•
$$M(t) = \frac{1}{(1-2t)^{-\frac{r}{2}}}, \ t < \frac{1}{2}$$

Exponential distribution with $\mu = \theta = 2$ is $\chi^2(2)$ 0

3.6. The Normal Distribution

•
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx$$

•
$$M(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$$

- μ and σ^2 are given in the pdf
- N(0, 1) is called the <u>standard normal distribution</u>
- Sometimes want to find inverse of standard normal distribution function
 - I.e., normally find $P(X \le x) = p$, but now find x given p (use lookup tables)
 - Also sometimes want to find $P(z \ge z_{\alpha}) = \alpha$ (find z_{α} , the upper percent)
 - $\circ \quad P(Z \leq -z_{\alpha}) = P(Z \geq z_{\alpha}) = \alpha$ (because of symmetry)
 - $\circ z_{1-\alpha} = -z_{\alpha}$
 - Think of z_{α} as the z-score of the normal distribution where α of the distribution is greater than that z-scores
- Theorem 3.6-1. <u>Standardizing a normal distribution</u>. If *X* is $N(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{M} = N(0, 1)$

Theorem 3.6-2. If the random variable X is $N(\mu, \sigma^2)$, $\sigma^2 > 0$, then the random variable $V = \frac{(X - \mu)^2}{\sigma^2} = Z^2 \text{ is } \chi^2(1).$

4.1. Distributions of Two Random Variables

- Definition 4.1-1. Joint pmf f(x, y) = P(X = x, Y = y)• $\sum \sum_{(x,y)\in S} f(x,y) = 1$ (do a double summation instead of a single one)
- <u>Marginal pmf</u> of X is $f_1(x) = \sum f(x, y) = P(X = x), \ x \in S_1$
 - i.e., sum it over the other axis to add up all of its variability
 - *X* and *Y* are <u>independent</u> IFF $f(x, y) = f_1(x)f_2(x)$
 - Independence can only happen if the support is "rectangular"
- Mathematical expectation:

$$\circ \quad \mu_x = E(u(x, y)) = E(x)$$

•
$$\sigma_x^2 = E(u(x, y)) = E((x - \mu)^2)$$

- μ_x and σ_x^2 can be calculated either from joint pmf or marginal pmf
- Continuous analogue with integrals
- Examples:
 - Hypergeometric pmf of multiple variables; marginal pmfs are also hypergeometric and are dependent
 - Binomial pmf to trinomial distribution pmf: marginal pmfs are also binomial and dependent 0

4.2. The Correlation Coefficient

- If u(X₁, X₂) = (X₁ − μ₁)(X₂ − μ₂), E(u(X₁, X₂)) = σ₁₂ (<u>covariance</u> of X₁ and X₂)
 ρ = σ₁₂/σ₁σ₂ is called the <u>correlation coefficient</u> (if the stdevs are positive)

- Need the joint pmf to compute (not a marginal one)
- $\sigma_{12} = E(X_1 X_2)$
- $E(X_1X_2) = \mu_1\mu_2 + \rho\sigma_1\sigma_2$

5.1. Functions of One Random Variable

- Two methods to find the distribution of a function of a random variable (also a random variable)
 - Distribution function technique
 - Plug in the function into the cdf of the second variable
 - e.g., if *X* is a random variable, and Y = u(X), express $P(Y \le y) = P(u(X) \le y) = P(X \le u^{-1}(y))$, and plug into the cdf of *X*, and then differentiate to get the pdf of *Y*
 - e.g., <u>loggamma</u> is the substitution of $Y = e^X$ if X is the gamma distribution,

$$g(y) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} \frac{(\ln y)^{\alpha-1}}{y^{1+\frac{1}{\theta}}}$$

• $\mu = \frac{1}{(1-\theta)^{\alpha}}, \sigma^2 = \frac{1}{(1-2\theta)^{\alpha}} - \frac{1}{(1-\theta)^{2\alpha}}$

- e.g., Cauchy pdf (p. 217)
- <u>Change of variable technique</u>: shortcut for distribution function technique (same methodology)

•
$$g(y) = f[v(y)] |v'(y)|$$

5.3. Several Independent Variables

- Dealing with the pmf resulting from repeated mutually-independent trials (i.e., each marginal pmf/pdf is the same)
- If all *n* distributions are the same, then called <u>random sample of size *n* from that common distribution</u>, and $g(x_1, x_2, \dots, x_n) = f(x_1)f(x_2)\cdots f(x_n)$
- Theorem 5.3-1. <u>Generalization of expected value</u> (discrete form) $E(Y) = \sum_{y} yg(y) = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} u(x_1, x_2, \cdots, x_n) f_1(x_1) f_2(x_2) \cdots f_n(x_n)$
- Theorem 5.3-2. If $Y = u_1(X_1)u_2(X_2)\cdots u_n(X_n)$, $E(Y) = E(u_1(X_1))E(u_2(X_2))\cdots E(u(X_n))$
- If $Y = \sum_{i=1}^{n} a_i X_i$, then $\mu_Y = \sum_{i=1}^{n'} a_i \mu_i$ and $\sigma_Y^2 = \sum_{i=1}^{n} a_i^2 \sigma_i^2$
- For a random sample of *n* samples, where \bar{X} is a function of the samples, $\mu_{\bar{X}} = \mu$, $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

5.4. The Moment-Generating Function Technique

• Theorem 5.4-1. The moment-generating function $Y = \sum_{i=1}^{n} a_i X_i$ is $M_Y(t) = \prod_{i=1}^{n} M_{x_i}(a_i t)$

• Corollary: for
$$Y = \sum X_i$$
, $M_Y(t) = [M(t)]^n$

• Corollary: for
$$\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i$$
, $M_{\bar{X}}(t) = \left[M\left(\frac{t}{n}\right) \right]^n$

• Examples:

• For a bernoulli trial,
$$M(t) = q + pe^t$$
. For $Y = \sum_i X_i$, get $M_Y(t) = (q + pe^t)^n (b(n, p))$

• For a Chi-square trial, *Y* is sum of trials, get $\chi^2\left(\sum_i r_i\right)$

- If samples of normal standard distributions (*N*(0, 1)), and $W = \sum_{i=1}^{n} Z_i^2$, then $W = \chi^2(n)$ (using theorem 3.6-2)
- If samples $X_i = N(\mu_i, \sigma_i^2)$, then $W = \sum_{i=1}^n \frac{(X_i \mu_i)^2}{\sigma_i^2} = \chi^2(n)$ (using theorem 3.6-1 and above corollary)

5.5. Random Functions Associated with Normal Distributions

Theorem 5.5-1. If random samples X_i are independent normal distributions, then $Y = \sum c_i X_i$

has the distribution
$$N\left(\sum_{i=1}^{n} c_{i}\mu_{i}, \sum_{i=1}^{n} c_{i}^{2}\sigma_{i}^{2}\right)$$

 \circ Corollary: distribution of \bar{X} is $N\left(\mu, \frac{\sigma^{2}}{n}\right)$

5.6. The Central Limit Theorem

Theorem 5.6-1. <u>Central Limit Theorem</u>. The distribution of $\lim_{n \to \infty} W = \lim_{n \to \infty} \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \text{ is } N(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is in } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is a function of } \bar{X}\text{, which is } M(0, 1). \text{ (}W \text{ is } M(0, 1). \text{ (}W \text{ is } M(0, 1)). \text{ (}W \text{ is } M(0,$ turn a function of X

•
$$P(W \le w) \approx \int_{-\infty}^{w} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = \phi(w)$$

• e.g., for
$$X = N(\mu, \sigma)$$
 approximation for

$$P(a < \bar{X} < b) \approx P\left(\frac{a - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{b - \mu}{\frac{\sigma}{\sqrt{n}}}\right)$$

- CLT useful when distribution is symmetric, unimodal, and continuous
 - General rule of thumb is that it is a good approximation for large n (n > 25), but can be smaller if unimodal and symmetric
- For a single distribution of *X*, $W = \frac{X \mu}{\sigma}$ can be used to create a Normal distribution to approximate X

 $\circ G(x) = F(\sigma x + \mu), g(x) = \sigma f(\sigma x + \mu)$

5.7. Approximations for Discrete Distributions

... Working here ...