MA224: PROBABILITY TEST 1 OUTLINE
Chapter 1: Probability
Chapter 2: Discrete Distributions

1.1. Basic Concepts

Random experiments: an experiment (action with multiple outcomes) for which the outcome

cannot be predicted with certainty

Sample space, universal set, or outcome space .S: collection of all possible outcomes

o Can be continuous or discrete (countable), infinite or finite

Random variables: measurements on outcomes associated with random experiments

o Usually denoted with capital letter

Distribution of a random variable, or population: a description of the frequencies of different

outcomes

©  Usually estimated through samples, collection of the observations that are obtained from
repeated trials of the random experiment

o Statistical inference: the process of making a conjecture about the distribution of a random
variable based on a sample

N(A)

n

Probability of an outcome A, with frequency f = N (A) in n trials, is P(A) = . This

ratio is also called the relative frequency.

o Frequency table, relative frequency table, histogram, or density histogram can be used to
graphically/visually show frequencies of occurrences out of total trials

o Relative frequencies can be unstable for small n, but tends to stabilize for a large n towards
P(A)

Probability mass function (p.m.f.) is a function that serves as a model for the probabilities of the

outcomes of a random experiments

© i.e., if random experiment repeated many times, it is expected that the relative frequency

/\@ — P(z = x9) = f(z0)

© Can construct a probability histogram, which should be close to the frequency histogram if
n is large and the model is good

Simpson’s paradox: Relative frequencies are estimates towards probabilities, but you can’t

easily compare multiple groups of unlike relative frequencies to estimate a composite

probability. (i.e., It’s possible that to have two groups and two random experiments, in which

one group has lower probabilities in both random experiments but a higher total probability than

the other, based on the conditional probabilities of the two random experiments.)

1.2. Properties of Probability

Event: Given an outcome space S, let A C S. Thus A is an event, a subset of S. When the
outcome of the experiment is in A, then A has occurred.

S and any event are sets, and follow set theory, and can be illustrated with Venn diagrams\
o Null set: @

A subsetof B: A C B

A union B: AU B

A intersection B: AN B

Complement of A: A'

Ay, Ay, ..., A;, mutually exclusive events if A; N A; = @,i # j (i.e., all events are disjoint
sets)

o Ay, As, ..., Ay exhaustive events if Aj U Ao U---UAL, =8
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o Possible to have set of events that are both mutually exclusive and exhaustive
Probability: a real-valued set function (P : {R} — R) that assigns, to each event A in the

sample space S the probability (real number) P(A), which follows the following properties:
o P(A)>0

o P(S)=1

o If set of mutually exclusive events A;, Ao, ..., A, then
P(AyUA2U---UAg) = P(A) + P(A2) +---+ P(Ag) (for any countable number of
events)

Properties of probability (know how to prove each one, proofs are easy):
o P(A)=1-P(A")
P(©®)=0
If AC B, then P(A) < P(B)
P(A) <1
P(AUB) = P(A) + P(B) — P(AN B) (for any event, not only mutually exclusive)
=  Can be extended to more elements:
P(AUBUC)=P(4)+ P(B)+ P(C)-P(ANB)-P(ANnC)-P(BNC)+ P(AUBUC)
If m equally likely,lmutually-exclusive and exhaustive outcomes, then the probability of any of

O O O O

those outcomes is —
" h
o If h mutually-exclusive, equally likely outcomes in event A, then P(A) = p.

1.3. Methods of Enumeration

Multiplication principle: If event £ has n; possible outcomes, and for each of these possible
outcomes, event F5 has no possible outcomes, then the composite experiment F'; E's has nins
possible outcomes.

Permutation: each of the n! possible arrangements of n different objects.

Each of the ,, P, arrangements is called a permutation of n_objects taken r_at a time (ordered
sample of size r)

Different sampling methods (7 is number of| distinct objects, r is sample size):

.
o Without replacement, ordered: ,, P, = —

r!
: n! n
o Without replacement, unordered: ,C, = ——— =
rl(n —r)! r
o With replacement, ordered: n"
_ (n—14r)!
©  With replacement, unordered: ,,_1,C, = ——————
rl(n —1)!

Number of distinguishable permutations:

© Same as choosing without replacement, unordered (,,C’.)

o For more than two distinguishable types, multinomial coefficient number of possibilities
(i.e., for k distinguishable types such that ny +ns + - - - + ng = n,

n n! .
= ————— possible outcomes)
Ny, N9, ..., Nk ning! .. ng!

e (- (25

1.4. Conditional Probability



P(ANnB
Conditional probability of event A given that event B has occurred, is: P(A|B) = ﬁ,
given that P(B) > 0
o Thus, P(AN B) = P(B)P(A|B) = P(A)P(B|A) (think multiplication rule)
o Note that conditional probability follows the axioms for a probability function

1.5. Independent Events

* A pair of events is independent (statistically independent, stochastically independent,

independent in a probabilistic sense) if the occurrence of one does not change the probability of

the occurrence of the other

o ie., P(A) = P(A|B)

P(ANB) .

o Thus, because P(A|B) = —PB) P(A)P(B) = P(AnN B) (special case of the
multiplication rule)

Theorem: If A and B are independent events, then so are (prove these as well, also easy

proofs):

© AandB'

o A'and B

o A'and B'

Events A, B, and C are mutually independent IFF both conditions hold (can be extended to

larger sets of events, where each pair, triplet, quartet, etc. satisfy the special multiplication rule):
o A, B, and C are pairwise independent

o P(ANBNC) = P(A)P(B)P(C)

1.6. Bayes’s Theorem

* Consider a space that is partitioned into £ mutually exclusive, exhaustive events

B, Bs, ..., By, with known probabilities (prior probabilities), and a space A, such that
P(A|B;),1 < i < kis known

© Once event A has occurred, the probability that the outcome was in event 5 is the posterior

probability P(B;|4) = LB A PUB)PAIB)
; P(Bk)P(A|By)

P(A) .7 =1,2,...k (Bayes’s

Theorem)

2.1. Random Variables of the Discrete Type

* Given a random experiment with an outcome space S, a function X that maps every element of
S to a real number is called a random variable (X : S — R)
o The space of X is the set of real numbers {z : X(s) = x,s € S}

o In other words, X can be thought of as a numeric measurement (or designation) taken from
a random experiment, a way of “mathematicalizing” an arbitrary outcome space by mapping
it to the real number line

Discrete (countable) types were mentioned in 1.1, this is the type dealt with in this chapter

The p.m.f. of a discrete random variable X is a function f(z) = P(X = x) with the following

properties:

o f(z)>0,zes

° Y fl@)=1

T€S




° P(XeA)= Z f(x), where A C S
€A
* Hypergeometric distribution: when choosing n items from a collection of N = Ny + N»
objects, where N; and N5 are the counts of the two distinguishable classes of objects, and the
random variable X is the number of objects selected of type /N1, then the p.m.f. is:
Ny Na

€T n—=x

N
(%)
2.2. Mathematical Expectation
* Mathematical expectation, or expected value of function «(X) random variable X of the
discrete type with space S is F(u(X)) = Z u(x) f(z)
xeS
o Since u(X) is also a function mapping X to another value, it can be thought of as another
random variable (will produce same result, just a different way to think about it)
*  When it exists, the mathematical expectation E satisfies the properties (be able to prove these):
o If cis a constant, then E(c) = ¢
o If cis a constant and u is a function, then E[cu(X)| = cE[u(X)]
o If ¢; and ¢, are constants and w; and us are functions, then
Elciui(X) 4 coua(X)] = c1 EJur (X)] + coEfuz(X)] (i-e., E is a linear operator)

» For a hypergeometric distribution, £(X) = nﬁl = np (makes sense)

ﬂw=mX:w:(

0<z<Nj,z<n<N

2.3. The Mean, Variance, and Standard Deviation
* The mean of a random variable X is y = E(X) = Z zf(x)
€S
o This is the first moment about the origin
o The first moment about the mean is £(X — ) =0
* The variance of a random variable X is the second moment about the mean:
0> = B((X —p)?) = > (& — p)*f(2)
€S
o The standard deviation is o = (+)V/o2
o Formul(a 2): 0% = B(X? —2uX + p?) = E(X?) - 2uE(X) + p? = E(X?) — i*, because
uw=FEX
o Formula 3: 0% = E(X(X — 1)) + u — i (see derivation below under factorial moment)
* If random variable Y = aX + b (linear mapping of random variable X') (be able to derive these
and think about them intuitively):
o py =apx +b
o 0% =a%0% (oroy = aoy)
* 7" moment of the distribution about b is E((X — b)")
» " factorial moment is £(X (X —1)(X —2)...(X —r+1))
o Using the second factorial moment, (X (X — 1)) = E(X?) — E(X). Thus,
0? = EB(X —p)?) = E(X?) — u? = BE(X(X — 1)) + u — p* This is sometimes easier to
calculate than using other formulas for variance

N —
* Variance of a hypergeometric distribution is o? = npq ( N ?)



* If arandom experiment is actually performed n times, the collection of outcomes is called a
sample
1

N 1«
© The empirical distribution has a p.m.f. f(x) = —, sample mean z = — Z x;, sample
. i
Z(x7 — 7)? (sample mean and sample variance are used to estimate

=1
the population mean and standard deviation)

3

1
n—1

variance s =

2.4. Bernoulli Trials and the Binomial Distribution
* Bernoulli experiment: random experiment with only two mutually-exclusive and exhaustive

outcomes (usually success and failure)

o Bernoulli trials: a sequence of Bernoulli experiments performed several independent times

o Letp = P(success),g=1—p

o A Bernoulli experiment (a single Bernoulli trial) has a Bernoulli distribution, with random
variable X corresponding to success (1) or failure (0), with p.m.f. f(z) = pqu Toae=0,1;
1t = p; and 0 = pq

*  When a sequence of n Bernoulli trials carried out, it has a binomial distribution, with random
variable X indicatirf number of successes

o pm.f.: f(z) =

o Bernoulli distribution is special case of binomial distribution with n = 1

o Binomial distribution be represented shorthand as b(n, p)

o This can be used to approximate the hypergeometric distribution (similar, but without
replacement) when n is large, since events are essentially independent of one another

e Cumulative distribution function (c.d.f.), or distribution function, of a random variable X, isa

function such that F'(z) = P(X < z),—0c0o < x < o0

o fl(z)=F(x) - F(z —1)

o P(X>z)=1-F(x)

Z) p*q"" 1 =0,1,2,...n; 4 = np; o2 = npq

2.5. The Moment-Generating Function
* Let X be arandom variable of the discrete type with p.m.f. f(z) and space S. If there is a

positive number % such that E(e Z i f(x) exists and is finite for —h < ¢ < h, then the

rzes
function of ¢ defined by M (t) = E(etX ) is called the moment-generating function of X (m.g.f.)

o M(0)=) f(z)=

TeS
o If the space of S is the set of mutually-exclusive, exhaustive events {b1, b2, b3, ... }, then

M(t) = f(by)e? " + f(bo)ebt + f(b3)e®! 4 --- ; use this pattern to identify probabilities
of the outcomes given the m.g.f., or v.v.
© Note that the m.g.f. is unique to a distribution; if a m.g.f. exists, there exists one and only
one distribution of probability associated with it
o If moments are given (i.e., formula for £(X"),r = 1,2,...), then usually can find closed-
form m.g.f. using Maclauren series
. Differentiating the m.g.f. r times gives the ™ moment of the distribution (around 0) at ¢t = 0
Z 2 f(z) = M'(0) = E(X) =
xeS
o M'"(t) =) a’e" f(x) = M"(0) = E(X?) = M"(0) — M'(0)* =0’
€S




© (and so on)

o Using these formulas can be used to easily find 1, o for the binomial distribution (with

m.g.f. M(t) =

occur

[(1=p)+pe']”
Negative binomial distribution is a distribution where X is number of trials until » successes

o p.m.f.:f(x):(”:_:ll>pq ,c=r,r+1,...

o m.g.f: M(t) =

(pe
[1-(1-
used to f1nd the M’q o?

IM__ — =
P p?

o Ifr =1, then called geometric distribution, p.m.f. f(z) = pq

x—1 _
,x=1,2,...

=, (1 —p)e’ < 1 (don’t have to memorize this, but this is

=  The sum of the p.m.f. can easily be verified to equal 1 using the infinite sum of a

geometric serles formula

= P(X>k)=
= cdf F(z) =
s u—p o= p2

(X<3:)

1—4qg"

Summary of Counting Methods (from 1.3)

With replacement Without replacement
Ordered n” nPr
Unordered |n—1+rCr nCr
Summary of Distributions
Name p.m.f. m.g.f Hlg? Use
Hypergeo Ny N doesn’t look fun on np n N —n'\ How many of first
metric o\ Z n— Wikipedia Pa N — 1 ) type (“successes”
(o) = N 4 when drawing w/o
n replacement
r=0,1,... Nj,z <n<N
Binomial n\ 4 n-a M(t)=[(1-p) —I—pet}n npnpq How many
= =0,1
b(n, p) 1) (m) pa e =01, successes in n
Bernoulli trials
Bernoulli | f(z) = p“¢* ™%, 2 =0,1 M(t) = (1 — p) + pe p1pPq Chance of success
(binomial, in 1 Bernoulli trial
n=1)
Negative fa)= (%~ 1\ o2y M(t) = (pe’)” r r_;] How many
binomial C\r—1 . 11— (1-pet]” |P |P Bernoulli trials until
r=rr+l...,r=>1 (1-ple' <1 T successes
Geometric | f(z) = p¢* ™, z = 1,2, . pe’ 1749 How many
. M(t)= ——, 2 L :
(negative 1—(1—pet p P Bernoulli trials until
binomial, (1-ple' <1 first success
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