MA224: PROBABILITY TEST 1 OUTLINE

Chapter 1: Probability Chapter 2: Discrete Distributions

1.1. Basic Concepts

- <u>Random experiments</u>: an experiment (action with multiple outcomes) for which the outcome cannot be predicted with certainty
- <u>Sample space</u>, <u>universal set</u>, or <u>outcome space</u> *S*: collection of all possible outcomes
 - Can be continuous or discrete (countable), infinite or finite
- <u>Random variables</u>: measurements on outcomes associated with random experiments
 Usually denoted with capital letter
- <u>Distribution of a random variable</u>, or <u>population</u>: a description of the frequencies of different outcomes
 - Usually estimated through <u>samples</u>, collection of the observations that are obtained from repeated trials of the random experiment
 - <u>Statistical inference</u>: the process of making a conjecture about the distribution of a random variable based on a sample

• Probability of an outcome *A*, with frequency
$$f = \mathcal{N}(A)$$
 in *n* trials, is $P(A) = \frac{\mathcal{N}(A)}{n}$. This

ratio is also called the <u>relative frequency</u>.

- <u>Frequency table</u>, <u>relative frequency table</u>, <u>histogram</u>, or <u>density histogram</u> can be used to graphically/visually show frequencies of occurrences out of total trials
- $^\circ~$ Relative frequencies can be unstable for small n, but tends to stabilize for a large n towards P(A)
- <u>Probability mass function</u> (p.m.f.) is a function that serves as a model for the probabilities of the outcomes of a random experiments
 - i.e., if random experiment repeated many times, it is expected that the relative frequency $\frac{\mathcal{N}(x_0)}{n} \rightarrow P(x = x_0) = f(x_0)$
 - Can construct a <u>probability histogram</u>, which should be close to the frequency histogram if *n* is large and the model is good
- <u>Simpson's paradox</u>: Relative frequencies are estimates towards probabilities, but you can't easily compare multiple groups of unlike relative frequencies to estimate a composite probability. (i.e., It's possible that to have two groups and two random experiments, in which one group has lower probabilities in both random experiments but a higher total probability than the other, based on the conditional probabilities of the two random experiments.)

1.2. Properties of Probability

- Event: Given an outcome space *S*, let $A \subset S$. Thus *A* is an event, a subset of *S*. When the outcome of the experiment is in *A*, then A has occurred.
- *S* and any event are sets, and follow set theory, and can be illustrated with Venn diagrams\
 Null set: Ø
 - *A* subset of $B: A \subset B$
 - A union $B: A \cup B$
 - *A* intersection $B: A \cap B$
 - $\circ \quad \text{Complement of } A \text{:} A \text{'}$
 - A_1, A_2, \ldots, A_k mutually exclusive events if $A_i \cap A_j = \emptyset, i \neq j$ (i.e., all events are disjoint sets)
 - A_1, A_2, \dots, A_k exhaustive events if $A_1 \cup A_2 \cup \dots \cup A_k = S$

- Possible to have set of events that are both mutually exclusive and exhaustive
- <u>Probability</u>: a real-valued set function $(P : \{\mathbb{R}\} \to \mathbb{R})$ that assigns, to each event A in the sample space S the probability (real number) P(A), which follows the following properties:
 - $\circ \quad P(A) \ge 0$
 - P(S)=1
 - If set of mutually exclusive events A_1, A_2, \ldots, A_k , then $P(A_1 \cup A_2 \cup \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$ (for any countable number of events)
- Properties of probability (know how to prove each one, proofs are easy):
 - $\circ P(A) = 1 P(A')$
 - $\circ \quad P(O) = 0$
 - $\circ \quad \text{If } A \subseteq B \text{, then } P(A) \leq P(B)$
 - $\circ \quad P(A) \le 1$
 - P(A∪B) = P(A) + P(B) P(A ∩ B) (for any event, not only mutually exclusive)
 Can be extended to more elements:
 - $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cup B \cup C)$
- If *m* equally likely, mutually-exclusive and exhaustive outcomes, then the probability of any of those outcomes is $\frac{1}{m}$

• If *h* mutually-exclusive, equally likely outcomes in event *A*, then $P(A) = \frac{h}{m}$

1.3. Methods of Enumeration

- <u>Multiplication principle</u>: If event E_1 has n_1 possible outcomes, and for each of these possible outcomes, event E_2 has n_2 possible outcomes, then the composite experiment E_1E_2 has n_1n_2 possible outcomes.
- <u>Permutation</u>: each of the *n*! possible arrangements of *n* different objects.
- Each of the $_nP_r$ arrangements is called a <u>permutation of *n* objects taken *r* at a time</u> (ordered sample of size *r*)
- Different sampling methods (*n* is number of distinct objects, *r* is sample size):
 - Without replacement, ordered: $_{n}P_{r} = \frac{n!}{n!}$

• Without replacement, unordered:
$${}_{n}C_{r} = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

 \circ $\;$ With replacement, ordered: n^r

• With replacement, unordered:
$$_{n-1+r}C_r = \frac{(n-1+r)!}{r!(n-1)!}$$

- Number of distinguishable permutations:
 - ° Same as choosing without replacement, unordered ($_nC_r$)
 - For more than two distinguishable types, <u>multinomial coefficient</u> number of possibilities (i.e., for *k* distinguishable types such that $n_1 + n_2 + \cdots + n_k = n$,

.

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k!}$$
 possible outcomes)
Note: $\binom{n}{r} = \binom{n}{n-r}$

1.4. Conditional Probability

• <u>Conditional probability</u> of event *A* given that event *B* has occurred, is: $P(A|B) = \frac{P(A \cap B)}{P(B)}$,

given that P(B) > 0

- Thus, $P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$ (think multiplication rule)
- \circ $\;$ Note that conditional probability follows the axioms for a probability function

1.5. Independent Events

• A pair of events is <u>independent</u> (statistically independent, stochastically independent, independent in a probabilistic sense) if the occurrence of one does not change the probability of the occurrence of the other

• i.e.,
$$P(A) = P(A|B)$$

• Thus, because $P(A|B) = \frac{P(A \cap B)}{P(B)}$, $P(A)P(B) = P(A \cap B)$ (special case of the

multiplication rule)

- Theorem: If *A* and *B* are independent events, then so are (prove these as well, also easy proofs):
 - \circ A and B'
 - \circ A' and B
 - \circ A' and B'
 - Events A, B, and C are <u>mutually independent</u> IFF both conditions hold (can be extended to larger sets of events, where each pair, triplet, quartet, etc. satisfy the special multiplication rule):
 - *A*, *B*, and *C* are pairwise independent

$$\circ \quad P(A \cap B \cap C) = P(A)P(B)P(C)$$

1.6. Bayes's Theorem

• Consider a space that is partitioned into k mutually exclusive, exhaustive events B_1, B_2, \ldots, B_k with known probabilities (prior probabilities), and a space A, such that $P(A|B_i), 1 \le i \le k$ is known

• Once event A has occurred, the probability that the outcome was in event
$$B_j$$
 is the posterior
probability $P(B_j|A) = \frac{P(B_j \cap A)}{P(A)} = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{k} P(B_k)P(A|B_k)}, j = 1, 2, \dots k$ (Bayes's

Theorem)

2.1. Random Variables of the Discrete Type

- Given a random experiment with an outcome space S, a function X that maps every element of S to a real number is called a <u>random variable</u> ($X : S \to \mathbb{R}$)
 - The space of *X* is the set of real numbers $\{x : X(s) = x, s \in S\}$
 - In other words, *X* can be thought of as a numeric measurement (or designation) taken from a random experiment, a way of "mathematicalizing" an arbitrary outcome space by mapping it to the real number line
- Discrete (countable) types were mentioned in 1.1, this is the type dealt with in this chapter
- The p.m.f. of a discrete random variable *X* is a function f(x) = P(X = x) with the following properties:

$$\circ \quad \begin{array}{l} f(x) > 0, x \in S \\ \circ \quad \sum_{x \in S} f(x) = 1 \end{array}$$

 $\circ \quad P(X \in A) = \sum_{x \in A} f(x), \text{ where } A \subseteq S$

<u>Hypergeometric distribution</u>: when choosing *n* items from a collection of $N = N_1 + N_2$ objects, where N_1 and N_2 are the counts of the two distinguishable classes of objects, and the random variable X is the number of objects selected of type N_1 , then the p.m.f. is:

$$f(x) = P(X = x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}, 0 \le x \le N_1, x \le n \le N$$

2.2. Mathematical Expectation

- <u>Mathematical expectation</u>, or <u>expected value</u> of function u(X) random variable X of the discrete type with space \overline{S} is $\overline{E(u(X))} = \sum_{x \in S} u(x)f(x)$
 - Since u(X) is also a function mapping X to another value, it can be thought of as another random variable (will produce same result, just a different way to think about it)
- When it exists, the mathematical expectation *E* satisfies the properties (be able to prove these):
 - If *c* is a constant, then E(c) = c
 - If *c* is a constant and *u* is a function, then E[cu(X)] = cE[u(X)]
- If c_1 and c_2 are constants and u_1 and u_2 are functions, then $E[c_1u_1(X) + c_2u_2(X)] = c_1\tilde{E[u_1(X)]} + c_2E[u_2(X)]$ (i.e., E is a linear operator) For a hypergeometric distribution, $E(X) = n\frac{N_1}{N} = np$ (makes sense)

2.3. The Mean, Variance, and Standard Deviation

- The <u>mean</u> of a random variable *X* is $\mu = E(X) = \sum_{x \in A} xf(x)$
 - This is the first moment about the origin 0
 - The first moment about the mean is $E(X \mu) = 0$
- The <u>variance</u> of a random variable *X* is the second moment about the mean:

$$\sigma^{2} = E((X - \mu)^{2}) = \sum_{x \in S} (x - \mu)^{2} f(x)$$

- The standard deviation is $\sigma = (+)\sqrt{\sigma^2}$ Formula 2: $\sigma^2 = E(X^2 2\mu X + \mu^2) = E(X^2) 2\mu E(X) + \mu^2 = E(X^2) \mu^2$, because $\mu = E(X)$
- Formula 3: $\sigma^2 = E(X(X-1)) + \mu \mu^2$ (see derivation below under factorial moment)
- If random variable Y = aX + b (linear mapping of random variable X) (be able to derive these and think about them intuitively):

$$\circ \mu_Y = a\mu_X + b$$

- $\sigma_Y^2 = a^2 \sigma_X^2$ (or $\sigma_Y = a \sigma_X$) r^{th} moment of the distribution about *b* is $E((X b)^r)$
- r^{th} factorial moment is $E(X(X-1)(X-2)\dots(X-r+1))$
 - Using the second factorial moment, $E(X(X-1)) = E(X^2) E(X)$. Thus, $\sigma^2 = E((X-\mu)^2) = E(X^2) \mu^2 = E(X(X-1)) + \mu \mu^2$. This is sometimes easier to calculate than using other formulas for variance
- Variance of a hypergeometric distribution is $\sigma^2 = npq\left(\frac{N-n}{N-1}\right)$

- If a random experiment is actually performed *n* times, the collection of outcomes is called a sample
 - The <u>empirical distribution</u> has a p.m.f. $f(x) = \frac{1}{n}$, <u>sample mean</u> $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, <u>sample</u> 0

<u>variance</u> $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ (sample mean and sample variance are used to estimate

the population mean and standard deviation)

2.4. Bernoulli Trials and the Binomial Distribution

- Bernoulli experiment: random experiment with only two mutually-exclusive and exhaustive outcomes (usually success and failure)
 - Bernoulli trials: a sequence of Bernoulli experiments performed several independent times 0
 - Let p = P(success), q = 1 p
 - A Bernoulli experiment (a single Bernoulli trial) has a Bernoulli distribution, with random variable X corresponding to success (1) or failure (0), with p.m.f. $f(x) = p^x q^{1-x}$, x = 0, 1; $\mu = p$; and $\sigma^2 = pq$
- When a sequence of *n* Bernoulli trials carried out, it has a <u>binomial distribution</u>, with random variable X indicating number of successes

• p.m.f.:
$$f(x) = \binom{n}{x} p^x q^{n-q}, x = 0, 1, 2, \dots, \mu = np; \sigma^2 = npq$$

- 0 Bernoulli distribution is special case of binomial distribution with n = 1
- Binomial distribution be represented shorthand as b(n, p)
- This can be used to approximate the hypergeometric distribution (similar, but without replacement) when n is large, since events are essentially independent of one another
- <u>Cumulative distribution function</u> (c.d.f.), or distribution function, of a random variable *X*, is a function such that $F(x) = P(X \le x), -\infty < x < \infty$

$$\circ \quad f(x) = F(x) - F(x-1)$$

$$\circ \quad P(X > x) = 1 - F(x)$$

2.5. The Moment-Generating Function

Let *X* be a random variable of the discrete type with p.m.f. f(x) and space *S*. If there is a positive number *h* such that $E(e^{tX}) = \sum_{x \in S} e^{tx} f(x)$ exists and is finite for -h < t < h, then the function of *t* defined by $M(t) = E(e^{tX})$ is called the <u>moment-generating function of X</u> (m.g.f.) $M(0) = \sum_{x \in S} f(x) = 1$

- If the space of *S* is the set of mutually-exclusive, exhaustive events $\{b_1, b_2, b_3, \dots\}$, then $M(t) = f(b_1)e^{b_1t} + f(b_2)e^{b_2t} + f(b_3)e^{b_3t} + \cdots$; use this pattern to identify probabilities of the outcomes given the m.g.f., or v.v.
- Note that the m.g.f. is unique to a distribution; if a m.g.f. exists, there exists one and only one distribution of probability associated with it
- If moments are given (i.e., formula for $E(X^r), r = 1, 2, ...$), then usually can find closed-0 form m.g.f. using Maclauren series
- Differentiating the m.g.f. *r* times gives the r^{th} moment of the distribution (around 0) at t = 0٠

$$M'(t) = \sum_{x \in S} x e^{xt} f(x) \Rightarrow M'(0) = E(X) = \mu$$

$$M''(t) = \sum_{x \in S} x^2 e^{xt} f(x) \Rightarrow M''(0) = E(X^2) \Rightarrow M''(0) - M'(0)^2 = \sigma^2$$

- (and so on)
- Using these formulas can be used to easily find μ , σ^2 for the binomial distribution (with m.g.f. $M(t) = \left[(1-p) + pe^t \right]^n$
- <u>Negative binomial distribution</u> is a distribution where X is number of trials until r successes occur
 - p.m.f.: $f(x) = {\binom{x-1}{r-1}} p^r q^{x-r}, x = r, r+1, \dots$ • m.g.f: $M(t) = \frac{(pe^t)^r}{[1-(1-p)e^t]^r}, (1-p)e^t < 1$ (don't have to memorize this, but this is used to find the μ, σ^2)

•
$$\mu = \frac{\tau}{p}, \sigma = \frac{\tau q}{p^2}$$

- If r = 1, then called geometric distribution, p.m.f. $f(x) = pq^{x-1}, x = 1, 2, ...$
 - The sum of the p.m.f. can easily be verified to equal 1 using the infinite sum of a geometric series formula
 - $\check{P}(X > k) = q^k$
 - c.d.f: $F(x) = P(X \le x) = 1 q^x$

•
$$\mu=p^{-1}$$
, $\sigma^2=rac{q}{p^2}$

Summary of Counting Methods (from 1.3)

	With replacement	Without replacement	
Ordered	n^r	$_{n}P_{r}$	
Unordered	n-1+rCr	$_{n}C_{r}$	

Summary of Distributions

Name	p.m.f.	m.g.f	μ	σ^2	Use
Hypergeo metric	$f(x) = \frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}},$ $x = 0, 1, \dots, N_1, x \le n \le N$	doesn't look fun on Wikipedia	np	$npq\left(\frac{N-n}{N-1}\right)$	How many of first type ("successes") when drawing w/o replacement
$\frac{\text{Binomial}}{b(n,p)}$	$f(x) = \binom{n}{x} p^{x} q^{n-x}, x = 0, 1, \dots n$	$M(t) = \left[(1-p) + pe^t \right]^n$	np	npq	How many successes in <i>n</i> Bernoulli trials
Bernoulli (binomial, $n = 1$)	$f(x) = p^x q^{1-x}, x = 0, 1$	$M(t) = (1-p) + pe^t$	p	pq	Chance of success in 1 Bernoulli trial
Negative binomial	$ \begin{aligned} f(x) &= \begin{pmatrix} x-1\\ r-1 \end{pmatrix} p^r q^{x-r}, \\ x &= r, r+1, \dots, r \ge 1 \end{aligned} $	$M(t) = \frac{(pe^t)^r}{[1 - (1 - p)e^t]^r},$ (1 - p)e^t < 1	$\frac{r}{p}$	$\frac{rq}{p^2}$	How many Bernoulli trials until <i>r</i> successes
Geometric (negative binomial,	$f(x) = pq^{x-1}, x = 1, 2, \dots$	$(1-p)e^{t} < 1$ $M(t) = \frac{pe^{t}}{1-(1-p)e^{t}},$ $(1-p)e^{t} < 1$	$\frac{1}{p}$	$\frac{q}{p^2}$	How many Bernoulli trials until first success

r=1)
