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16.1. Line Integrals
• If a curve  is smooth for , then line integral over  exists
• To evaluate a line integral given as a parametric function of , , 

• Applications for objects defined along a curve:

◦ Mass: 

◦ First moments and COM: , , same with other moments and COM

◦ Moments of inertia: , same with other moments of inertia

◦ For a line integral on a plane (flat), line integral may be interpreted as the area of the “wall” 
created along the curve with a height , where  is the integrand

• If piecewise smooth function curve made of finite smooth curves, line integral over entire curve
is equal to the sum of the line integrals of the curves

• Value of the line integral may be path-dependent

16.2. Vector Fields and Line Integrals: Work, Circulation, and Flux
• A vector field is a function that assigns a vector to each point on its domain, e.g.,

◦ Continuous if component functions continuous, differentiable if component functions 
differentiable

• Gradient field   is field of gradient vectors, shows direction of greatest increase of 

◦ i.e., 

• Line integral of a curve in a vector field has the integrand being the scalar tangential component

of  along , or , so 

◦ To evaluate a line integral of a  along , express  in terms of  (i.e.,
 by substituting functional components of  into functional 

components of ) find , and evaluate 

• If vector field  only has single component, then can express line integral wrt one coordinate

◦ Define line integral of a function wrt one coordinate: , where

 only contains the  component function .

◦  (i.e., 

sum of component line integrals is the total line integral)
• Applications of line integrals:

◦  (work is a regular line integral,  is force vector field

◦ ,  is velocity vector field (usually of a fluid)

 



▪ If the curve is closed (starts and ends in the same place, called circulation

◦ ,  is a simple (non-overlapping) closed curve,  is some field (fluid’s 

velocity field, electric field, magnetic field),  is outward-pointing normal vector
▪ Be careful about the signs: if curve traveling counterclockwise, then , else 

switch order of vectors

▪ For a closed curve counter-clockwise in the -  plane, flux is 

Summary of ways to indicate a line integral:

16.3. Path Independence, Conservative Fields, and Potential Functions
•  is a vector field defined in open region  in space; if for any two points  and  in  the 

line integral  has the same value for any path, then the integral is path independent in

 and  is conservative on 

◦ Can represent integral with limits  instead of  to indicate path-independence

• If  is a vector field defined on  and  for some scalar function  on , then  is 
called a potential function for 
◦  is conservative  it is the gradient field of a potential function (see Theorem 2 below)
◦ e.g., a gravitational potential is a scalar function whose gradient field is a gravitational field,

same for electric potential, so gravitational and electric fields are conservative
• Assumptions necessary for conservative fields

◦ Curves must be piecewise smooth (finitely-many smooth pieces connected end-to-end)
◦  is simply connected (every loop can be contracted to single point in  without ever 

leaving )

 



◦  is connected (two points in  can be connected without leaving )
▪ Note that simple-connectedness and connectedness do not imply one another (why is 

this true? https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-
simply-connected)

• Theorem 1: Fundamental Theorem of Line Integrals (line integral analogue of FTC): Let  be a
smooth curve joining the point  to the point  in the plane or in space and parametrized by

. Let  be a differentiable function with a continuous gradient vector  on a domain

 containing . Then 

◦ Proof: , which is equal to integrand of normal curve; then use FTC 

on this to show that 

• Theorem 2: Conservative Fields are Gradient Fields: Let  be a vector field whose 
components are continuous throughout open connected region  in space. Then  is 
conservative   is a gradient field  for a differentiable function .
◦ Proof:  is conservative is easy to prove because of Theorem 1: the integral 

over a gradient field is only dependent on the endpoints (therefore conservative)

◦ Proof:  is conservative : Show that , same with other components 

(see p.923)
• Theorem 3: Loop Property of Conservative Fields: Equivalency of the statements:

◦  around every loop in 

◦  is conservative on 
◦ (these in turn are equivalent to )

• Component Test for Conservative Fields  : Let vector field  on simply 
connected domain whose component functions have continuous first partial derivatives. Then 

conservative IFF , , and 

◦ Proof that these equations work (but not why they imply conservative-ness): write

, then solve for  and other partial derivatives

• Finding potential functions: Once it is known that a field is conservative, then  (and 

same for other components); differentiate to get components of  (i.e.,

)

• Exact differential forms  :  is an expression in differential form. It is exact if 
it is the total differential of some scalar function  over domain . A differential can be 
checked for exactness just like component test for conservative fields

◦ If line integral over conservative field written in differential form , 

can compute using method above for conservative fields

 

https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-simply-connected
https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-simply-connected


16.4. Green’s Theorem in the Plane

• The divergence (flux density) of a vector field  at  is 

◦ Derivation: p. 932

◦ Physical interpretation: similar to “expansion at a point”: if larger vectors out than in, then 
positive divergence; if not, negative divergence; basically flux in an infinitesimal area 
(hence “flux density”)

• The circulation density (k-component of curl, ) of  at point  is 

◦ -component of the more general circulation field

◦ Denotes spin (positive circulation density means counterclockwise) at a point

• Examples of divergence and circular density of certain vector fields:

◦ Uniform expansion/compression:  constant divergence, no circulation 
density

◦ Uniform rotation:  0 divergence, constant circulation density

◦ Shearing flow:  0 divergence, constant circulation density

◦ Whirlpool:  0 divergence, 0 circulation density

• Green’s Theorem:

◦ Theorem 4: Green’s Theorem (Flux-Divergence or Normal Form): Let  be a piecewise 
smooth, simple closed curve enclosing a region  in the plane. Let  be a vector field in the
plane, with components having continuous first partial derivatives in open region containing

. Then outward flux of  across  is:

, or the double integral of the 

divergence of the field over the region enclosed by the curve.

▪ Makes sense – integrate “flux density” over a region to get flux

▪ To remember this integral, think right side as “normal” integral of partials, left side as 
switch sign and multiply by 

◦ Theorem 5: Green’s Theorem (Circulation-Curl or Tangential Form): (Same conditions as 
first part). Then ccw circulation is:

▪ Integrate “circulation density” over a region to get circulation



▪ To remember this integral, think of left side as “normal line integral”, think of right side 
as switch sign and divide by 

◦ Taking flux (Thm. 4) of  gives circulation, taking circulation (Thm. 5) of
 gives flux, so closely related; either can be used to solve some problems 

by interchanging  and  (see p. 938)

◦ Proof on p. 939

◦ Can be used on any plane with a simply connected region, and also for some non-simply 
connected regions if same orientation of curves (see p. 940)

• Reverse Green’s Theorem to find area  : 

◦ Derivation:  (or ,

)

16.5. Surfaces and Area

• Parametrization of a surface: 

• A parameterized surface  is smooth if  and  are continuous and  are never 0 
in the interior of the domain.

• The area of a smooth surface is 

• For an implicit surface  over closed and bounded region, assume ,
 (  is unit vector normal to plane “shadow,” so never folds back on itself), and 

smooth

◦

◦ surface area of an implicit function   is , where  normal to ,

• , for surface defined by 

16.6. Surface Integrals

• The surface integral of a scalar function  is , where  is one of the 

differential forms from 16.5



• Orientation of a surface

◦ A smooth surface  is orientable or two-sided if it is possible to define a field  of unit 
normal vectors on  that varies continuously with position

▪ Smooth closed surfaces are orientable

▪ , by convention, points outwards from a closed surface

▪ The Mobius band is not orientable

•

◦ Can be positive or negative depending on orientation (not very important)

◦ For a surface given parametrically, flux is

◦ For a surface given implicitly, flux is: 

• Applications of surface integrals

◦ Same as 1D, 2D analogues, replace integral with  and delta with 

16.7. Stokes’ Theorem

• Let  be a piecewise smooth surface having a piecewise smooth boundary . Let
 be a vector field whose components have continuous first partial 

derivatives on an open region containing . Then the circulation of  around  in the direction 
counterclockwise wrt unit normal vector  is  over .

◦

• If two different oriented surfaces have the same boundary, they have the same curl integral

• For a two-dimensional field (Green’s Theorem):

◦  (i.e., the -component of curl)

▪  is the new circulation density, is equal to 

• Circulation over a curve is the flux of the curl across a surface bounded by that curve, as long as
the curves are traced in the same orientation (i.e., all curves have the surface to the left of them

• , or 



• For a simply-connected open region D,  field is conservative 

over 

16.8. Divergence Theorem

• Divergence Theorem  : 

• For the field 

◦ For any region between two spherical shells, 

◦ For any sphere, flux is 

• Gauss’s Law: for any region encompassing the origin,  (p. 979)

• Continuity equation of hydrodynamics:  (p. 979)

• Unifying Fundamental Theorem: the integral of a differential operator acting on a field over a 
region equals the sum of the field components appropriate to the operator over the boundary of 
the region


