LINE AND SURFACE INTEGRALS
MA113 TEST 2 EQUATION SHEET/OUTLINE

16.1. Line Integrals
» If acurve C is smooth for a <t < b, then line integral over C' exists
* To evaluate a line integral given as a parametric function of x, y, 2

/ f(z,y,2)ds = / F(g(t), (), k(D) [5(0)]dt
C a

* Applications for objects defined along a curve:

° Mass:/ dds
c

M.
o First moments and COM: M,. = / zdds, T = ﬁ, same with other moments and COM
c

o  Moments of inertia: M, = / (y2 + z2)(5ds, same with other moments of inertia
c

o For a line integral on a plane (flat), line integral may be interpreted as the area of the “wall”
created along the curve with a height f(¢), where f(¢) is the integrand
» If piecewise smooth function curve made of finite smooth curves, line integral over entire curve
is equal to the sum of the line integrals of the curves
* Value of the line integral may be path-dependent

16.2. Vector Fields and Line Integrals: Work, Circulation, and Flux
* A vector field is a function that assigns a vector to each point on its domain, e.g.,
F($ Y,z )—M(:U Y,z )Z—’_N(‘T Y,z )j—|—P(ZL‘ Y,z )k
o Continuous if component functions continuous, differentiable if component functions

differentiable
* Gradient field is field of gradlent vectors, shows direction of greatest increase of f
f of~  of;
) v — _< _J
ie, Vf = z + 3y Jj+ = 82
* Line integral of acurve in a Vector field has the integrand being the scalar tangential component
of F along C, or I - so/F Tds—/ F —ds—/F dr

o To evaluate a line integral of a F(x,y, z) along 7(t), express F in terms of ¢ (i.e.,

ﬁ(x, Y,z) = F (7(t)) by substituting functional components of 7 into functional

. dF
components of F') find —, and evaluate / F(7(t)) - at
dt . dt

«  If vector field F only has single component, then can express line integral wrt one coordinate

o Define line integral of a function wrt one coordinate: / M(z,y,z)dx = / F - dF, where
c c

F only contains the x component function M.

o / M(z,y, z)dx + / N(z,y, z)dy + / P(z,y,z)dz = / Mdz + Ndy + Pdz (i.e.,
c c c c
sum of component line integrals is the total line integral)

* Applications of line integrals:

o W= [ F-Tds (work is a regular line integral, F is force vector field
c

o Flow = / F.Tds, F is velocity vector field (usually of a fluid)
c



= [f the curve is closed (starts and ends in the same place, called circulation
o Flux = / F.iids, Cisa simple (non-overlapping) closed curve, F' is some field (fluid’s
c
velocity field, electric field, magnetic field), 77 is outward-pointing normal vector

= Be careful about the signs: if curve traveling counterclockwise, then 7 = T x k, else
switch order of vectors

= For a closed curve counter-clockwise in the x-y plane, flux is 7{ Mdy — Ndx
c

Summary of ways to indicate a line integral:

TABLE 16.2 Different ways to write the work integral for F = Mi + Nj + Pk over
the curve C:r(t) = g(t)i + h(t)j + k()k, a =t =b

W = / F-Tds The definition
JC
= / F-dr Vector differential form
¢
*h dr
= / F- 57 dt Parametric vector evaluation

_ ” dx dy dz . :
= M—+ N—+ P—)dt Parametric scalar evaluation
: dt dt dt

= / Mdx + Ndy + Pd:z Scalar differential form
Jc

16.3. Pagh Independence, Conservative Fields, and Potential Functions
* F'isa vector fi%ld defined in open region D in space; if for any two points A and B in D the

line integral / F' - d7 has the same value for any path, then the integral is path independent in
A

D and F' is conservative on D
B

o Can represent integral with limits /
A
« If F is a vector field defined on D and F = Vf for some scalar function f on D, then f is
called a potential function for ¥’
o F'is conservative <= it is the gradient field of a potential function (see Theorem 2 below)
© e.g., agravitational potential is a scalar function whose gradient field is a gravitational field,
same for electric potential, so gravitational and electric fields are conservative
* Assumptions necessary for conservative fields
o Curves must be piecewise smooth (finitely-many smooth pieces connected end-to-end)
o D is simply connected (every loop can be contracted to single point in DD without ever
leaving D)

instead of / to indicate path-independence
c




o D is connected (two points in D can be connected without leaving D)
= Note that simple-connectedness and connectedness do not imply one another (why is
this true? https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-
simply-connected)
Theorem 1: Fundamental Theorem of Line Integrals (line integral analogue of FTC): Let C be a
smooth curve joining the point A to the point B in the plane or in space and parametrized by

r(t). Let f be a differentiable function with a continuous gradient vector /' = V f on a domain
B

B
D containing C'. Then/ ﬁ-dfz/ Vf-dr=f(B)— f(A)

A
d dr = dr
d{; =Vf- —T =F- dT Wthh is equal to integrand of normal curve; then use FTC
f

on this to show that/ F.di= —dt = f(B) — f(A)
Theorem 2: Conservative Fields are Gradient Fields: Let F (x,y, z) be a vector field whose
components are continuous throughout open connected region D in space. Then Fis
conservative < Fisa gradient field V f for a differentiable function f.
o Proof: F =V f= F is conservative is easy to prove because of Theorem 1: the integral
over a gradient field is only dependent on the endgomts (therefore conservative)

o Proof:

u.

o Proof: F is conservative = F = V f: Show that of _ = M, same with other components

ox
(see p.923)
Theorem 3: Loop Property of Conservative Fields: Equivalency of the statements:

o ]{ F.di" = 0 around every loop in D
c

—

o F'is conservative on D .
© (these in turn are equivalent to F' = V f) . R ) R
Component Test for Conservative Fields: Let vector field F' = Mi + Nj + Pk on simply

connected domain whose component functions have continuous first partial derivatives. Then F’

conservative IFF ON = or —M or , an oM = ON
9z Oy 0z Oz oy  Ox

o Proof that these equations work (but not why they imply conservative-ness): write

F = a—fz —|— i+ ZLk , then solve for — and other partial derivatives
ox oy 0z 0z

0
Finding potential functions: Once it is known that a field is conservative, then 6_f = M (and
i

same for other components); differentiate to get components of f (i.e.,
f= /de%+/Ndy§'+/sz/%)

Exact differential forms: Mdx + Ndy + Pdz is an expression in differential form. It is exact if
it is the total differential of some scalar function f over domain D. A differential can be
checked for exactness just like component test for conservative fields

o If line integral over conservative field written in differential form / Mdx + Ndy + Pdz,

can compute using method above for conservative fields


https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-simply-connected
https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be-simply-connected

16.4. Green’s Theorem in the Plane

_ . . - OM ON
* The divergence (flux density) of a vector field ' = Mi+ Nj at (z,y) is divF = . + m
x Yy

© Derivation: p. 932

o Physical interpretation: similar to “expansion at a point”: if larger vectors out than in, then
positive divergence; if not, negative divergence; basically flux in an infinitesimal area
(hence “flux density”)

«  The circulation density (k-component of curl, curlF’ - k) of F at point (x,y) is — — —

©  k-component of the more general circulation field
o Denotes spin (positive circulation density means counterclockwise) at a point

* Examples of divergence and circular density of certain vector fields:

—

o Uniform expansion/compression: F' = czi + cyj constant divergence, no circulation
density

© Uniform rotation: F' = —cyﬂ- ca:f 0 divergence, constant circulation density

o Shearing flow: F = yi 0 divergence, constant circulation density
-y
xr2 + y2

o Whirlpool: F = i+ — - 23’ 0 divergence, O circulation density
r°+y

¢ Green’s Theorem:

o Theorem 4: Green’s Theorem (Flux-Divergence or Normal Form): Let C be a piecewise
smooth, simple closed curve enclosing a region R in the plane. Let F be a vector field in the
plane, with components having continuous first partial derivatives in open region containing
R. Then outward flux of F' across C is:

M N
7{ Ffids = 7{ Mdy — Ndx = // 0 + 8—d$dy, or the double integral of the

divergence of the field over the region enclosed bV the curve.

=  Makes sense — integrate “flux density” over a region to get flux

=  To remember this integral, think right side as “normal” integral of partials, left side as
switch sign and multiply by dzdy

© Theorem 5: Green’s Theorem (Circulation-Curl or Tangential Form): (Same conditions as
first part). Then ccw circulation is:

fF Tds—j{ Nd1/+Md:1:—// 3_N_8_dedy

= Integrate “circulation density” over a region to get circulation



=  To remember this integral, think of left side as “normal line integral”, think of right side
as switch sign and divide by d:z:dy

o Takmg flux (Thrn 4) of G, = — M gives circulation, taking circulation (Thm. 5) of
Go=—Ni+ Mj J gives flux, so closely related; either can be used to solve some problems
by interchanging M and N (see p. 938)

©  Proof on p. 939

o Can be used on any plane with a simply connected region, and also for some non-simply
connected regions if same orientation of curves (see p. 940)

1
* Reverse Green’s Theorem to find area: AreaR = 2 f xdy — ydx

oM 1
o Derivation: Area = // dydr = // + dydx —]{ —xdy — —ydw (ora— = -,

oN _1,
oy 2

O |

16.5. Surfaces and Area
«  Parametrization of a surface: 7(u,v) = f(u,v)i + g(u,v)j + h(u,v)k

* A parameterized surface 7(u, v) is smooth if 7, and 7, are continuous and 7, X 7, are never 0
in the interior of the domain.

e The area of a smooth surface is A = // [T X 7y |dudv = // do
R R

* For an implicit surface F'(x,y, z) = c over closed and bounded region, assume V F' # 0,
VF -p # 0 (p is unit vector normal to plane “shadow,” so never folds back on itself), and

smooth
[VF|
do = dxdy
[VE - pl
o surface area of an implicit function is do = dA, where p' normal to R,
R IVF - pl

VE-7#0

* do = /[2+ f2+ 1dxdy, for surface defined by z = f(z,)

16.6. Surface Integrals

* The surface integral of a scalar function f(z,y, z) is / f(z,y, z) do, where do is one of the
S

differential forms from 16.5



¢ Qrientation of a surface

o A smooth surface S is orientable or two-sided if it is possible to define a field 77 of unit
normal vectors on S that varies continuously with position

=  Smooth closed surfaces are orientable
= 73, by convention, points outwards from a closed surface

= The Mobius band is not orientable

. Fluxz//ﬁ~ﬁd0
S

© Can be positive or negative depending on orientation (not very important)

o For a surface given parametrically, flux is

X
// \:ux:v| ]ruxrv\dudv—// (Fy X 7)) dudv
S u v

L . = Vg |Vyg| Vg
o For a surface given implicitly, flux is: / / F.— = / / dA
s Vgl [Vg-pl Vg - Pl

* Applications of surface integrals

© Same as 1D, 2D analogues, replace integral with / / and delta with do
S

16.7. Stokes’ Theorem

e LetSbea p1ecew1se smooth surface having a piecewise smooth boundary C'. Let
F=Mi+Nj J+ Pl be a vector field whose components have continuous first partial
derivatives on an open region containing .S. Then the circulation of F around C in the direction
counterclockwise wrt unit normal vector 71 is V x F - 7 over S.

o ]{ﬁ-dfz//vXﬁ-ﬁda
C S

» If two different oriented surfaces have the same boundary, they have the same curl integral

* For a two-dimensional field (Green’s Theorem):

o 7{ F.drf= // V x F-kdA (i.e., the l%-cornponent of curl)
c R

1 =
% F-dr
rea Jo
* Circulation over a curve is the flux of the curl across a surface bounded by that curve, as long as

the curves are traced in the same orientation (i.e., all curves have the surface to the left of them

e curlgrad f=0,0rVxVf=0

= V x F -k is the new circulation density, is equal to




* For a simply-connected open region D, V X F=0= ]{ F x di = 0 = field is conservative
c

over D

16.8. Divergence Theorem

¢ Divergence Theorem: // F.fdo = // V. Fdv
s D

. 2 A ]%
+ Forthefield F = LXMW e
p

o For any region between two spherical shells, / / V-FdV =0
D

o For any sphere, flux is 47

* Gauss’s Law: for any region encompassing the origin, / / E -fido ==+ (p. 979)
S

- 0)
* Continuity equation of hydrodynamics: V - F' + Tl 0 (p. 979)

* Unifying Fundamental Theorem: the integral of a differential operator acting on a field over a
region equals the sum of the field components appropriate to the operator over the boundary of
the region



