LINE AND SURFACE INTEGRALS MA113 TEST 2 EQUATION SHEET/OUTLINE

16.1. Line Integrals

- If a curve *C* is smooth for $a \le t \le b$, then line integral over *C* exists
- To evaluate a line integral given as a parametric function of *x*, *y*, *z*

$$\int_C f(x, y, z)ds = \int_a^b f(g(t), h(t), k(t)) |\vec{v}(t)|dt$$

• Applications for objects defined along a curve:

• Mass:
$$\int_C \delta ds$$

- First moments and COM: $M_{yz} = \int_C x \delta ds$, $\bar{x} = \frac{M_{yz}}{M}$, same with other moments and COM
- Moments of inertia: $M_x = \int_C (y^2 + z^2) \delta ds$, same with other moments of inertia
- For a line integral on a plane (flat), line integral may be interpreted as the area of the "wall" created along the curve with a height f(t), where f(t) is the integrand
- If piecewise smooth function curve made of finite smooth curves, line integral over entire curve is equal to the sum of the line integrals of the curves
- Value of the line integral may be path-dependent

16.2. Vector Fields and Line Integrals: Work, Circulation, and Flux

- A vector field is a function that assigns a vector to each point on its domain, e.g., $\vec{F}(x, y, z) = M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{k}$
 - Continuous if component functions continuous, differentiable if component functions differentiable
- <u>Gradient field</u> is field of gradient vectors, shows direction of greatest increase of f

• i.e.,
$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$$

- Line integral of a curve in a vector field has the integrand being the scalar tangential component of *F* along *C*, or $\vec{F} \cdot \vec{T} = \vec{F} \cdot \frac{d\vec{r}}{ds}$, so $\int_C \vec{F} \cdot \vec{T} ds = \int_C \vec{F} \cdot \frac{d\vec{r}}{ds} ds = \int_C \vec{F} \cdot d\vec{r}$
 - To evaluate a line integral of a $\vec{F}(x, y, z)$ along $\vec{r}(t)$, express \vec{F} in terms of t (i.e., $\vec{F}(x, y, z) \rightarrow \vec{F}(\vec{r}(t))$ by substituting functional components of \vec{r} into functional components of \vec{F}) find $\frac{d\vec{r}}{dt}$, and evaluate $\int_C \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$
- If vector field \vec{F} only has single component, then can express line integral wrt one coordinate
 - Define line integral of a function wrt one coordinate: $\int_C M(x, y, z) dx \equiv \int_C \vec{F} \cdot d\vec{r}$, where \vec{F} only contains the *x* component function *M*.

•
$$\int_C M(x, y, z)dx + \int_C N(x, y, z)dy + \int_C P(x, y, z)dz = \int_C Mdx + Ndy + Pdz$$
 (i.e., sum of component line integrals is the total line integral)

- Applications of line integrals:
 - $W = \int_C \vec{F} \cdot \vec{T} ds$ (work is a regular line integral, \vec{F} is force vector field • Flow = $\int_C \vec{F} \cdot \vec{T} ds$, \vec{F} is velocity vector field (usually of a fluid)

• If the curve is closed (starts and ends in the same place, called <u>circulation</u>

• Flux = $\int_C \vec{F} \cdot \vec{n} ds$, *C* is a <u>simple</u> (non-overlapping) <u>closed curve</u>, \vec{F} is some field (fluid's velocity field, electric field, magnetic field), \vec{n} is outward-pointing normal vector

- Be careful about the signs: if curve traveling counterclockwise, then $\vec{n} = \vec{T} \times \hat{k}$, else switch order of vectors
- For a closed curve counter-clockwise in the *x*-*y* plane, flux is $\oint_{C} Mdy Ndx$

Summary of ways to indicate a line integral:

TABLE 16.2 Different ways to write the work integral for $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ over
the curve $\mathcal{C}: \mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$, $a \le t \le b$ $\mathbf{W} = \int_C \mathbf{F} \cdot \mathbf{T} \, ds$ The definition $= \int_C \mathbf{F} \cdot d\mathbf{r}$ Vector differential form $= \int_a^b \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} \, dt$ Parametric vector evaluation $= \int_a^b \left(M \frac{dx}{dt} + N \frac{dy}{dt} + P \frac{dz}{dt} \right) dt$ Parametric scalar evaluation $= \int_C M \, dx + N \, dy + P \, dz$ Scalar differential form

16.3. Path Independence, Conservative Fields, and Potential Functions

- \vec{F} is a vector field defined in open region D in space; if for any two points A and B in D the line integral $\int_{A}^{B} \vec{F} \cdot d\vec{r}$ has the same value for any path, then the integral is <u>path independent</u> in D and \vec{F} is <u>conservative</u> on D
 - Can represent integral with limits \int_{A}^{B} instead of \int_{C} to indicate path-independence
- If \vec{F} is a vector field defined on D and $\vec{F} = \nabla f$ for some scalar function f on D, then f is called a <u>potential function</u> for \vec{F}
 - \vec{F} is conservative \iff it is the gradient field of a potential function (see Theorem 2 below)
 - e.g., a gravitational potential is a scalar function whose gradient field is a gravitational field, same for electric potential, so gravitational and electric fields are conservative
- Assumptions necessary for conservative fields
 - Curves must be piecewise smooth (finitely-many smooth pieces connected end-to-end)
 - *D* is <u>simply connected</u> (every loop can be contracted to single point in *D* without ever leaving *D*)

- *D* is <u>connected</u> (two points in *D* can be connected without leaving *D*) 0
 - Note that simple-connectedness and connectedness do not imply one another (why is this true? https://math.stackexchange.com/questions/729551/can-a-disconnected-set-be*simply-connected*)
- Theorem 1: Fundamental Theorem of Line Integrals (line integral analogue of FTC): Let *C* be a smooth curve joining the point A to the point B in the plane or in space and parametrized by r(t). Let *f* be a differentiable function with a continuous gradient vector $F = \nabla f$ on a domain

D containing *C*. Then $\int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} \nabla f \cdot d\vec{r} = f(B) - f(A)$ • Proof: $\frac{df}{dt} = \nabla f \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt}$, which is equal to integrand of normal curve; then use FTC on this to show that $\int_{C} \vec{F} \cdot d\vec{r} = \int_{A}^{B} \frac{df}{dt} dt = f(B) - f(A)$

- Theorem 2: <u>Conservative Fields are Gradient Fields</u>: Let $\vec{F}(x, y, z)$ be a vector field whose components are continuous throughout open connected region D in space. Then \vec{F} is conservative $\Leftrightarrow \vec{F}$ is a gradient field ∇f for a differentiable function f.
 - Proof: $\vec{F} = \nabla f \Rightarrow \vec{F}$ is conservative is easy to prove because of Theorem 1: the integral over a gradient field is only dependent on the endpoints (therefore conservative)
 - Proof: \vec{F} is conservative $\Rightarrow \vec{F} = \nabla f$: Show that $\frac{\partial f}{\partial x} = M$, same with other components
 - (see p.923)
- Theorem 3: <u>Loop Property of Conservative Fields</u>: Equivalency of the statements:
 - $\circ \quad \oint_C \vec{F} \cdot d\vec{r} = 0 \text{ around every loop in } D$
 - \vec{F} is conservative on D
- (these in turn are equivalent to $\vec{F} = \nabla f$) <u>Component Test for Conservative Fields</u>: Let vector field $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ on simply connected domain whose component functions have continuous first partial derivatives. Then \vec{F} conservative IFF $\frac{\partial N}{\partial z} = \frac{\partial P}{\partial y}, \frac{\partial M}{\partial z} = \frac{\partial P}{\partial x}$, and $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
 - Proof that these equations work (but not why they imply conservative-ness): write $\vec{F} = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial u}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$, then solve for $\frac{\partial N}{\partial z}$ and other partial derivatives
- Finding potential functions: Once it is known that a field is conservative, then $\frac{\partial f}{\partial x} = M$ (and same for other components); differentiate to get components of *f* (i.e.,

$$f = \int M dx \hat{i} + \int N dy \hat{j} + \int P dz \hat{k})$$

- Exact differential forms: Mdx + Ndy + Pdz is an expression in <u>differential form</u>. It is exact if ٠ it is the total differential of some scalar function f over domain D. A differential can be checked for exactness just like component test for conservative fields
 - If line integral over conservative field written in differential form $\int_{\Omega} M dx + N dy + P dz$, 0 can compute using method above for conservative fields

16.4. Green's Theorem in the Plane

- The <u>divergence</u> (flux density) of a vector field $\vec{F} = M\hat{i} + N\hat{j}$ at (x, y) is $\operatorname{div}\vec{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}$
 - Derivation: p. 932
 - Physical interpretation: similar to "expansion at a point": if larger vectors out than in, then positive divergence; if not, negative divergence; basically flux in an infinitesimal area (hence "flux density")
- The <u>circulation density</u> (k-component of curl, curl $\vec{F} \cdot \hat{k}$) of \vec{F} at point (x, y) is $\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}$
 - *k*-component of the more general circulation field
 - Denotes spin (positive circulation density means counterclockwise) at a point
- Examples of divergence and circular density of certain vector fields:
 - $\circ~$ Uniform expansion/compression: $\vec{F}=cx\hat{i}+cy\hat{j}$ constant divergence, no circulation density
 - Uniform rotation: $\vec{F} = -cy\vec{i} + cx\vec{j}$ 0 divergence, constant circulation density
 - Shearing flow: $\vec{F} = y\vec{i}$ 0 divergence, constant circulation density
 - Whirlpool: $\vec{F} = \frac{-y}{x^2 + y^2}i + \frac{x}{x^2 + y^2}\hat{j}$ 0 divergence, 0 circulation density
- Green's Theorem:
 - Theorem 4: <u>Green's Theorem (Flux-Divergence or Normal Form</u>): Let *C* be a piecewise smooth, simple closed curve enclosing a region *R* in the plane. Let \vec{F} be a vector field in the plane, with components having continuous first partial derivatives in open region containing *R*. Then outward flux of \vec{F} across *C* is:

$$\oint_C \vec{F} \cdot \vec{n} ds = \oint_C M dy - N dx = \iint_R \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} dx dy, \text{ or the double integral of the}$$
divergence of the field over the region enclosed by the curve.

- Makes sense integrate "flux density" over a region to get flux
- To remember this integral, think right side as "normal" integral of partials, left side as switch sign and multiply by *dxdy*
- Theorem 5: <u>Green's Theorem (Circulation-Curl or Tangential Form)</u>: (Same conditions as first part). Then ccw circulation is:

$$\oint_C \vec{F} \cdot \vec{T} ds = \oint_C N dy + M dx = \iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} dx dy$$

Integrate "circulation density" over a region to get circulation

- To remember this integral, think of left side as "normal line integral", think of right side as switch sign and divide by *dxdy*
- Taking flux (Thm. 4) of $\vec{G_1} = N\hat{i} M\hat{j}$ gives circulation, taking circulation (Thm. 5) of $\vec{G_2} = -N\hat{i} + M\hat{j}$ gives flux, so closely related; either can be used to solve some problems by interchanging M and N (see p. 938)
- Proof on p. 939
- Can be used on any plane with a simply connected region, and also for some non-simply connected regions if same orientation of curves (see p. 940)
- <u>Reverse Green's Theorem to find area</u>: Area $R = \frac{1}{2} \oint x dy y dx$

• Derivation: Area =
$$\iint dy dx = \iint \frac{1}{2} + \frac{1}{2} dy dx = \oint \frac{1}{2} x dy - \frac{1}{2} y dx$$
 (or $\frac{\partial M}{\partial x} = \frac{1}{2}$,
 $\frac{\partial N}{\partial y} = \frac{1}{2}$)

16.5. Surfaces and Area

- Parametrization of a surface: $\vec{r}(u, v) = f(u, v)\hat{i} + g(u, v)\hat{j} + h(u, v)\hat{k}$
- A parameterized surface $\vec{r}(u, v)$ is smooth if \vec{r}_u and \vec{r}_v are continuous and $\vec{r}_u \times \vec{r}_v$ are never 0 in the interior of the domain.
- The <u>area</u> of a smooth surface is $A = \iint_R |\vec{r_u} \times \vec{r_v}| du dv = \iint_R d\sigma$
- For an implicit surface *F*(*x*, *y*, *z*) = *c* over closed and bounded region, assume ∇*F* ≠ 0,
 ∇*F* · *p* ≠ 0 (*p* is unit vector normal to plane "shadow," so never folds back on itself), and smooth

$$\circ \quad d\sigma = \frac{|\nabla F|}{|\nabla F \cdot \vec{p}|} dx dy$$

• <u>surface area of an implicit function</u> is $\iint_R d\sigma = \frac{|\nabla F|}{|\nabla F \cdot \vec{p}|} dA$, where \vec{p} normal to R, $\nabla F \cdot \vec{p} \neq 0$

• $d\sigma = \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy$, for surface defined by z = f(x, y)

16.6. Surface Integrals

• The surface integral of a scalar function f(x, y, z) is $\iint_S f(x, y, z) d\sigma$, where $d\sigma$ is one of the differential forms from 16.5

- Orientation of a surface
 - A smooth surface *S* is <u>orientable</u> or <u>two-sided</u> if it is possible to define a field \vec{n} of unit normal vectors on *S* that varies continuously with position
 - Smooth closed surfaces are orientable
 - \vec{n} , by convention, points outwards from a closed surface
 - The Mobius band is not orientable

• Flux =
$$\iint_S \vec{F} \cdot \vec{n} \, d\sigma$$

- Can be positive or negative depending on orientation (not very important)
- For a surface given parametrically, flux is

$$\iint_{S} \vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{|\vec{r}_{u} \times \vec{r}_{v}|} |\vec{r}_{u} \times \vec{r}_{v}| \, du \, dv = \iint_{S} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv$$

• For a surface given implicitly, flux is: $\iint_{S} \vec{F} \cdot \frac{\nabla g}{|\nabla g|} \frac{|\nabla g|}{|\nabla g \cdot \vec{p}|} = \iint_{S} \vec{F} \cdot \frac{\nabla g}{|\nabla g \cdot \vec{p}|} dA$

Applications of surface integrals

$$\circ$$
 Same as 1D, 2D analogues, replace integral with \iint_S and delta with $d\sigma$

16.7. Stokes' Theorem

• Let *S* be a piecewise smooth surface having a piecewise smooth boundary *C*. Let $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ be a vector field whose components have continuous first partial derivatives on an open region containing *S*. Then the circulation of \vec{F} around *C* in the direction counterclockwise wrt unit normal vector \hat{n} is $\nabla \times \vec{F} \cdot \hat{n}$ over *S*.

$$\circ \quad \oint_C \vec{F} \cdot d\vec{r} = \iint_S \nabla \times \vec{F} \cdot \hat{n} \, d\sigma$$

- If two different oriented surfaces have the same boundary, they have the same curl integral
- For a two-dimensional field (Green's Theorem):

•
$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R \nabla \times \vec{F} \cdot \hat{k} \, dA$$
 (i.e., the \hat{k} -component of curl)
• $\nabla \times \vec{F} \cdot \hat{k}$ is the new circulation density, is equal to $\frac{1}{\text{Area}} \oint_C \vec{F} \cdot d\vec{r}$

• Circulation over a curve is the flux of the curl across a surface bounded by that curve, as long as the curves are traced in the same orientation (i.e., all curves have the surface to the left of them

• curl grad
$$f = \vec{0}$$
, or $\nabla \times \nabla f = \vec{0}$

• For a simply-connected open region D, $\nabla \times \vec{F} = \vec{0} \Rightarrow \oint_C \vec{F} \times d\vec{r} = 0 \Rightarrow$ field is conservative over *D*

16.8. Divergence Theorem

- <u>Divergence Theorem</u>: $\iint_{S} \vec{F} \cdot \hat{n} \, d\sigma = \iiint_{D} \nabla \cdot \vec{F} \, dV$
- For the field $\vec{F} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\rho^3}, \rho = \sqrt{x^2 + y^2 + z^2}$
 - \circ ~ For any region between two spherical shells, $\iiint_D \nabla \cdot \vec{F} \, dV = 0$
 - \circ $\;$ For any sphere, flux is 4π
- Gauss's Law: for any region encompassing the origin, $\iint_S \vec{E} \cdot \vec{n} \, d\sigma = \frac{q}{\epsilon_0}$ (p. 979)
- Continuity equation of hydrodynamics: $\nabla \cdot \vec{F} + \frac{\partial \delta}{\partial t} = 0$ (p. 979)
- Unifying Fundamental Theorem: the integral of a differential operator acting on a field over a region equals the sum of the field components appropriate to the operator over the boundary of the region