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15.1: Multiple Integrals

* Partition a rectangular region R into small n rectangles in the x and y direction. Each
subrectangle R; has dimensions (Axz, Ay) and area AA = AxzAy. Then, sum of values is
n

Sp = EE:.f(JUcayk)1314
k=1
* limit of S,, is the double integral: | 11|m Sp = / / flx,y)dA = / f(x,y)dxdy
P
* value of double integral can be interpreted as Volume under surface z = f(z,y)
* Fubini’s theorem states that double integrals can be evaluated as iterated integrals (in either
order) for rectangle R : x € [a,b],y € [c, d]

/fmydA //fxydydx—//fxydmdy

15.2: Double Integrals over General Regions
* Fubini’s theorem for functional limits (m one dimension):

g2 ()
o ForR:x € [a,b],y € [g1(x /nydA // f(z,y)dydx
a Jgi(x)

ha(y)

o ForR:x € [hi(y), ha(y)],y € [c,d]: //fxydA // f(z,y)dzdy
ha(y)

* Sometimes it’s easier to evaluate double 1ntegrals when order of integration is reversed: to do
this, draw the region and express the limits as a function of the other variable.

* Properties of double integrals: scalars can be taken out, sum/difference is distributive over
integration, domination of one integral over another if the first’s integrand is greater for every
value in the domain than the second’s integrand, and additivity of integrals into the union of
their regions if their regions are mutually exclusive.

15.3: Area by Double Integration
* The area of a closed, bounded plane region R is / / dA (literally sum of the area differentials)

R
dA
total value }fgf flz.y)

* Average value of f over R: —tal sron. = A

15.4: Double Integrals in Polar Form




Partition a polar region into sectors of angle A#, and then partition sectors into subregions of
length Ar. Each subregion can be approximated with an area of length »Af and width Ar.

Thus, S,, = Zf T, Y )T A0.

r2(0)
lim S, = / f(r,0)dA = / f(r,0)rdrdf for R : 6 € [01,02],7 € [r1(8),72(8)].
I1Pll—0 1(0)

By Fubini’s theorern if 6 is bounded by functions of r (unlikely but possible), the limits of
integration can be switched. (And if both r and 6 are bounded by constants, the order of
integration doesn’t matter.)

Remember rules/tricks of changing polar equations to Cartesian ones:

o 12 = g2 4y

°© xz=rcosl,y=rsinf

° tanf = =

x

Polar equations can be used to solve equations that are given in Cartesian form but contain
. 2 2

some of the above equations, e.g., / / e” TV dA.

R

15.5: Triple Integrals in Rectangular Coordinates

Partition a solid into small rectangular prisms of dimensions Az, Ay, and Az. The volume of
each subspace is AV = AzAyAz. For a function f(x,y, z) defined over the space D,
n

Sp = 2{:.f($al/7z)13‘/'
Limit of S, is the triple integral // f(z,y,2z)dV = // f(z,y, z)dxdydz and can be
D

evaluated with an iterated integral.

Volume of a space D: / / / dA

g y=g2(z) pz=ha(z,y)
Using functional limits: / / / f(z,y, z)dzdydx
Yy z

z=a Jy=gi(z) Jz=hi(zy)
o i.e., successive limits of integration can be functions that depend on the variables of outer
integrals (same as double integral with Fubini’s theorem)
total value

JJJ @y, 2)dV
Average value of f(x,y, ) over D: otal volume = D TTTav
D

Triple integrals have same properties as double integrals.

15.6: Moments and Centers of Mass

Mass and moments analogous to one- and two-dimensional counterparts:

o Mass: M = ///a(a:,y,z)dm, o(x,y, z) is the density function

D
© Moment along x-axis: M,,, = / / / xo(x,y, z)dm, analogous for moments along y (M)

and z (M,,) axes



Yyz

* Center of mass in x direction: z = , analogous for COM in y and z directions

* Moment of inertia in one dimension: I = / r2dm, r = |r — Z|
1
© KEsh,a,ft - 5]602
o For an object D, moment of inertia about L is I;, = /// r2dm = /// r2o(x,y,2)dV, 1
D D

is distance of a point P(z,y, z)from L
© For two-dimensional plate, “polar moment” (moment about the origin) is

R

15.7: Triple Integrals in Cylindrical Coordinates
* A point in space can be represented in cylindrical coordinates P(r, 6, z):

o ris length of projection of 07% on the xy-plane

o @ is the angle between the projection of @ on the xy-plane and the x-axis
oz is the height of P (same as Cartesian coordinates)
* Constant parameter interpretations for function f(r, 6, z):
o Constant 7 means f lies on a circular cylinder
© Constant # means f lies on a plane parallel to the z-axis
o Constant z means f lies on plane parallel to the xy-plane
* For integral of space over cylindrical coordinates, partition first by angle 6, then by radius, then
by height. Each subspace D, is approximately a rectangular prism with dimensions

(rAf, Ar, Az) and volume V}, = rArA@0Az. The integral is /// f(r, 0, 2)rdrdodz.
JJ.

15.7: Triple Integrals in Spherical Coordinates

* A point in space can be represented in spherical coordinates P(p, 6, ¢):
°© pis HO_}%H
© @ is same as cylindrical coordinates

© ¢ is angle between @ and the z-axis
* Useful equations for spherical coordinates:
o r=psing
© x=psin¢cosh,y = psin¢psinf
°© z=pCoSQ
o p=+r2 12+ 22 =12+ 22
» Constant parameter interpretations for function f(p, 6, ¢):
© Constant p means f lies on a sphere
o Constant # means f lies on a plane
o Constant ¢ means f lies on a cone
* For integral of space over spherical coordinates, partition first by angle 6, then by radius, then
by ¢ . Each subspace Dj, is approximately a rectangular prism with dimensions

(pAb, pAg, Ap) and volume Vj, = p>ApAGA¢. The integral is ///f(p, 0, ¢)p*dpdfde.




