GLUCOSE MONITORING DEVICE

Peter Baccarella, Amy Leong, Catherine Chen, Vincent Wang, Jonathan Lam, Emily Yasharpour

Problem Formulation

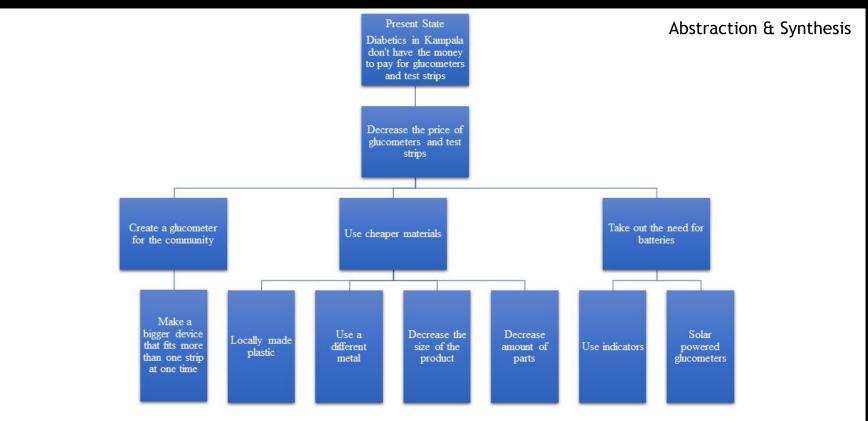
Objective / Background

Colorimetric test strips for diabetics in Kampala within constraints of <u>cost</u>, <u>manufacturability</u>, and <u>user-friendliness</u>

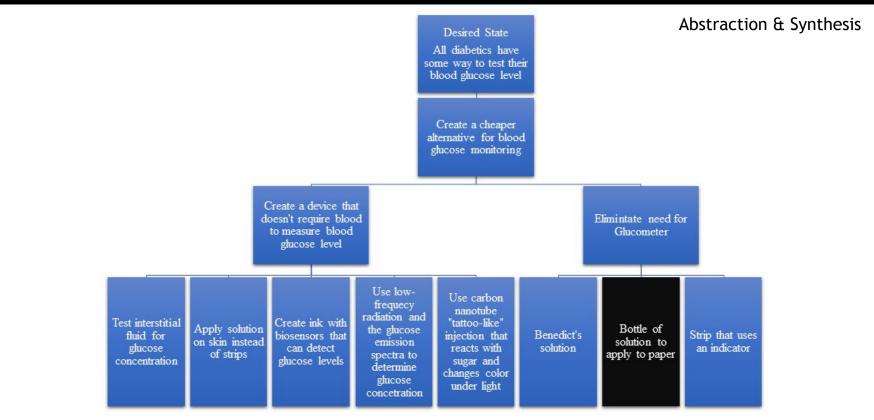
Needs Assessment

Background

Diabetic Prevalence and Diagnosed Diabetic Population



Average Household Income


Abstraction & Synthesis

Methodology/Solution

- Colorimetric test strips with emphasis on:
 - Different Enzymes & Indicators
 - □ Improved <u>Image Processing</u>
 - □ <u>RBC Separation</u>

Figure 1A: Duncker Diagram (Present State)

Figure 1B: Duncker Diagram (Desired State)

Abstraction & Synthesis

Proposed Design

<u>Indicators</u>:

■ Iodine-starch (control), Redox, Acid/base

Primary chemical reaction:

 Glucose oxidase, Benedict's and Fehling's solution, Yeast

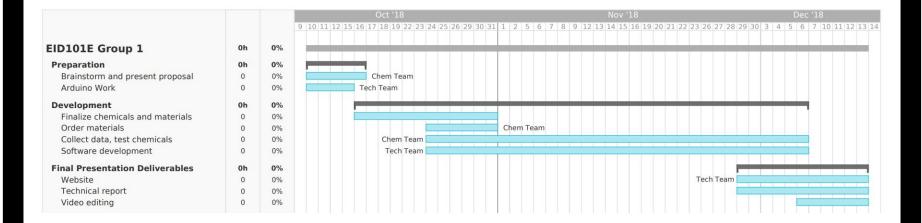
<u>Software</u>:

- Control (eliminate RBC color and lighting)
- Statistical analyses

Abstraction & Synthesis

Proposed Design

<u>Other improvements:</u>


Glass Fiber MeshDifferent Papers

<u>Models</u>:

- Glucose solutions
- Marker and paper optical calibration

Occam's Razor

Reject Glucometer for Test Strips
Reject Centrifuge for Glass Fiber Mesh

Figure 2.2A: GANTT Chart

Role	People
Leaders / Primary spokespeople	Vincent, Emily, Peter
Note-taking	Amy
Designing, modeling, prototyping (chemicals)	Catherine, Emily, Peter, Vincent
Designing, modeling, prototyping (data analysis and software)	Amy, Jon
Webmaster	Jon, Peter
Technical Report	Jon, Vincent, Catherine, Amy

Figure 2.2B: Primary Responsibility Chart

Analysis

Challenges

- Finding a <u>non-toxic</u>, <u>low-cost</u>, <u>locally</u> <u>sustainable</u> alternative chemical indicator
- <u>Accurately and reliably</u> analyzing the color to determine blood glucose concentration

References

Ofek, Yuval et al. "The Colorimetric Test Strip." *G Cubed Solutions*, Wix.com, 2017, https://minhtyyufa.wixsite.com/gcubedsolutions/the-strip. Accessed 1 Oct 2018.

Gebel, Erika. "Anatomy of a Test Strip." Diabetes Forecast, July 2012, www.diabetesforecast.org/2012/jul/anatomy-of-a-test-strip.html. Accessed 1 Oct. 2018.

"Glucometer Test Kit." How Products Are Made, www.madehow.com/Volume-7/GlucometerTest-Kit.html. Accessed 1 Oct. 2018.

Jensen, Sarah. "How Do Glucometers Work?" Mit Engineering, 18 Oct. 2011, engineering.mit.edu/engage/ask-an-engineer/how-do-glucometers-work/. Accessed 1 Oct. 2018.

Katz, Laurence B., Mike Grady, Steven J. Setford, and Brian L. Levy. "OneTouch Blood Glucose Monitoring Systems - Impact of New Technologies on the Efficacy of Self-monitoring Blood Glucose." (n.d.): n. pag. Print.