

8×8 Tron

Summer 2018 ECE 150 (Data Logic Design)
Professor Risbud
Final Project Report

Nathaniel Kingsbury
Jonathan Lam

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

0. Abstract

Our aim will be to build the classic arcade game Tron (from 1982). In this multiplayer game,
players move through an area and leave a trail behind themselves that acts as a wall. When a
player hits any trail (be it their own or some other player’s), they lose. Players are required to
move constantly, and all move approximately once per second. If a player moves to one edge of
the screen, they “wrap-around” to the other side of the screen. In our implementation, the screen
will be an 8X8 grid of bi-color (red/blue) LEDs. Each of the two players will be assigned a color
for their trail, and will be given a set of four buttons to change their direction of movement.
Every second, both players will move forwards in their current direction of movement. Players
will start out in predetermined locations for fairness. When one player hits a trail, the game will
shut off (the clock will stop and motion will end), and a “victory LED” will turn on in the color
of the winning player. If the two players enter the same spot on the same turn, or both hit a wall
at the same time, the game will end but no victory LED will light, which will signal a draw. A
“new game” button will be provided to reset the game and allow players to start over.

1: reference: http://www.cs.brandeis.edu/~pablo/tron/t1.html (“The opposite edges of the screen
communicate with each other.”)

8x8 Tron — ECE 150 Summer Final Project Page 1 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

1. Inventory

IC Chips
Count IC # Description
2 555 Timer
2 4013 Dual D-Type Flip-Flop
17 4015 Dual 4-Stage Static Shift Register With Serial Input/Parallel Output
5 4029 Presettable Up/Down Counter
1 4040 2-stage binary ripple counter
6 4051 Single 8-Channel Analog Multiplexer/Demultiplexer
1 4052 Dual 4:1 Analog Multiplexer/Demultiplexer
3 4053 Triple 2:1 Analog Multiplexer/Demultiplexer
2 4585 4-Bit Magnitude Comparator
3 4071 Quad 2-input OR gate
1 4081 Quad 2-in AND
1 4011 Quad 2-Input NAND Gate
1 4025 Triple 3-in NOR

Resistors and Capacitors
Count Value Description
1 1000µF Decoupling capacitor
3 0.1µF Signal-decoupling capacitor (prevents noise on a single signal, rather than on
power and ground)
4 0.22µFEdge-trigger capacitor
1 5.1kΩ Edge-trigger resistor
1 6.8kΩ Edge-trigger resistor
1 20kΩ Edge-trigger resistor (in parallel with 33kΩ resistor)
1 33kΩ Edge-trigger resistor (in parallel with 20kΩ resistor)
1 10kΩ Edge-trigger resistor
2 3.3µF 555 Timing Capacitor
2 .015µF555 Control Voltage Capacitor
1 470kΩ 555 timing resistor
1 910Ω 555 timing resistor
10 1kΩ Pull-down resistors (8) and 555 timing resistors (2)
16 20kΩ Pull-up resistor
65 470Ω Current-limiting resistor
65 430Ω Current-limiting resistor

8x8 Tron — ECE 150 Summer Final Project Page 2 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

Other Components
Count Description
9 Pushbutton
9 Breadboard
65 Bicolor (blue/red) 5mm LED
4 Ribbon Cable Header (14-wide)

2. Design and Methodology

2a. Explanation of design
In brief, our design works as follows: an approximately 1 Hz clock with a duty cycle of nearly
100% synchronizes all events. The falling edge of this clock triggers the counters in the players’
controllers to increment, and then the rising edge triggers the current coordinates to be written to
memory, and to be checked against the memory to determine when the game ends (i.e. to
determine if either player hit either trail). The brief delay between the falling and rising edges of
the clock is large enough to make sure that the counters have fully updated before any writing or
checking occurs, but is brief enough that it is not human-noticeable (so nobody will complain
that they pressed a button to change directions and the game didn’t respond).

The memory block consists of 8 8-bit shift registers and 3 muxes for each player (so a total of 16
shift registers and 6 muxes). Based on the y-coordinate of one player, the muxes select which
shift register is active in both player’s memory modules at once, by connecting that shift
register’s data in, Q8 (data out), and clock connected with the rest of the circuit (the inactive shift
registers get no clock signals, so they simply store data for future use, and control the display).
Hence, at any given time, corresponding shift registers in each player’s memory modules are
selected. Writing to memory and checking against memory is accomplished serially -- the rising
edge of the master clock triggers another super-fast clock to give 16 pulses really rapidly. For the
first 8 cycles, the first player’s y-coordinate is used to select shift registers, and for the second 8
cycles, the second player’s y-coordinate is used to select shift registers. Data is shifted cyclically
on each falling edge of the super-fast clock (i.e. whatever is in Q8 of a shift register appears on
that register’s data in) except for the shift register for the player whose coordinates are being
checked at the point corresponding with that player’s current x-coordinate, at which point a 1 is
fed into the data in regardless of the current contents of Q8. Because 8 clock pulses occur for
each player, in the end nothing has changed within the shift registers for either player, except for
the 1 bit that has been “written” into each memory bank. During this process, immediately before
writing to one player’s shift register, both players’ shift register data outputs are checked for a 1.

8x8 Tron — ECE 150 Summer Final Project Page 3 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

At that moment, seeing a 1 on Q8 of a player’s shift register signifies that that player has been in
that location. In that case, a 1 is stored to a win/loss flags register, where it triggers the master
clock to shut down. If the two players move to occupy the same spot simultaneously, a
comparator similarly ends the game.

During an endgame, a win/loss LED lights up with the color of the winning player. In the event
of a tie, there is no winner, so the game ends but the win/loss LED does not light. Pressing the
“reset” or “new game” button causes the counters in the controllers to preset, and all registers to
reset, causing the game to restart. See below for a verbal step-by-step in-depth explanation of the
design, including a description of what’s going on on the signal level with reference to how this
plays into the larger game state. Additionally, on page 16, a timing diagram providing a visual
representation of this information is given.

[0. Initial state]
When initially powered, the LEDs will appear lit in a random pattern, due to the
indetermination of the original states of the bits in the shift registers (in the flip flops).
Pressing the reset button will begin the game.

[1. Reset button pressed; rising edge of reset signal]
While the reset signal is high, all of the shift registers storing the LED states are reset,
clearing the board. The preset enables on the counters in the controllers go high, which
writes the starting positions to the controllers. Additionally, the win/loss shift register is
cleared, which enables the slower (1 Hz) master clock.

[2. Reset button released; falling edge of reset signal]
On the falling edge of the reset signal, the timing counter is reset, which enables the fast
clock to give 16 pulses to write the starting positions to the shift register banks.

[3. Wait for user input]
During this portion of the cycle, nothing dynamic occurs inside the game, save for the
charging of the timing capacitor on the master 555 timer. The purpose of this period of
time is to slow things down enough to allow for user input -- at any time, if the user
presses a directional button, it updates a pair of D-type flip-flops in their controller,
(potentially) changing which of their counters (x or y) is active, and whether it is in up
mode or down mode. This can occur anywhere in the cycle, as it is independent of the
rest of the circuit; however, in order to make things usable, this long period of time is
needed so that things don’t happen altogether too fast for informed user input.

[4. Falling edge of low-frequency clock pulse]

8x8 Tron — ECE 150 Summer Final Project Page 4 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

The falling edge of the low-frequency clock is used to indicate the beginning of each
player’s motion. This triggers the counters on the controllers to advance.

[5. Rising edge of low-frequency clock pulse]
An edge trigger on the rising edge of the low-frequency clock pulse sets the preset enable
pin of the countdown 4029 counter high, allowing the x-position of player one to be
inputted to the counter. The edge trigger is calibrated to last just long enough to overlap
the first rising edge of the high-frequency clock pulse.

[6. Rising edge of first high-frequency clock pulse -- “Read”]
On the first rising edge of the high-frequency clock, the 4029 preset with the x-coordinate
does not count down due to preset enable being held high. However, in any case, the
checking logic does check to make certain that there is nothing already in the position
currently being read. In the case where the x-coordinate that had been preset into the
4029 is a 0, this gets written into the win/loss shift register.

[7. Falling edge of first high-frequency clock pulse -- “Write/Shift”]
This falling edge is directed to the correct shift register’s clock, so that only the correct
rows in both memory modules are shifted. The data input to the shift register comes from
a 2:1 multiplexer that outputs a guaranteed logical 1 if the portion (group of 8 clock
cycles) of the update cycle corresponds with the “write” time for the player
corresponding with that memory bank (indicated by Q4 of a counter) and if the time
within the cycle is correct to do a writing (from the carry out of the down counter fed the
current player’s x-coordinate). When these conditions are not both true, the multiplexer
outputs the output of Q8 of the selected shift register otherwise. This writes a 1 into the
memory module at the correct coordinate position, and maintains all of the other bit
values.

[8. Rising edge of second fast clock signal until falling edge of sixteenth fast clock pulse]
The same rising-edge checking and falling-edge writing of data and shifting (from the
previous two steps) occur during these cycles. The one change is that the 4029 is allowed
to count down, such that it goes low on the nth rising edge of the high-frequency clock
(counting from 0). This way, on the nth rising edge, the output of the checking logic is
actually written to the endgame shift register.

[9. Rising edge of 4040 Q4 clock signal]
This happens concurrently with the falling edge of the eighth fast clock signal, as the
4040 counter is falling-edge triggered and Q4 goes from low to high on the eighth pulse.
The Q4 output is connected to the address pins of the two 4053 2:1 multiplexers to switch

8x8 Tron — ECE 150 Summer Final Project Page 5 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

the shifting and reading from player one to player two (changing “phase” from zero to
one; see PH input in 3b). While this is concurrent with Q4, the longer propagation delay
of a change in address to output update for the 4053 multiplexers than the propagation
delay of the shifting allows us to use the same edge to trigger both events and correctly
shift before changing phase. The preset enable of the 4029 countdown counter is set high
using an edge trigger on the rising edge of the 4040 Q4 clock signal, and calibrated to last
just past the rising edge of the next high-frequency clock pulse.

[10. Rising edge of the 4040 Q5 clock signal]
This happens concurrently with the falling edge of the sixteenth fast clock signal. This is
connected to the reset pin (pin 4) of the high-frequency clock timer, which stops the
shifting and writing, and stops the counter as well keeping the system in this state until
the master clock or reset button reset the 4040 and re-enable the fast clock. Assuming no
endgame conditions, this returns things to state 3.

[11. Endgame Conditions]
If at the end of the counting of the controllers, the x and y coordinates of each are the
same, or if at the end of the read/write cycle there is a 1 in the endgame shift register, the
game ends. (This is accomplished by NORing the two least significant outputs of the shift
register together with the output of a pair of comparators to create a unified “game over”
signal). There are a few stages to this -- a multiplexer connected to the “game over”
signal immediately holds the clock signal going to the counters low, to prevent any
spurious edges going to the counters from causing bugs. Additionally, the “game over”
signal goes to the reset pin of the master clock, shutting down the game in a more general
way until the reset button is pressed. At this point, a few other signals come into play --
the individual red and blue pins of the endgame LED go to the stages in the shift register
that signify one player’s loss, such that the LED lights red when blue loses, and lights
blue when red loses. Additionally, the common ground pin goes to an additional signal
that goes high during a tie, such that during a tie the game stops, but the LED simply
doesn’t light, regardless of the signals going to the red and blue independent LEDs.

[11. Falling Edge of master clock]
Return to step 3. This indicates that another second has passed, and the next move is
completed.

During the design process, we quickly found that it would be easiest to divide the problem into a
modular solution, so that the physical building process could be divided, each team member
would have a more specialized focus on a smaller project and have to worry about fewer
technicalities of modules they are not building (allowing quicker build times), modules could be

8x8 Tron — ECE 150 Summer Final Project Page 6 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

tested in isolation, and so that future revisions to the internals of any section can be done so long
as the outputs remain the same (i.e., modules are black-box abstractions).

2b. Modules
Name Count Description
Controller 2 includes interface for users and determines coordinates
Input management 1 selects correct controller inputs for writing and special tie
condition
Memory 2 stores previous locations of players
Write/Endgame detection 1 processes new inputs and checks for endgame conditions
Timing 1 includes timer ICs and manipulation of clock signals
Reset 1 signal to restart game

2c. Notes about final design
The wires are color-coded as follows (CLK, RST, and LED categories take priority):

Green CLK: oscillating timer signals, regular or inverted, from either 555 timer
White RST: directly connected to the reset button
Yellow Controller modules
Blue LED: blue LED on display; or

Input management module
Orange Memory module
Brown Write/Endgame detection module
Red LED: red LED on display; or

VCC
Black GND; or

Tie signal output (goes to ground pin of the bicolor win/loss LED)

The final design comprises nine breadboards and an LED display (solder protoboard), including
two controller breadboards connected to the other seven by ribbon cables. Each controller has the
four directional control buttons for its respective player, and the reset button is located on the
display. The ribbon cable allows a player some mobility with his or her controller.

3. Schematic

8x8 Tron — ECE 150 Summer Final Project Page 7 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

Because of the size and the modular design of the Tron machine, the schematic is split into its
modules. For each module described below, a table of module input and output signals, as well
as the source or destination modules of those signals, is provided. Every module is completely
standalone and can be unit-tested by supplying appropriate inputs and checking the module
outputs.

A single controller module and memory module schematic are provided below to reduce
redundancy. Each of these modules are duplicated, with slight changes in the copy of the
controller module (see the provided notes).

8x8 Tron — ECE 150 Summer Final Project Page 8 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3a. System

The diagram below displays the connections between every module.

8x8 Tron — ECE 150 Summer Final Project Page 9 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3b. Controller module

I/O Channel I/O Source or destination
RST in reset module RST output
CLK in timing module CTR output
X (CBA) out input management X inputs
Y (CBA) out input management Y inputs

Notes:
The schematic shown above is the controller for player one. The controller for player two is
identical, except for the following changes (which create a different starting position and
direction):

- Pin 9 (DATA 2) on the 4013 is connected to GND.
- Pins 13, 12, 6 (JAM inputs 3, 2, 1) on the right 4029 are connected to GND, VCC, GND,

respectively.

8x8 Tron — ECE 150 Summer Final Project Page 10 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3c. Input management module

I/O Channel I/O Source or destination
X (P1 CBA, P2 CBA) in controller module X outputs
Y (P1 CBA, P2 CBA) in controller module Y outputs
PH (phase) in timing module PH output
X (CBA) out write/endgame module JAM inputs
Y (CBA) out memory module ADR inputs
TD (tie detection) out write/endgame module TD input

8x8 Tron — ECE 150 Summer Final Project Page 11 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3d. Memory module

I/O Channel I/O Source or destination
ADR in input management module ADR outputs
RST in reset module RST output
WR (write) in write/endgame detection module WR output
CLK in timing module MEM output
RD (read) out write/endgame detection module RD input
LED out display LEDs

Notes:

- This is duplicated for the second player. The CLK, ADR, and RST inputs are the same.
- The LED output goes to an 8x8 array of bicolor LEDs. Every output from one memory

module is the same color. In our design, this was implemented on a solder protoboard.

8x8 Tron — ECE 150 Summer Final Project Page 12 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3e. Write/Endgame detection module

z
I/O Channel I/O Source or destination
CLK in timing module MEM output
CNT in timing module CNT output
COR in timing module COR (clock or reset) output
PH (phase) in timing module PH output
RST in reset module RST output
JAM (CBA) in input management JAM outputs
TD (tie detect) in input management TD output
RD (read) in memory module RD output
WR (read) out memory module WR input
END out timing module END input
TL1 out winner LED player 1 indicator
TL2 out winner LED player 2 indicator
TLN out winner LED cathode

8x8 Tron — ECE 150 Summer Final Project Page 13 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

3f. Timing module

I/O Channel I/O Source or destination
END in write/endgame detection module END output
MEM out memory module, write/endgame detection modules CLK input
CTR out controller module CLK input
COR out write/endgame detection COR (clock or reset) input
CNT out write/endgame detection CNT input
PH (phase) out write/endgame detection, input management PH input

3g. Reset module

I/O Channel I/O Source or destination
RST out controller, memory, write/endgame detection modules RST inputs

8x8 Tron — ECE 150 Summer Final Project Page 14 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

4. Timing Diagram

Selected signals essential to the general timing of the circuit are shown in the timing diagram
below.

Notes:

- Timing is not drawn to scale. Propagation delay between events may be exaggerated, and
transition (LOW-HIGH or HIGH-LOW) delays are not emphasized.

- The RST signal at the beginning of the timing diagram only happens at the beginning of
the game. After that, normal game operation is continued by the 1Hz clock signal, which
gets disabled at endgame.

- The meaning of the abbreviations RST, CTR, CNT, MEM, COR, and PH can be found in
the module schematics or the system schematic. The “preset enable on countdown 4029”
and “countdown 4029 carry out” refer to the 4029 counter used to count down to the
correct x position of a player (in the write/endgame detection module).

- On an endgame detection, TL1, TL2, or TD goes high, and the main clock is disabled.
The reset button must be pressed (a high pulse on the RST signal) to restart the game.

8x8 Tron — ECE 150 Summer Final Project Page 15 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

5. Media

Images

8x8 Tron — ECE 150 Summer Final Project Page 16 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

8x8 Tron — ECE 150 Summer Final Project Page 17 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

8x8 Tron — ECE 150 Summer Final Project Page 18 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

Link to video
https://drive.google.com/file/d/1CWRF6QlVLNOdmRWxrGb-mySU7Je7T2X5/view?usp=shari
ng

8x8 Tron — ECE 150 Summer Final Project Page 19 of 22

https://drive.google.com/file/d/1CWRF6QlVLNOdmRWxrGb-mySU7Je7T2X5/view?usp=sharing
https://drive.google.com/file/d/1CWRF6QlVLNOdmRWxrGb-mySU7Je7T2X5/view?usp=sharing

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

6. Debugging Process and Possible Future Extensions

Significant bugs
Listed below are a selection of bugs encountered during the construction of the project, and
which took a considerable amount of debugging time or a modification to the original design.

- The pull-down resistors on the clock signals within the memory module were too small,
leading to the clock signal going in between consistent HIGH and consistent LOW
instead of going truly HIGH. This led to inconsistencies while shifting, which were
eventually fixed by increasing the size of the pull-downs from 1 kΩ to 20 kΩ.

- The drop in voltage across power and ground caused by many LEDs being lit on the
display simultaneously when powered by a battery pack caused several
carefully-calibrated RC edge-detector circuits to fail. Switching to a power supply solved
the problem.

- The initial position (position of players when the game is reset) of the players was not
being written to the display, and therefore the LEDs at the starting position did not light
(and players didn’t lose when crashing into that spot), but pressing one of the direction
keys on the controller still influenced the de-facto starting position (the first LED to light
and first position to be written to). A NAND logic gate was added to also trigger writing
the players’ positions on the falling edge of the reset button.

- The 4029 counter determining when the offset in the selected shift register is correct was
counting one too many times, creating an incorrect offset when inputting data into the
shift registers. This required the observation that the edge triggers for the preset enable
pin of that counter had to be increased. Careful calibration by increasing resistor size
allowed for the preset enable to be HIGH for the correct amount of time.

- Inconsistencies with counters skipping controllers was fixed by adding decoupling
controllers between VCC and GND. Later on, future inconsistencies caused by noise in
the CLK signal to the controllers prompted the addition of small (0.1 µF) capacitors
between the CLK signal and GND to reduce noise.

- The initial endgame detection allowed the CLK signal to the controllers to return high,
creating another rising edge (and thus causing the players’ position to jump once on
endgame). A multiplexer, with one input tied to GND and the other to the CLK signal,
with its addresses connected to the endgame condition, was added to eliminate the last
rising edge.

- A glitch state caused noise in the address pin to the multiplexer described in the previous
bug, prompting a capacitor to be put between that address and GND to reduce the noise.

8x8 Tron — ECE 150 Summer Final Project Page 20 of 22

Nathaniel Kingsbury and Jonathan Lam
ECE 150 Summer 2018

Professor Risbud

- The zeroth-row LEDs were connected with shorter wires and with electrical tape. This
caused problems and required much time un- and re-soldering LED connections that
broke. (This is not a bug, but a time-consuming fix to the machine.)

Possible Extensions:
In future iterations of this project, better care should be taken to eliminate the flicker in the
LEDs. Because all eight LEDs are shifted (because the shift registers used had serial input), the
quick flashing may be distracting or unpleasant to view. This can be improved by using
parallel-load shift registers or using resistor-capacitor circuits.
Another possible improvement is that the machine can prevent users from turning back on
themselves, killing themselves immediately. This is usually disallowed by the machine in Tron
games, but we felt that it did not affect gameplay significantly (as the player can simply learn to
avoid trying to double-back) and didn’t include in our implementation. Additional “add-on”
extensions for a future implementation could also include a switch to enable or disable
wraparound, making the game “best two out of three,” and causing the master clock to speed up
as the game progresses (either every n ticks of the clock or with successive matches).

7. Acknowledgements

1. Professor Risbud, for approving and evaluating the project.
2. Dr. Brian Kingsbury, for (informally, as part of normal conversation) bouncing ideas back

and forth with Nathaniel as to the likely sources of bugs.

8x8 Tron — ECE 150 Summer Final Project Page 21 of 22

