

STATISTICAL ANALYSIS OF THE TIMES OF
DIFFERENT RUBIK'S CUBE SCRAMBLERS

Jonathan Lam

THE PROJECT

PROJECT OVERVIEW

e Rubik's cube solving is fun

e Speed-Rubik’s cube solving is more fun

e “Scramblers”: programs that provide a random scramble, time the
solve, and more

e Focusing only on the scrambles -- is there a difference?

Ruwix
TimerCG

EEETB

DL'F2B'U2DBULFB'RBUDR'UL'DL'

111
B.a0e 5

o

Ruwix

T gom e

1< Scramble length Session + 1)

scramble: L2R2 D2 B2D'R2B2R2 U2 DR'BL2B U RB R UL gotlastscramble

times (reet import:

o &

@[m

Session 1 X

current best
time
solve: 0/0
mean: DNF
time 205 ao12

qggTimer

WCA X3 | & last/n

R2 F2 L2 D2 F' D2 F2 D2 L2 F2UR B2 D' R' B L R" B2 U2

U.00

aos: -
ao12: -

bl

csTimer

SCRAMBLERS

% | Loks | EmalMsl

X3Cube) (__CubeS) (_SpeedCube) B

OCUBETimer.,

cubetimer.com ’- 00

it your (SEREAER) to statstop,

T See More

2 F L2 B [
v L R [} R2
B2 L v R2 u
2 4 R) u2 m i n e
B v 3 B D
New Scramble

RU2RDU'LD'F

£+ | Drawn Scramble

DLRU

THE PLAN

PROJECT PLAN

e time myself using scrambles from the scramblers

e create t-intervals for the times for every scrambler (6 tests)

e create t-tests for the difference of means between every two
scramblers (15 tests)

e run a chi-square homogeneity test on the times (1 test)

DATA COLLECTION

1. generate and save 50 random scrambles from each source

2. write a program that shows me a randomly chosen scramble of all
the random scrambles (but don’t show the scrambler)

3. time the scramble, and save with the others from the same
scrambler

4. repeat 2 & 3 until all scrambles are exhausted

let fs = require('fs');
// source: https://stackoverflow.com/a/12506613
var stdin = process.stdin;
stdin.resume();
stdin.setEncoding('utf8');
// on any data into stdin
stdin.on('data’', function(key) {
// ctrl-c (end of text)
if(key === '\u@@e@3') {
process.exit();
3/ if 'd' (delete) is nressed in state 2, delete last scramble
if(key 'd\ueeea’ state

)
iz:zﬁe REtlme not sav (9X§OO

generateScramble 0
¥
// when enter is pressed change state
if(key === '\ueeea') {

switch(state) {
case @: startTimer(); break;
case 1: endTimer(); break;
case 2: saveTime(); break;
}
state = (state + 1) % 3;
if(state === @) {
generateScramble();
}
}
1)
// source: https://stackoverflow.com/a/34970550
function clock(start) {
if(!start) return process.hrtime();
var end = process.hrtime(start);
return Math.round((end[0]*1000) + (end[1]/1000000));
}
// get data
let data = require('./scrambles.js');
// timer code
let state = 0, start, duration;
/**

* state = 1 means timer running

* state = 2 means waiting to save

*/

// start timer by beginning the duration
let startTimer = () => {

start = clock();
process.stdout.write('time started');

};

// end timer by getting duration and printing out the time
let endTimer = () => {
duration = clock(start);
process.stdout.write(duration/1000 + 's\n[d]elete? ');
s
// save time
let saveTime = () => {
// get scramble, remove from scrambles array
let scramble = data[scramblerIndex].scrambles.shift();
// save scramble locally
if(data[scramblerIndex].solved === undefined) {
data[scramblerIndex].solved = [];
¥
data[scramblerIndex].solved.push({
scramble: scramble,
duration: duration,
date: new Date().getTime()
s
// save scramble in file
fs.writeFile('./scrambles.js', “module.exports = ${ JSON.stringify(data, null, 2) };°, e => { if(e)
throw e });
15
// get a scramble and generate first scramble
let scramblerIndex;
let generateScramble;
(generateScramble = () => {
// disregard data with zero scrambles left
let filteredData = data.filter(scramblerData => scramblerData.scrambles.length > 0);
// choose random scrambler
scramblerIndex = data.map(scramblerData =>
scramblerData.name).indexOf(filteredData[Math.floor(Math.random() * filteredData.length)].name);
// display the first scramble from the chosen scramble
// format it so that multiple spaces are replaced with one
process.stdout.write('\n' + data[scramblerIndex].scrambles[0].replace(/\s+/g, ' ').trim());

HNOs

save time with
scrambler

display only
* state = @ means waiting to start the

scramble

THE TIMER

(the code)

choose
random
scrambler

Scramble: D R' B F2 R2B2F'" R2ZLU' R2D2BD2RF2L"F' R2F L2 F B2
Uu' F2
Time: 15523ms

Scramble: B2 D' L' UB' F2 R" UD2 L' F' L2 D' L2 B2 R" B' F D2 F D2 L'
B R2 B2
Time: 17232ms

Scramble: R2 B' F2 D2 F L2 F2 R'" L F2 B D F" U2 L UF2B2U"F R2D2 B2
Ul Fl
Time: 18951ms

(never see the scrambler name) T H E T I M E R

(what | see)

THE DATA AND MECHANICS

DATA!

Ruwix
csTimer
cubeTimer
qqTimer
mine (not random-state)

Block Keeper

18508,19802,17046,12521,18110,17893,16111,17069,17811,14780,14944,15219,20841,16004,17548,19191,14331,
14776,17776,17123,17984,17215,14821,14770,12088,18092,18179,13888,22141,18938,15704,16224,18208, 14658,
14350,18574,18810,19963,16436,14500,21465,18031,17063,19094,15328,16286,15715,17755,17998,17604

21527,16090,16121,19067,17365,18176,16230,13369, 17076, 16649, 18205, 18043, 19348,18390,18334,19616, 19657,
15319,16353,20489,18003,18602,17336,16294,17735,16670,18778,18555,14278,19161,17545,14921,15945, 18167,
16978,19787,18878,14813,19291, 18950, 16926,19277,17019, 15470, 16235,16623,15361,16139,17711,16456

18051,19179,18005,14741,20726,19110,13744,17996,16158,17187,22304,17786,18730,19133,22709,15167,19869,
16951,16905,15419,16529,17316,19639, 16158, 14825,13578,21659, 15330, 19667, 15204, 20024, 20110, 17446, 17789,
18866,16285,15482,17974,20252,20272,16958,17890, 16646, 16467,14249,17620,16699,19422,16272,16081

15729,18207,20934,21946,18151,17069,16971,15961,18737,16747,15408,12117,17421,15869,17921,16822, 17264,
18474,18957,19981,15945,17518,19506,18419,16927,19694, 18598, 15437,19704,17467,21481,15787,20975, 14805,
13865,19977,14706,17047,15269,14936,15469,15004,19174,17509,14299,13731,19007, 1458817806, 17094

18420,16905,16975,15965,17225,18394,17735,17775,18876,17204,16659,16195,19714,13781,20146,11272,17098,
18932,16824,14985,11582,18306,18847,17926,20014,17515,17821,19039,18209,18175,18256,17568,18138,17163,
18183,17417,18746,16646,19844,18196,20750,14874,16419,19052,19719,17708,17656,15323,18823,16642

23602,16596,15674,17163,16388,18423,21041,16706,17744,19304,16912,14614,20829,17385,17940,19439,17417,
16498,15714,21015,14795,15851,15100,14681,16667,17756,15847,16835,16131,15535,16776,16781,16811,19857,
16595,19413,17219,19623,15677,20465,20264,16371,20363, 18883, 16008, 14491,16727,20183,17227,17797

DATA!

Scrambler
Ruwix
csTimer
cubeTimer

qqTimer

mine (not random-state)

Block Keeper

[
12000 13600 15200 16800 18400 20000 21600 23200
Histogram (Frequency Diagram)

Frequency

8
6
44
2
0

13000 14300 15600 16900 18200 19500 20800 22100
Histogram (Frequency Diagram)

Frequency

Mean
16985.72
17466.56
17651.58
17248.60
17512.74
17542.66

Histogram (Frequency Diagram)

Frequency

SD
2149.81
1685.43
2158.61
2174.67
1880.30
2021.24

[
12000 13500 15000 16500 18000 19500 21000 22500
Histogram (Frequency Diagram)

Frequency

Outliers/Gaps/Skew?

three left outliers

slight skew right

0
11000 12500 14000 15500 17000 18500 20000 21500
Histogram (Frequency Diagram)

0
14000 15400 16800 18200 19600 21000 22400 23800
Histogram (Frequency Diagram)

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Conditions
e |Independence assumption: It can be assumed that the times of
different solves are mutually independent of one another.

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Conditions
e |ndependence assumption: It can be assumed that the times of
different solves are mutually independent of one another.
e Randomization condition: The scramblers were randomly assigned
by a program.

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Conditions
e |ndependence assumption: It can be assumed that the times of
different solves are mutually independent of one another.
e Randomization condition: The scramblers were randomly assigned
by a program.
e 10% condition: 50 solves is less than 10% of all possible scrambles
using this scrambler.

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Conditions

e |ndependence assumption: It can be assumed that the times of
different solves are mutually independent of one another.

e Randomization condition: The scramblers were randomly assigned
by a program.

e 10% condition: 50 solves is less than 10% of all possible scrambles
using this scrambler.

e Nearly Normal condition: A histogram of the data appears nearly
Normal (unimodal and roughly symmetric), and the
sample size is large.

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Mechanics

X =16985.72

df = n-1 =49

t,,* =2.0095

SE = SD/4/(n) = 2149.81/4/(50) = 304.03

CL=X= t49* x SE =16895.72 + 2.0095 x 304.03 = (16284, 17172)

T-INTERVAL (RUWIX, 95% CONFIDENCE)

Mechanics

X =16985.72

df = n-1 =49

t,,* =2.0095

SE = SD/4/(n) = 2149.81/4/(50) = 304.03

CL=X= t49* x SE =16985.72 + 2.0095 x 304.03 = (16374, 175906)

Interpretation
We are 95% sure that the true mean for my solves using a scramble from
the Ruwix scrambler is between 16.374 and 17.596 seconds.

95% CONFIDENCE T-INTERVALS (SUMMARY)

Ruwix: (16374, 17596)
csTimer: (16988, 17940)
cubeTimer: (17038, 18265)
ggTimer: (16631, 17867)
mine: (16978, 18047)

Block Keeper: (16968, 18117)

Histogram (Frequency Diagram)

0
12000 13500 15000 16500 18000 19500 21000 22500

A

T-TEST FOR THE DIFFERENCE OF MEANS

Hypotheses:

Null Hypothesis (H): There is no statistical difference between the
Mmeans of the solve times of Ruwix and csTimer scrambles.

Alternate Hypothesis (H)): There is a statistical difference between the
means of the solve times of Ruwix and csTimer scrambles.

T-TEST FOR THE DIFFERENCE OF MEANS

Conditions:

Independence Assumption (already checked)

Nearly Normal Assumption (already checked)

Independent Groups Assumption: The times from one scrambler are
independent of the times from another scrambler.

T-TEST FOR THE DIFFERENCE OF MEANS

Mechanics:

X, =16985.72; X, = 17466.56; X, - X, = -480.84

df =92.72 (from calculator)

SE(x, - x,) = V/(var(x,)/n, + var(x,)/n,) = 1/(2149.81°/50+1685.43%/50) = 386.33
to, ., = (-480.84 - 0) / 386.33 = -1.244

9272
p=P(t <-1.244 U t >1.244) = 0.2164

92.72 92.72

T-TEST FOR THE DIFFERENCE OF MEANS

Mechanics:

X, =16985.72; X, = 17466.56; X, - X, = -480.84

df =92.72 (from calculator)

SE(x, - x,) = V/(var(x,)/n, + var(x,)/n,) = 1/(2149.81°/50+1685.43%/50) = 386.33
to, ., = (-480.84 - 0) / 386.33 = -1.244

9272
p=P(t <-1.244 U t >1.244) = 0.2164

92.72 92.72

Conclusion:

Since the p-value is greater than the alpha-level of 0.05, we fail to reject
the null hypothesis. Therefore, there is no evidence of a statistical
difference between the means of the Ruwix and csTimer solve times.

T-TEST FOR TWO MEANS (SUMMARY)

Ruwix vs. csTimer
Ruwix vs. cubeTimer
Ruwix vs. ggTimer
Ruwix vs. mine

Ruwix vs. Block Keeper
csTimer vs. cubeTimer
csTimer vs. ggTimer

csTimer vs. mine

t=-1245
p = 02164

t = -1.545
p = 01255

t = -0.6079
p = 0.5447

t=-1.305
p = 01951

t=-1.335
p = 01851

t=-0.4778
p = 0.6339

t = 0.5601
p = 0.5767

t=-01293
p = 0.8974

csTimer vs. Block Keeper
cubeTimer vs. ggTimer
cubeTimer vs. mine
cubeTimer vs. Block Keeper
agTimer vs. mine

aggTimer vs. Block Keeper

mine vs. Block Keeper

t =-0.2044
p = 0.8384

t = 0.9300
p = 0.3547

t = 0.3429
p = 0.7323

t = 0.2604
p = 0.795]

t = -0.6497
p = 0.5174

= -0.7004
p = 0.4854

= -0.07664
p = 0.9391

CHI-SQUARE TEST FOR HOMOGENEITY

Hypotheses

Null Hypothesis (H): There is no statistical difference between the
distributions of times between different scramblers.

Alternative Hypothesis (H)): There is a statistical difference between the
distributions of times between different scramblers.

CHI-SQUARE TEST FOR HOMOGENEITY

Data (re-expressed as categories)

Time (s) Ruwix csTimer cubeTimer qqTimer

mine Block Keeper
11-14 12 4 5 8 5 4
15 4 4 5 10 2 7
16 5 13 12 4 8 15
17 13 7 9 10 13 9
18 9 12 4 7 14 2
19-23 7 10 15

11 8 13

CHI-SQUARE TEST FOR HOMOGENEITY

Conditions:
Counted Data Condition: The data are adjusted to be counts of different

categories.
Randomization Condition: The data were randomized using the

experiment.
Expected Cell Freguency Condition: The data had been modified so that

there are at least five expected counts in every cell. Expected

freq uencies. Times Ruwix csTimer cubeTimer qgqTimer mine Block Keeper
11-14 6.33 6.33 6.33 6.33 6.33 6.33
15 5.33 5.33 5.33 5.33 5.33 5.33
16 9.50 9.50 9.50 9.50 9.50 9.50
17 10.17 10.17 10.17 10.17 10.17 10.17
18 8.00 8.00 8.00 8.00 8.00 8.00

19-23 10.67 10.67 10.67 10.67 10.67 10.67

CHI-SQUARE TEST FOR HOMOGENEITY

Mechanics:

X° = 46.19

df = (r-1)(c-1) =25

0 = P(x2 > 46.19) = 0.006109

CHI-SQUARE TEST FOR HOMOGENEITY

Mechanics:

X% = 46.19

df=(r-1)(c-1) =25

0 = P(x2 > 46.19) = 0.006109

Conclusion

Because the p-value is less than the alpha-level of 0.05, we reject the null
hypothesis. Therefore, we have evidence to suggest that there is a
statistical difference between the distributions of the times of different
scramblers.

CHI-SQUARE TEST FOR HOMOGENEITY

7

CHI-SQUARE TEST FOR HOMOGENEITY

7

Beware large samples. Beware large samples?! That’s not the advice you're used to
hearing. The chi-square tests, however, are unusual. You should be wary of chi-
square tests performed on very large samples. No hypothesized distribution fits per-
fectly, no two groups are exactly homogeneous, and two variables are rarely per-
fectly independent. The degrees of freedom for chi-square tests don’t grow with the
sample size. With a sufficiently large sample size, a chi-square test can always reject
the null hypothesis. But we have no measure of how far the data are from the null
model. There are no confidence intervals to help us judge the effect size.

TL;DR

We (probably) didn’t find any statistically significant results!

Which means it doesn’t matter which timer | use, because they don't
make me faster or slower.

TL;DR

We (probably) didn’t find any statistically significant results!

Which means it doesn’t matter which timer | use, because they don't
make me faster or slower.

The end. Thanks for watching.

