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Preface
Scheme was introduced in 1975 by Gerald J. Sussman and Guy L. Steele Jr. [28,29], and was the first dialect
of Lisp to fully support lexical scoping, first-class procedures, and continuations. In its earliest form it was a
small language intended primarily for research and teaching, supporting only a handful of predefined syntactic
forms and procedures. Scheme is now a complete general-purpose programming language, though it still
derives its power from a small set of key concepts. Early implementations of the language were
interpreter-based and slow, but some current Scheme implementations boast sophisticated compilers that
generate code on par with code generated by the best optimizing compilers for lower-level languages such as
C and Fortran.

This book is intended to provide an introduction to the Scheme programming language but not an introduction
to programming in general. The reader is expected to have had some experience programming and to be
familiar with terms commonly associated with computers and programming languages. Readers unfamiliar
with Scheme or Lisp should also consider reading The Little Schemer [13] to become familiar with the
concepts of list processing and recursion. Readers new to programming should begin with an introductory text
on programming.

Scheme has been standardized both formally and informally. The IEEE Standard for the Scheme
Programming Language [18], describes a formal ANSI/IEEE Standard for Scheme but dates back to 1991. A
related series of reports, the "Revised Reports on the Algorithmic Language Scheme," document an evolving
informal standard that most implementations support. The current report in this series is the "Revised6 Report
on the Algorithmic Language Scheme" [24], which was completed in 2007.

This book covers the language of the Revised6 Report. It is not intended to supplant the Revised6 Report but
rather to provide a more comprehensive introduction and reference manual for the language, with more
explanatory text and examples, suitable more for users than for implementors. Features specific to particular
implementations of Scheme are not included. In particular, features specific to the author's Chez Scheme and
Petite Chez Scheme implementations are described separately in the Chez Scheme User's Guide [9]. On the
other hand, no book on Scheme would be complete without some coverage of the interactive top level, since
nearly every Scheme system supports interactive use in one form or another, even though the behavior is not
standardized by the Revised6 Report. Chapters 2 and 3 are thus written assuming that the reader has available
a Scheme implementation that supports an interactive top level, with behavior consistent with the description
of the top-level environment in earlier reports and the IEEE/ANSI standard.

A large number of small- to medium-sized examples are spread throughout the text, and one entire chapter is
dedicated to the presentation of a set of longer examples. Many of the examples show how a standard Scheme
syntactic form or procedure might be implemented; others implement useful extensions. All of the examples
can be entered directly from the keyboard into an interactive Scheme session.

This book is organized into twelve chapters, plus back matter. Chapter 1 describes the properties and features
of Scheme that make it a useful and enjoyable language to use. Chapter 1 also describes Scheme's notational
conventions and the typographical conventions employed in this book.

Chapter 2 is an introduction to Scheme programming for the novice Scheme programmer that leads the reader
through a series of examples, beginning with simple Scheme expressions and working toward progressively
more difficult ones. Each section of Chapter 2 introduces a small set of related features, and the end of each
section contains a set of exercises for further practice. The reader will learn the most from Chapter 2 by sitting
at the keyboard and typing in the examples and trying the exercises.

Chapter 3 continues the introduction but covers more advanced features and concepts. Even readers with prior
Scheme experience may wish to work through the examples and exercises found there.
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Chapters 4 through 11 make up the reference portion of the text. They present each of Scheme's primitive
procedures and syntactic forms in turn, grouping them into short sections of related procedures and forms.
Chapter 4 describes operations for creating procedures and variable bindings; Chapter 5, program control
operations; Chapter 6, operations on the various object types (including lists, numbers, and strings);
Chapter 7, input and output operations; Chapter 8, syntactic extension; Chapter 9, record-type definitions;
Chapter 10, libraries and top-level programs; and Chapter 11, exceptions and conditions.

Chapter 12 contains a collection of example procedures, libraries, and programs, each with a short overview,
some examples of its use, the implementation with brief explanation, and a set of exercises for further work.
Each of these programs demonstrates a particular set of features, and together they illustrate an appropriate
style for programming in Scheme.

Following Chapter 12 are bibliographical references, answers to selected exercises, a detailed description of
the formal syntax of Scheme programs and data, a concise summary of Scheme syntactic forms and
procedures, and the index. The summary of forms and procedures is a useful first stop for programmers
unsure of the structure of a syntactic form or the arguments expected by a primitive procedure. The page
numbers appearing in the summary of forms and procedures and the italicized page numbers appearing in the
index indicate the locations in the text where forms and procedures are defined.

Because the reference portion describes a number of aspects of the language not covered by the introductory
chapters along with a number of interesting short examples, most readers will find it profitable to read through
most of the material to become familiar with each feature and how it relates to other features. Chapter 6 is
lengthy, however, and may be skimmed and later referenced as needed.

An online version of this book is available at http://www.scheme.com/tspl/. The summary of forms and index
in the online edition include page numbers for the printed version and are thus useful as searchable indexes.

About the illustrations: The cover illustration and the illustration at the front of each chapter are algorithmic
line fields created by artist Jean-Pierre Hébert, based on an idea inspired by the writings of John Cage. Each
line field is created by the composition of any number of grids of parallel lines. The grids are regular, but they
are not. For instance, the lines are of irregular length, which creates ragged edges. Their tone and thickness
vary slightly. They are not exactly equidistant. They intersect with each other at a certain angle. When this
angle is small, patterns of interference develop. The lines are first steeped into various scalar fields that
perturb their original straight shape, then projected on the plane of the paper. Masks introduce holes in some
layers. For the cover illustration, the grids are colored in different hues.

All the images are created by a single Scheme program that makes most of the decisions, based heavily on
chance. The artist controls only canvas size, aspect ratio, the overall palette of colors, and levels of chance and
fuzziness. The task of the artist is to introduce just enough chance at the right place so that the results are at
the same time surprising, interesting, and in line with the artist's sense of aesthetics. This is a game of
uncertainty, chaos, and harmony.

Acknowledgments: Many individuals contributed in one way or another to the preparation of one or more
editions of this book, including Bruce Smith, Eugene Kohlbecker, Matthias Felleisen, Dan Friedman, Bruce
Duba, Phil Dybvig, Guy Steele, Bob Hieb, Chris Haynes, Dave Plaisted, Joan Curry, Frank Silbermann, Pavel
Curtis, John Wait, Carl Bruggeman, Sam Daniel, Oscar Waddell, Mike Ashley, John LaLonde, John
Zuckerman, John Simmons, Bob Prior, Bob Burger, and Aziz Ghuloum. Many others have offered minor
corrections and suggestions. Oscar Waddell helped create the typesetting system used to format the printed
and online versions of this book. A small amount of text and a few examples have been adapted from the
Revised6 Report for this book, for which credit goes to the editors of that report and many others who
contributed to it. Finally and most importantly, my wife, Susan Dybvig, suggested that I write this book in the
first place and lent her expertise and assistance to the production and publication of this and the previous
editions.
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Chapter 1. Introduction
Scheme is a general-purpose computer programming language. It is a high-level language, supporting
operations on structured data such as strings, lists, and vectors, as well as operations on more traditional data
such as numbers and characters. While Scheme is often identified with symbolic applications, its rich set of
data types and flexible control structures make it a truly versatile language. Scheme has been employed to
write text editors, optimizing compilers, operating systems, graphics packages, expert systems, numerical
applications, financial analysis packages, virtual reality systems, and practically every other type of
application imaginable. Scheme is a fairly simple language to learn, since it is based on a handful of syntactic
forms and semantic concepts and since the interactive nature of most implementations encourages
experimentation. Scheme is a challenging language to understand fully, however; developing the ability to use
its full potential requires careful study and practice.

Scheme programs are highly portable across versions of the same Scheme implementation on different
machines, because machine dependencies are almost completely hidden from the programmer. They are also
portable across different implementations because of the efforts of a group of Scheme language designers who
have published a series of reports, the "Revised Reports" on Scheme. The most recent, the "Revised6
Report" [24], emphasizes portability through a set of standard libraries and a standard mechanism for defining
new portable libraries and top-level programs.

Although some early Scheme systems were inefficient and slow, many newer compiler-based
implementations are fast, with programs running on par with equivalent programs written in lower-level
languages. The relative inefficiency that sometimes remains results from run-time checks that support generic
arithmetic and help programmers detect and correct various common programming errors. These checks may
be disabled in many implementations.

Scheme supports many types of data values, or objects, including characters, strings, symbols, lists or vectors
of objects, and a full set of numeric data types, including complex, real, and arbitrary-precision rational
numbers.

The storage required to hold the contents of an object is dynamically allocated as necessary and retained until
no longer needed, then automatically deallocated, typically by a garbage collector that periodically recovers
the storage used by inaccessible objects. Simple atomic values, such as small integers, characters, booleans,
and the empty list, are typically represented as immediate values and thus incur no allocation or deallocation
overhead.

Regardless of representation, all objects are first-class data values; because they are retained indefinitely, they
may be passed freely as arguments to procedures, returned as values from procedures, and combined to form
new objects. This is in contrast with many other languages where composite data values such as arrays are
either statically allocated and never deallocated, allocated on entry to a block of code and unconditionally
deallocated on exit from the block, or explicitly allocated and deallocated by the programmer.

Scheme is a call-by-value language, but for at least mutable objects (objects that can be modified), the values
are pointers to the actual storage. These pointers remain behind the scenes, however, and programmers need
not be conscious of them except to understand that the storage for an object is not copied when an object is
passed to or returned from a procedure.

At the heart of the Scheme language is a small core of syntactic forms from which all other forms are built.
These core forms, a set of extended syntactic forms derived from them, and a set of primitive procedures
make up the full Scheme language. An interpreter or compiler for Scheme can be quite small and potentially
fast and highly reliable. The extended syntactic forms and many primitive procedures can be defined in
Scheme itself, simplifying the implementation and increasing reliability.
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Scheme programs share a common printed representation with Scheme data structures. As a result, any
Scheme program has a natural and obvious internal representation as a Scheme object. For example, variables
and syntactic keywords correspond to symbols, while structured syntactic forms correspond to lists. This
representation is the basis for the syntactic extension facilities provided by Scheme for the definition of new
syntactic forms in terms of existing syntactic forms and procedures. It also facilitates the implementation of
interpreters, compilers, and other program transformation tools for Scheme directly in Scheme, as well as
program transformation tools for other languages in Scheme.

Scheme variables and keywords are lexically scoped, and Scheme programs are block-structured. Identifiers
may be imported into a program or library or bound locally within a given block of code such as a library,
program, or procedure body. A local binding is visible only lexically, i.e., within the program text that makes
up the particular block of code. An occurrence of an identifier of the same name outside this block refers to a
different binding; if no binding for the identifier exists outside the block, then the reference is invalid. Blocks
may be nested, and a binding in one block may shadow a binding for an identifier of the same name in a
surrounding block. The scope of a binding is the block in which the bound identifier is visible minus any
portions of the block in which the identifier is shadowed. Block structure and lexical scoping help create
programs that are modular, easy to read, easy to maintain, and reliable. Efficient code for lexical scoping is
possible because a compiler can determine before program evaluation the scope of all bindings and the
binding to which each identifier reference resolves. This does not mean, of course, that a compiler can
determine the values of all variables, since the actual values are not computed in most cases until the program
executes.

In most languages, a procedure definition is simply the association of a name with a block of code. Certain
variables local to the block are the parameters of the procedure. In some languages, a procedure definition
may appear within another block or procedure so long as the procedure is invoked only during execution of
the enclosing block. In others, procedures can be defined only at top level. In Scheme, a procedure definition
may appear within another block or procedure, and the procedure may be invoked at any time thereafter, even
if the enclosing block has completed its execution. To support lexical scoping, a procedure carries the lexical
context (environment) along with its code.

Furthermore, Scheme procedures are not always named. Instead, procedures are first-class data objects like
strings or numbers, and variables are bound to procedures in the same way they are bound to other objects.

As with procedures in most other languages, Scheme procedures may be recursive. That is, any procedure
may invoke itself directly or indirectly. Many algorithms are most elegantly or efficiently specified
recursively. A special case of recursion, called tail recursion, is used to express iteration, or looping. A tail
call occurs when one procedure directly returns the result of invoking another procedure; tail recursion occurs
when a procedure recursively tail-calls itself, directly or indirectly. Scheme implementations are required to
implement tail calls as jumps (gotos), so the storage overhead normally associated with recursion is avoided.
As a result, Scheme programmers need master only simple procedure calls and recursion and need not be
burdened with the usual assortment of looping constructs.

Scheme supports the definition of arbitrary control structures with continuations. A continuation is a
procedure that embodies the remainder of a program at a given point in the program. A continuation may be
obtained at any time during the execution of a program. As with other procedures, a continuation is a
first-class object and may be invoked at any time after its creation. Whenever it is invoked, the program
immediately continues from the point where the continuation was obtained. Continuations allow the
implementation of complex control mechanisms including explicit backtracking, multithreading, and
coroutines.

Scheme also allows programmers to define new syntactic forms, or syntactic extensions, by writing
transformation procedures that determine how each new syntactic form maps to existing syntactic forms.
These transformation procedures are themselves expressed in Scheme with the help of a convenient high-level
pattern language that automates syntax checking, input deconstruction, and output reconstruction. By default,
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lexical scoping is maintained through the transformation process, but the programmer can exercise control
over the scope of all identifiers appearing in the output of a transformer. Syntactic extensions are useful for
defining new language constructs, for emulating language constructs found in other languages, for achieving
the effects of in-line code expansion, and even for emulating entire languages in Scheme. Most large Scheme
programs are built from a mix of syntactic extensions and procedure definitions.

Scheme evolved from the Lisp language and is considered to be a dialect of Lisp. Scheme inherited from Lisp
the treatment of values as first-class objects, several important data types, including symbols and lists, and the
representation of programs as objects, among other things. Lexical scoping and block structure are features
taken from Algol 60 [21]. Scheme was the first Lisp dialect to adopt lexical scoping and block structure,
first-class procedures, the treatment of tail calls as jumps, continuations, and lexically scoped syntactic
extensions.

Common Lisp [27] and Scheme are both contemporary Lisp languages, and the development of each has been
influenced by the other. Like Scheme but unlike earlier Lisp languages, Common Lisp adopted lexical
scoping and first-class procedures, although Common Lisp's syntactic extension facility does not respect
lexical scoping. Common Lisp's evaluation rules for procedures are different from the evaluation rules for
other objects, however, and it maintains a separate namespace for procedure variables, thereby inhibiting the
use of procedures as first-class objects. Also, Common Lisp does not support continuations or require proper
treatment of tail calls, but it does support several less general control structures not found in Scheme. While
the two languages are similar, Common Lisp includes more specialized constructs, while Scheme includes
more general-purpose building blocks out of which such constructs (and others) may be built.

The remainder of this chapter describes Scheme's syntax and naming conventions and the typographical
conventions used throughout this book.

Section 1.1. Scheme Syntax

Scheme programs are made up of keywords, variables, structured forms, constant data (numbers, characters,
strings, quoted vectors, quoted lists, quoted symbols, etc.), whitespace, and comments.

Keywords, variables, and symbols are collectively called identifiers. Identifiers may be formed from letters,
digits, and certain special characters, including ?, !, ., +, -, *, /, <, =, >, :, $, %, ^, &, _, ~, and @, as well
as a set of additional Unicode characters. Identifiers cannot start with an at sign ( @ ) and normally cannot start
with any character that can start a number, i.e., a digit, plus sign ( + ), minus sign ( - ), or decimal point ( . ).
Exceptions are +, -, and ..., which are valid identifiers, and any identifier starting with ->. For example,
hi, Hello, n, x, x3, x+2, and ?$&*!!! are all identifiers. Identifiers are delimited by whitespace,
comments, parentheses, brackets, string (double) quotes ( " ), and hash marks( # ). A delimiter or any other
Unicode character may be included anywhere within the name of an identifier as an escape of the form
\xsv;, where sv is the scalar value of the character in hexadecimal notation.

There is no inherent limit on the length of a Scheme identifier; programmers may use as many characters as
necessary. Long identifiers are no substitute for comments, however, and frequent use of long identifiers can
make a program difficult to format and consequently difficult to read. A good rule is to use short identifiers
when the scope of the identifier is small and longer identifiers when the scope is larger.

Identifiers may be written in any mix of upper- and lower-case letters, and case is significant, i.e., two
identifiers are different even if they differ only in case. For example, abcde, Abcde, AbCdE, and ABCDE all
refer to different identifiers. This is a change from previous versions of the Revised Report.

Structured forms and list constants are enclosed within parentheses, e.g., (a b c) or (* (- x 2) y).
The empty list is written (). Matched sets of brackets ( [ ] ) may be used in place of parentheses and are
often used to set off the subexpressions of certain standard syntactic forms for readability, as shown in
examples throughout this book. Vectors are written similarly to lists, except that they are preceded by #( and
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terminated by ), e.g., #(this is a vector of symbols). Bytevectors are written as sequences of
unsigned byte values (exact integers in the range 0 through 255) bracketed by #vu8( and ), e.g.,
#vu8(3 250 45 73).

Strings are enclosed in double quotation marks, e.g., "I am a string". Characters are preceded by #\,
e.g., #\a. Case is important within character and string constants, as within identifiers. Numbers may be
written as integers, e.g., -123, as ratios, e.g., 1/2, in floating-point or scientific notation, e.g., 1.3 or 1e23, or as
complex numbers in rectangular or polar notation, e.g., 1.3-2.7i or -1.2@73. Case is not important in the
syntax of a number. The boolean values representing true and false are written #t and #f. Scheme
conditional expressions actually treat #f as false and all other objects as true, so 3, 0, (), "false", and
nil all count as true.

Details of the syntax for each type of constant data are given in the individual sections of Chapter 6 and in the
formal syntax of Scheme starting on page 455.

Scheme expressions may span several lines, and no explicit terminator is required. Since the number of
whitespace characters (spaces and newlines) between expressions is not significant, Scheme programs should
be indented to show the structure of the code in a way that makes the code as readable as possible. Comments
may appear on any line of a Scheme program, between a semicolon ( ; ) and the end of the line. Comments
explaining a particular Scheme expression are normally placed at the same indentation level as the expression,
on the line before the expression. Comments explaining a procedure or group of procedures are normally
placed before the procedures, without indentation. Multiple comment characters are often used to set off the
latter kind of comment, e.g., ;;; The following procedures ....

Two other forms of comments are supported: block comments and datum comments. Block comments are
delimited by #| and |# pairs, and may be nested. A datum comment consists of a #; prefix and the datum
(printed data value) that follows it. Datum comments are typically used to comment out individual definitions
or expressions. For example, (three #;(not four) element list) is just what it says. Datum
comments may also be nested, though #;#;(a)(b) has the somewhat nonobvious effect of commenting out
both (a) and (b).

Some Scheme values, such as procedures and ports, do not have standard printed representations and can thus
never appear as a constant in the printed syntax of a program. This book uses the notation
#<description> when showing the output of an operation that returns such a value, e.g.,
#<procedure> or #<port>.

Section 1.2. Scheme Naming Conventions

Scheme's naming conventions are designed to provide a high degree of regularity. The following is a list of
these naming conventions:

Predicate names end in a question mark ( ? ). Predicates are procedures that return a true or false
answer, such as eq?, zero?, and string=?. The common numeric comparators =, <, >, <=, and
>= are exceptions to this naming convention.

• 

Type predicates, such as pair?, are created from the name of the type, in this case pair, and the
question mark.

• 

The names of most character, string, and vector procedures start with the prefix char-, string-,
and vector-, e.g., string-append. (The names of some list procedures start with list-, but
most do not.)

• 

The names of procedures that convert an object of one type into an object of another type are written
as type1->type2, e.g., vector->list.

• 

The names of procedures and syntactic forms that cause side effects end with an exclamation point
( ! ). These include set! and vector-set!. Procedures that perform input or output technically
cause side effects, but their names are exceptions to this rule.

• 
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Programmers should employ these same conventions in their own code whenever possible.

Section 1.3. Typographical and Notational Conventions

A standard procedure or syntactic form whose sole purpose is to perform some side effect is said to return
unspecified. This means that an implementation is free to return any number of values, each of which can be
any Scheme object, as the value of the procedure or syntactic form. Do not count on these values being the
same across implementations, the same across versions of the same implementation, or even the same across
two uses of the procedure or syntactic form. Some Scheme systems routinely use a special object to represent
unspecified values. Printing of this object is often suppressed by interactive Scheme systems, so that the
values of expressions returning unspecified values are not printed.

While most standard procedures return a single value, the language supports procedures that return zero, one,
more than one, or even a variable number of values via the mechanisms described in Section 5.8. Some
standard expressions can evaluate to multiple values if one of their subexpressions evaluates to multiple
values, e.g., by calling a procedure that returns multiple values. When this situation can occur, an expression
is said to return "the values" rather than simply "the value" of its subexpression. Similarly, a standard
procedure that returns the values resulting from a call to a procedure argument is said to return the values
returned by the procedure argument.

This book uses the words "must" and "should" to describe program requirements, such as the requirement to
provide an index that is less than the length of the vector in a call to vector-ref. If the word "must" is
used, it means that the requirement is enforced by the implementation, i.e., an exception is raised, usually with
condition type &assertion. If the word "should" is used, an exception may or may not be raised, and if not,
the behavior of the program is undefined.

The phrase "syntax violation" is used to describe a situation in which a program is malformed. Syntax
violations are detected prior to program execution. When a syntax violation is detected, an exception of type
&syntax is raised and the program is not executed.

The typographical conventions used in this book are straightforward. All Scheme objects are printed in a
typewriter typeface, just as they are to be typed at the keyboard. This includes syntactic keywords,
variables, constant objects, Scheme expressions, and example programs. An italic typeface is used to set off
syntax variables in the descriptions of syntactic forms and arguments in the descriptions of procedures. Italics
are also used to set off technical terms the first time they appear. In general, names of syntactic forms and
procedures are never capitalized, even at the beginning of a sentence. The same is true for syntax variables
written in italics.

In the description of a syntactic form or procedure, one or more prototype patterns show the syntactic form or
forms or the correct number or numbers of arguments for an application of the procedure. The keyword or
procedure name is given in typewriter font, as are parentheses. The remaining pieces of the syntax or
arguments are shown in italics, using a name that implies the type of expression or argument expected by the
syntactic form or procedure. Ellipses are used to specify zero or more occurrences of a subexpression or
argument. For example, (or expr ...) describes the or syntactic form, which has zero or more
subexpressions, and (member obj list) describes the member procedure, which expects two
arguments, an object and a list.

A syntax violation occurs if the structure of a syntactic form does not match its prototype. Similarly, an
exception with condition type &assertion is raised if the number of arguments passed to a standard
procedure does not match what it is specified to receive. An exception with condition type &assertion is
also raised if a standard procedure receives an argument whose type is not the type implied by its name or
does not meet other criteria given in the description of the procedure. For example, the prototype for
vector-set! is
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(vector-set! vector n obj)

and the description says that n must be an exact nonnegative integer strictly less than the length of vector.
Thus, vector-set! must receive three arguments, the first of which must be a vector, the second of which
must be an exact nonnegative integer less than the length of the vector, and the third of which may be any
Scheme value. Otherwise, an exception with condition type &assertion is raised.

In most cases, the type of argument required is obvious, as with vector, obj, or binary-input-port.
In others, primarily within the descriptions of numeric routines, abbreviations are used, such as int for
integer, exint for exact integer, and fx for fixnum. These abbreviations are explained at the start of the
sections containing the affected entries.
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Chapter 2. Getting Started
This chapter is an introduction to Scheme for programmers who are new to the language. You will get more
from this chapter if you are sitting in front of an interactive Scheme system, trying out the examples as you
go.

After reading this chapter and working the exercises, you should be able to start using Scheme. You will have
learned the syntax of Scheme programs and how they are executed, along with how to use simple data
structures and control mechanisms.

Section 2.1. Interacting with Scheme

Most Scheme systems provide an interactive programming environment that simplifies program development
and experimentation. The simplest interaction with Scheme follows a "read-evaluate-print" cycle. A program
(often called a read-evaluate-print loop, or REPL) reads each expression you type at the keyboard, evaluates
it, and prints its value.

With an interactive Scheme system, you can type an expression at the keyboard and see its value immediately.
You can define a procedure and apply it to arguments to see how it works. You can even type in an entire
program consisting of a set of procedure definitions and test it without leaving the system. When your
program starts getting longer, it will be more convenient to type it into a file (using a text editor), load the file
and test it interactively. In most Scheme systems, a file may be loaded with the nonstandard procedure load,
which takes a string argument naming the file. Preparing your program in a file has several advantages: you
have a chance to compose your program more carefully, you can correct errors without retyping the program,
and you can retain a copy for later use. Most Scheme implementations treat expressions loaded from a file the
same as expressions typed at the keyboard.

While Scheme provides various input and output procedures, the REPL takes care of reading expressions and
printing their values. This frees you to concentrate on writing your program without worrying about how its
results will be displayed.

The examples in this chapter and in the rest of the book follow a regular format. An expression you might
type from your keyboard is given first, possibly spanning several lines. The value of the expression is given
after the , to be read as "evaluates to." The  is omitted for definitions and when the value of an expression
is unspecified.

The example programs are formatted in a style that "looks nice" and conveys the structure of the program.
The code is easy to read because the relationship between each expression and its subexpressions is clearly
shown. Scheme ignores indentation and line breaks, however, so there is no need to follow a particular style.
The important thing is to establish one style and keep to it. Scheme sees each program as if it were on a single
line, with its subexpressions ordered from left to right.

If you have access to an interactive Scheme system, it might be a good idea to start it up now and type in the
examples as you read. One of the simplest Scheme expressions is a string constant. Try typing "Hi Mom!"
(including the double quotes) in response to the prompt. The system should respond with "Hi Mom!"; the
value of any constant is the constant itself.

"Hi Mom!"  "Hi Mom!"

Here is a set of expressions, each with Scheme's response. They are explained in later sections of this chapter,
but for now use them to practice interacting with Scheme.

"hello"  "hello"
42  42
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22/7  22/7
3.141592653  3.141592653
+  #<procedure>
(+ 76 31)  107
(* -12 10)  -120
'(a b c d)  (a b c d)

Be careful not to miss any single quotes ( ' ), double quotes, or parentheses. If you left off a single quote in
the last expression, you probably received a message indicating that an exception has occurred. Just try again.
If you left off a closing parenthesis or double quote, the system might still be waiting for it.

Here are a few more expressions to try. You can try to figure out on your own what they mean or wait to find
out later in the chapter.

(car '(a b c))  a
(cdr '(a b c))  (b c)
(cons 'a '(b c))  (a b c)
(cons (car '(a b c))
      (cdr '(d e f)))  (a e f)

As you can see, Scheme expressions may span more than one line. The Scheme system knows when it has an
entire expression by matching double quotes and parentheses.

Next, let's try defining a procedure.

(define square
  (lambda (n)
    (* n n)))

The procedure square computes the square n2 of any number n. We say more about the expressions that
make up this definition later in this chapter. For now it suffices to say that define establishes variable
bindings, lambda creates procedures, and * names the multiplication procedure. Note the form of these
expressions. All structured forms are enclosed in parentheses and written in prefix notation, i.e., the operator
precedes the arguments. As you can see, this is true even for simple arithmetic operations such as *.

Try using square.

(square 5)  25
(square -200)  40000
(square 0.5)  0.25
(square -1/2)  1/4

Even though the next definition is short, you might enter it into a file. Let's assume you call the file
"reciprocal.ss."

(define reciprocal
  (lambda (n)
    (if (= n 0)
        "oops!"
        (/ 1 n))))

This procedure, reciprocal, computes the quantity 1/n for any number n ≠ 0. For n = 0, reciprocal
returns the string "oops!". Return to Scheme and try loading your file with the procedure load.
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(load "reciprocal.ss")

Finally, try using the procedure we have just defined.

(reciprocal 10)  1/10
(reciprocal 1/10)  10
(reciprocal 0)  "oops!"
(reciprocal (reciprocal 1/10))  1/10

In the next section we will discuss Scheme expressions in more detail. Throughout this chapter, keep in mind
that your Scheme system is one of the most useful tools for learning Scheme. Whenever you try one of the
examples in the text, follow it up with your own examples. In an interactive Scheme system, the cost of trying
something out is relatively small---usually just the time to type it in.

Section 2.2. Simple Expressions

The simplest Scheme expressions are constant data objects, such as strings, numbers, symbols, and lists.
Scheme supports other object types, but these four are enough for many programs. We saw some examples of
strings and numbers in the preceding section.

Let's discuss numbers in a little more detail. Numbers are constants. If you enter a number, Scheme echoes it
back to you. The following examples show that Scheme supports several types of numbers.

123456789987654321  123456789987654321
3/4  3/4
2.718281828  2.718281828
2.2+1.1i  2.2+1.1i

Scheme numbers include exact and inexact integer, rational, real, and complex numbers. Exact integers and
rational numbers have arbitrary precision, i.e., they can be of arbitrary size. Inexact numbers are usually
represented internally using IEEE standard floating-point representations.

Scheme provides the names +, -, *, and / for the corresponding arithmetic procedures. Each procedure
accepts two numeric arguments. The expressions below are called procedure applications, because they
specify the application of a procedure to a set of arguments.

(+ 1/2 1/2)  1
(- 1.5 1/2)  1.0

(* 3 1/2)  3/2
(/ 1.5 3/4)  2.0

Scheme employs prefix notation even for common arithmetic operations. Any procedure application, whether
the procedure takes zero, one, two, or more arguments, is written as (procedure arg ...). This
regularity simplifies the syntax of expressions; one notation is employed regardless of the operation, and there
are no complicated rules regarding the precedence or associativity of operators.

Procedure applications may be nested, in which case the innermost values are computed first. We can thus
nest applications of the arithmetic procedures given above to evaluate more complicated formulas.

(+ (+ 2 2) (+ 2 2))  8
(- 2 (* 4 1/3))  2/3
(* 2 (* 2 (* 2 (* 2 2))))  32
(/ (* 6/7 7/2) (- 4.5 1.5))  1.0
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These examples demonstrate everything you need to use Scheme as a four-function desk calculator. While we
will not discuss them in this chapter, Scheme supports many other arithmetic procedures. Now might be a
good time to turn to Section 6.4 and experiment with some of them.

Simple numeric objects are sufficient for many tasks, but sometimes aggregate data structures containing two
or more values are needed. In many languages, the basic aggregate data structure is the array. In Scheme, it is
the list. Lists are written as sequences of objects surrounded by parentheses. For instance, (1 2 3 4 5) is
a list of numbers, and ("this" "is" "a" "list") is a list of strings. Lists need not contain only one
type of object, so (4.2 "hi") is a valid list containing a number and a string. Lists may be nested (may
contain other lists), so ((1 2) (3 4)) is a valid list with two elements, each of which is a list of two
elements.

You might notice that lists look just like procedure applications and wonder how Scheme tells them apart.
That is, how does Scheme distinguish between a list of objects, (obj1 obj2 ...), and a procedure
application, (procedure arg ...)?

In some cases, the distinction might seem obvious. The list of numbers (1 2 3 4 5) could hardly be
confused with a procedure application, since 1 is a number, not a procedure. So, the answer might be that
Scheme looks at the first element of the list or procedure application and makes its decision based on whether
that first element is a procedure or not. This answer is not good enough, since we might even want to treat a
valid procedure application such as (+ 3 4) as a list. The answer is that we must tell Scheme explicitly to
treat a list as data rather than as a procedure application. We do this with quote.

(quote (1 2 3 4 5))  (1 2 3 4 5)
(quote ("this" "is" "a" "list"))  ("this" "is" "a" "list")
(quote (+ 3 4))  (+ 3 4)

The quote forces the list to be treated as data. Try entering the above expressions without the quote; you will
likely receive a message indicating that an exception has occurred for the first two and an incorrect answer (7)
for the third.

Because quote is required fairly frequently in Scheme code, Scheme recognizes a single quotation mark
( ' ) preceding an expression as an abbreviation for quote.

'(1 2 3 4)  (1 2 3 4)
'((1 2) (3 4))  ((1 2) (3 4))
'(/ (* 2 -1) 3)  (/ (* 2 -1) 3)

Both forms are referred to as quote expressions. We often say an object is quoted when it is enclosed in a
quote expression.

A quote expression is not a procedure application, since it inhibits the evaluation of its subexpression. It is
an entirely different syntactic form. Scheme supports several other syntactic forms in addition to procedure
applications and quote expressions. Each syntactic form is evaluated differently. Fortunately, the number of
different syntactic forms is small. We will see more of them later in this chapter.

Not all quote expressions involve lists. Try the following expression with and without the quote wrapper.

(quote hello)  hello

The symbol hello must be quoted in order to prevent Scheme from treating hello as a variable. Symbols
and variables in Scheme are similar to symbols and variables in mathematical expressions and equations.
When we evaluate the mathematical expression 1 - x for some value of x, we think of x as a variable. On the
other hand, when we consider the algebraic equation x2 - 1 = (x - 1)(x + 1), we think of x as a symbol (in fact,
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we think of the whole equation symbolically). Just as quoting a list tells Scheme to treat a parenthesized form
as a list rather than as a procedure application, quoting an identifier tells Scheme to treat the identifier as a
symbol rather than as a variable. While symbols are commonly used to represent variables in symbolic
representations of equations or programs, symbols may also be used, for example, as words in the
representation of natural language sentences.

You might wonder why applications and variables share notations with lists and symbols. The shared notation
allows Scheme programs to be represented as Scheme data, simplifying the writing of interpreters, compilers,
editors, and other tools in Scheme. This is demonstrated by the Scheme interpreter given in Section 12.7,
which is itself written in Scheme. Many people believe this to be one of the most important features of
Scheme.

Numbers and strings may be quoted, too.

'2  2
'2/3  2/3
(quote "Hi Mom!")  "Hi Mom!"

Numbers and strings are treated as constants in any case, however, so quoting them is unnecessary.

Now let's discuss some Scheme procedures for manipulating lists. There are two basic procedures for taking
lists apart: car and cdr (pronounced could-er). car returns the first element of a list, and cdr returns the
remainder of the list. (The names "car" and "cdr" are derived from operations supported by the first computer
on which a Lisp language was implemented, the IBM 704.) Each requires a nonempty list as its argument.

(car '(a b c))  a
(cdr '(a b c))  (b c)
(cdr '(a))  ()

(car (cdr '(a b c)))  b
(cdr (cdr '(a b c)))  (c)

(car '((a b) (c d)))  (a b)
(cdr '((a b) (c d)))  ((c d))

The first element of a list is often called the "car" of the list, and the rest of the list is often called the "cdr" of
the list. The cdr of a list with one element is (), the empty list.

The procedure cons constructs lists. It takes two arguments. The second argument is usually a list, and in that
case cons returns a list.

(cons 'a '())  (a)
(cons 'a '(b c))  (a b c)
(cons 'a (cons 'b (cons 'c '())))  (a b c)
(cons '(a b) '(c d))  ((a b) c d)

(car (cons 'a '(b c)))  a
(cdr (cons 'a '(b c)))  (b c)
(cons (car '(a b c))
      (cdr '(d e f)))  (a e f)
(cons (car '(a b c))
      (cdr '(a b c)))  (a b c)

Just as "car" and "cdr" are often used as nouns, "cons" is often used as a verb. Creating a new list by adding an
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element to the beginning of a list is referred to as consing the element onto the list.

Notice the word "usually" in the description of cons's second argument. The procedure cons actually builds
pairs, and there is no reason that the cdr of a pair must be a list. A list is a sequence of pairs; each pair's cdr is
the next pair in the sequence.

The cdr of the last pair in a proper list is the empty list. Otherwise, the sequence of pairs forms an improper
list. More formally, the empty list is a proper list, and any pair whose cdr is a proper list is a proper list.

An improper list is printed in dotted-pair notation, with a period, or dot, preceding the final element of the
list.

(cons 'a 'b)  (a . b)
(cdr '(a . b))  b
(cons 'a '(b . c))  (a b . c)

Because of its printed notation, a pair whose cdr is not a list is often called a dotted pair. Even pairs whose
cdrs are lists can be written in dotted-pair notation, however, although the printer always chooses to write
proper lists without dots.

'(a . (b . (c . ())))  (a b c)

The procedure list is similar to cons, except that it takes an arbitrary number of arguments and always
builds a proper list.

(list 'a 'b 'c)  (a b c)
(list 'a)  (a)
(list)  ()

Section 6.3 provides more information on lists and the Scheme procedures for manipulating them. This might
be a good time to turn to that section and familiarize yourself with the other procedures given there.

Exercise 2.2.1

Convert the following arithmetic expressions into Scheme expressions and evaluate them.

  a. 1.2 × (2 - 1/3) + -8.7
  b. (2/3 + 4/9) ÷ (5/11 - 4/3)
  c. 1 + 1 ÷ (2 + 1 ÷ (1 + 1/2))
  d. 1 × -2 × 3 × -4 × 5 × -6 × 7

Exercise 2.2.2

Experiment with the procedures +, -, *, and / to determine Scheme's rules for the type of value returned by
each when given different types of numeric arguments.

Exercise 2.2.3

Determine the values of the following expressions. Use your Scheme system to verify your answers.

  a. (cons 'car 'cdr)
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  b. (list 'this '(is silly))

  c. (cons 'is '(this silly?))

  d. (quote (+ 2 3))

  e. (cons '+ '(2 3))

  f. (car '(+ 2 3))

  g. (cdr '(+ 2 3))

  h. cons

  i. (quote cons)

  j. (quote (quote cons))

  k. (car (quote (quote cons)))

  l. (+ 2 3)

  m. (+ '2 '3)
  n. (+ (car '(2 3)) (car (cdr '(2 3))))

  o. ((car (list + - * /)) 2 3)

Exercise 2.2.4

(car (car '((a b) (c d)))) yields a. Determine which compositions of car and cdr applied to
((a b) (c d)) yield b, c, and d.

Exercise 2.2.5

Write a Scheme expression that evaluates to the following internal list structure.

Exercise 2.2.6

Draw the internal list structure produced by the expression below.

(cons 1 (cons '(2 . ((3) . ())) (cons '(()) (cons 4 5))))

Exercise 2.2.7

The behavior of (car (car (car '((a b) (c d))))) is undefined because
(car '((a b) (c d))) is (a b), (car '(a b)) is a, and (car 'a) is undefined. Determine all
legal compositions of car and cdr applied to ((a b) (c d)).

Exercise 2.2.8

Try to explain how Scheme expressions are evaluated. Does your explanation cover the last example in
Exercise 2.2.3?

The Scheme Programming Language, 4th Edition

Section 2.2. Simple Expressions 21



Section 2.3. Evaluating Scheme Expressions

Let's turn to a discussion of how Scheme evaluates the expressions you type. We have already established the
rules for constant objects such as strings and numbers: the object itself is the value. You have probably also
worked out in your mind a rule for evaluating procedure applications of the form
(procedure arg1 ... argn). Here, procedure is an expression representing a Scheme procedure,
and arg1 ... argn are expressions representing its arguments. One possibility is the following.

Find the value of procedure.• 
Find the value of arg1.• 

Find the value of argn.• 
Apply the value of procedure to the values of arg1 ... argn.• 

For example, consider the simple procedure application (+ 3 4). The value of + is the addition procedure,
the value of 3 is the number 3, and the value of 4 is the number 4. Applying the addition procedure to 3 and 4
yields 7, so our value is the object 7.

By applying this process at each level, we can find the value of the nested expression (* (+ 3 4) 2). The
value of * is the multiplication procedure, the value of (+ 3 4) we can determine to be the number 7, and
the value of 2 is the number 2. Multiplying 7 by 2 we get 14, so our answer is 14.

This rule works for procedure applications but not for quote expressions because the subexpressions of a
procedure application are evaluated, whereas the subexpression of a quote expression is not. The evaluation
of a quote expression is more similar to the evaluation of constant objects. The value of a quote expression
of the form (quote object) is simply object.

Constant objects, procedure applications, and quote expressions are only three of the many syntactic forms
provided by Scheme. Fortunately, only a few of the other syntactic forms need to be understood directly by a
Scheme programmer; these are referred to as core syntactic forms. The remaining syntactic forms are
syntactic extensions defined, ultimately, in terms of the core syntactic forms. We will discuss the remaining
core syntactic forms and a few syntactic extensions in the remaining sections of this chapter. Section 3.1
summarizes the core syntactic forms and introduces the syntactic extension mechanism.

Before we go on to more syntactic forms and procedures, two points related to the evaluation of procedure
applications are worthy of note. First, the process given above is overspecified, in that it requires the
subexpressions to be evaluated from left to right. That is, procedure is evaluated before arg1, arg1 is
evaluated before arg2, and so on. This need not be the case. A Scheme evaluator is free to evaluate the
expressions in any order---left to right, right to left, or any other sequential order. In fact, the subexpressions
may be evaluated in different orders for different applications, even in the same implementation.

The second point is that procedure is evaluated in the same way as arg1 ... argn. While
procedure is often a variable that names a particular procedure, this need not be the case. Exercise 2.2.3
had you determine the value of the expression ((car (list + - * /)) 2 3). Here, procedure is
(car (list + - * /)). The value of (car (list + - * /)) is the addition procedure, just as if
procedure were simply the variable +.

Exercise 2.3.1

Write down the steps necessary to evaluate the expression below.

((car (cdr (list + - * /))) 17 5)
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Section 2.4. Variables and Let Expressions

Suppose expr is a Scheme expression that contains a variable var. Suppose, additionally, that we would like
var to have the value val when we evaluate expr. For example, we might like x to have the value 2 when
we evaluate (+ x 3). Or, we might want y to have the value 3 when we evaluate (+ 2 y). The following
examples demonstrate how to do this using Scheme's let syntactic form.

(let ((x 2))
  (+ x 3))  5

(let ((y 3))
  (+ 2 y))  5

(let ((x 2) (y 3))
  (+ x y))  5

The let syntactic form includes a list of variable-expression pairs, along with a sequence of expressions
referred to as the body of the let. The general form of a let expression is

(let ((var expr) ...) body1 body2 ...)

We say the variables are bound to the values by the let. We refer to variables bound by let as let-bound
variables.

A let expression is often used to simplify an expression that would contain two identical subexpressions.
Doing so also ensures that the value of the common subexpression is computed only once.

(+ (* 4 4) (* 4 4))  32

(let ((a (* 4 4))) (+ a a))  32

Brackets are often used in place of parentheses to delimit the bindings of a let expression.

(let ([list1 '(a b c)] [list2 '(d e f)])
  (cons (cons (car list1)
              (car list2))
        (cons (car (cdr list1))
              (car (cdr list2)))))  ((a . d) b . e)

Scheme treats forms enclosed in brackets just like forms enclosed in parentheses. An open bracket must be
matched by a close bracket, and an open parenthesis must be matched by a close parenthesis. We use brackets
for let (and, as we'll see, several other standard syntactic forms) to improve readability, especially when we
might otherwise have two or more consecutive open parentheses.

Since expressions in the first position of a procedure application are evaluated no differently from other
expressions, a let-bound variable may be used there as well.

(let ([f +])
  (f 2 3))  5

(let ([f +] [x 2])
  (f x 3))  5

(let ([f +] [x 2] [y 3])
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  (f x y))  5

The variables bound by let are visible only within the body of the let.

(let ([+ *])
  (+ 2 3))  6

(+ 2 3)  5

This is fortunate, because we would not want the value of + to be the multiplication procedure everywhere.

It is possible to nest let expressions.

(let ([a 4] [b -3])
  (let ([a-squared (* a a)]
        [b-squared (* b b)])
    (+ a-squared b-squared)))  25

When nested let expressions bind the same variable, only the binding created by the inner let is visible
within its body.

(let ([x 1])
  (let ([x (+ x 1)])
    (+ x x)))  4

The outer let expression binds x to 1 within its body, which is the second let expression. The inner let
expression binds x to (+ x 1) within its body, which is the expression (+ x x). What is the value of
(+ x 1)? Since (+ x 1) appears within the body of the outer let but not within the body of the inner
let, the value of x must be 1 and hence the value of (+ x 1) is 2. What about (+ x x)? It appears
within the body of both let expressions. Only the inner binding for x is visible, so x is 2 and (+ x x) is 4.

The inner binding for x is said to shadow the outer binding. A let-bound variable is visible everywhere
within the body of its let expression except where it is shadowed. The region where a variable binding is
visible is called its scope. The scope of the first x in the example above is the body of the outer let
expression minus the body of the inner let expression, where it is shadowed by the second x. This form of
scoping is referred to as lexical scoping, since the scope of each binding can be determined by a
straightforward textual analysis of the program.

Shadowing may be avoided by choosing different names for variables. The expression above could be
rewritten so that the variable bound by the inner let is new-x.

(let ([x 1])
  (let ([new-x (+ x 1)])
    (+ new-x new-x)))  4

Although choosing different names can sometimes prevent confusion, shadowing can help prevent the
accidental use of an "old" value. For example, with the original version of the preceding example, it would be
impossible for us to mistakenly refer to the outer x within the body of the inner let.

Exercise 2.4.1

Rewrite the following expressions, using let to remove common subexpressions and to improve the structure
of the code. Do not perform any algebraic simplifications.
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  a. (+ (- (* 3 a) b) (+ (* 3 a) b))
  b. (cons (car (list a b c)) (cdr (list a b c)))

Exercise 2.4.2

Determine the value of the following expression. Explain how you derived this value.

(let ([x 9])
  (* x
     (let ([x (/ x 3)])
       (+ x x))))

Exercise 2.4.3

Rewrite the following expressions to give unique names to each different let-bound variable so that none of
the variables is shadowed. Verify that the value of your expression is the same as that of the original
expression.

  a. (let ([x 'a] [y 'b])
  (list (let ([x 'c]) (cons x y))
        (let ([y 'd]) (cons x y))))

  b. (let ([x '((a b) c)])
  (cons (let ([x (cdr x)])
          (car x))
        (let ([x (car x)])
          (cons (let ([x (cdr x)])
                  (car x))
                (cons (let ([x (car x)])
                        x)
                      (cdr x))))))

Section 2.5. Lambda Expressions

In the expression (let ([x (* 3 4)]) (+ x x)), the variable x is bound to the value of (* 3 4).
What if we would like the value of (+ x x) where x is bound to the value of (/ 99 11)? Where x is
bound to the value of (- 2 7)? In each case we need a different let expression. When the body of the let
is complicated, however, having to repeat it can be inconvenient.

Instead, we can use the syntactic form lambda to create a new procedure that has x as a parameter and has
the same body as the let expression.

(lambda (x) (+ x x))  #<procedure>

The general form of a lambda expression is

(lambda (var ...) body1 body2 ...)

The variables var ... are the formal parameters of the procedure, and the sequence of expressions
body1 body2 ... is its body. (Actually, the true general form is somewhat more general than this, as you
will see later.)

A procedure is just as much an object as a number, string, symbol, or pair. It does not have any meaningful
printed representation as far as Scheme is concerned, however, so this book uses the notation
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#<procedure> to show that the value of an expression is a procedure.

The most common operation to perform on a procedure is to apply it to one or more values.

((lambda (x) (+ x x)) (* 3 4))  24

This is no different from any other procedure application. The procedure is the value of
(lambda (x) (+ x x)), and the only argument is the value of (* 3 4), or 12. The argument values,
or actual parameters, are bound to the formal parameters within the body of the lambda expression in the
same way as let-bound variables are bound to their values. In this case, x is bound to 12, and the value of
(+ x x) is 24. Thus, the result of applying the procedure to the value 12 is 24.

Because procedures are objects, we can establish a procedure as the value of a variable and use the procedure
more than once.

(let ([double (lambda (x) (+ x x))])
  (list (double (* 3 4))
        (double (/ 99 11))
        (double (- 2 7))))  (24 18 -10)

Here, we establish a binding for double to a procedure, then use this procedure to double three different
values.

The procedure expects its actual parameter to be a number, since it passes the actual parameter on to +. In
general, the actual parameter may be any sort of object. Consider, for example, a similar procedure that uses
cons instead of +.

(let ([double-cons (lambda (x) (cons x x))])
  (double-cons 'a))  (a . a)

Noting the similarity between double and double-cons, you should not be surprised to learn that they
may be collapsed into a single procedure by adding an additional argument.

(let ([double-any (lambda (f x) (f x x))])
  (list (double-any + 13)
        (double-any cons 'a)))  (26 (a . a))

This demonstrates that procedures may accept more than one argument and that arguments passed to a
procedure may themselves be procedures.

As with let expressions, lambda expressions become somewhat more interesting when they are nested
within other lambda or let expressions.

(let ([x 'a])
  (let ([f (lambda (y) (list x y))])
    (f 'b)))  (a b)

The occurrence of x within the lambda expression refers to the x outside the lambda that is bound by the
outer let expression. The variable x is said to occur free in the lambda expression or to be a free variable
of the lambda expression. The variable y does not occur free in the lambda expression since it is bound by
the lambda expression. A variable that occurs free in a lambda expression should be bound, e.g., by an
enclosing lambda or let expression, unless the variable is (like the names of primitive procedures) bound
outside of the expression, as we discuss in the following section.

The Scheme Programming Language, 4th Edition

26 Section 2.5. Lambda Expressions



What happens when the procedure is applied somewhere outside the scope of the bindings for variables that
occur free within the procedure, as in the following expression?

(let ([f (let ([x 'sam])
           (lambda (y z) (list x y z)))])
  (f 'i 'am))  (sam i am)

The answer is that the same bindings that were in effect when the procedure was created are in effect again
when the procedure is applied. This is true even if another binding for x is visible where the procedure is
applied.

(let ([f (let ([x 'sam])
           (lambda (y z) (list x y z)))])
  (let ([x 'not-sam])
    (f 'i 'am)))  (sam i am)

In both cases, the value of x within the procedure named f is sam.

Incidentally, a let expression is nothing more than the direct application of a lambda expression to a set of
argument expressions. For example, the two expressions below are equivalent.

(let ([x 'a]) (cons x x)) ≡ ((lambda (x) (cons x x)) 'a)

In fact, a let expression is a syntactic extension defined in terms of lambda and procedure application,
which are both core syntactic forms. In general, any expression of the form

(let ((var expr) ...) body1 body2 ...)

is equivalent to the following.

((lambda (var ...) body1 body2 ...)
expr ...)

See Section 3.1 for more about core forms and syntactic extensions.

As mentioned above, the general form of lambda is a bit more complicated than the form we saw earlier, in
that the formal parameter specification, (var ...), need not be a proper list, or indeed even a list at all.
The formal parameter specification can be in any of the following three forms:

a proper list of variables, (var1 ... varn), such as we have already seen,• 
a single variable, varr, or• 
an improper list of variables, (var1 ... varn . varr).• 

In the first case, exactly n actual parameters must be supplied, and each variable is bound to the corresponding
actual parameter. In the second, any number of actual parameters is valid; all of the actual parameters are put
into a single list and the single variable is bound to this list. The third case is a hybrid of the first two cases. At
least n actual parameters must be supplied. The variables var1 ... varn are bound to the corresponding
actual parameters, and the variable varr is bound to a list containing the remaining actual parameters. In the
second and third cases, varr is sometimes referred to as a "rest" parameter because it holds the rest of the
actual parameters beyond those that are individually named.

Let's consider a few examples to help clarify the more general syntax of lambda expressions.

(let ([f (lambda x x)])
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  (f 1 2 3 4))  (1 2 3 4)

(let ([f (lambda x x)])
  (f))  ()

(let ([g (lambda (x . y) (list x y))])
  (g 1 2 3 4))  (1 (2 3 4))

(let ([h (lambda (x y . z) (list x y z))])
  (h 'a 'b 'c 'd))  (a b (c d))

In the first two examples, the procedure named f accepts any number of arguments. These arguments are
automatically formed into a list to which the variable x is bound; the value of f is this list. In the first
example, the arguments are 1, 2, 3, and 4, so the answer is (1 2 3 4). In the second, there are no
arguments, so the answer is the empty list (). The value of the procedure named g in the third example is a
list whose first element is the first argument and whose second element is a list containing the remaining
arguments. The procedure named h is similar but separates out the second argument. While f accepts any
number of arguments, g must receive at least one and h must receive at least two.

Exercise 2.5.1

Determine the values of the expressions below.

  a. (let ([f (lambda (x) x)])
  (f 'a))

  b. (let ([f (lambda x x)])
  (f 'a))

  c. (let ([f (lambda (x . y) x)])
  (f 'a))

  d. (let ([f (lambda (x . y) y)])
  (f 'a))

Exercise 2.5.2

How might the primitive procedure list be defined?

Exercise 2.5.3

List the variables that occur free in each of the lambda expressions below. Do not omit variables that name
primitive procedures such as + or cons.

  a. (lambda (f x) (f x))
  b. (lambda (x) (+ x x))
  c. (lambda (x y) (f x y))
  d. (lambda (x)

  (cons x (f x y)))

  e. (lambda (x)
  (let ([z (cons x y)])
    (x y z)))

  f. (lambda (x)
  (let ([y (cons x y)])
    (x y z)))
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Section 2.6. Top-Level Definitions

The variables bound by let and lambda expressions are not visible outside the bodies of these expressions.
Suppose you have created an object, perhaps a procedure, that must be accessible anywhere, like + or cons.
What you need is a top-level definition, which may be established with define. Top-level definitions, which
are supported by most interactive Scheme systems, are visible in every expression you enter, except where
shadowed by another binding.

Let's establish a top-level definition of the double-any procedure of the last section.

(define double-any
  (lambda (f x)
    (f x x)))

The variable double-any now has the same status as cons or the name of any other primitive procedure.
We can use double-any as if it were a primitive procedure.

(double-any + 10)  20
(double-any cons 'a)  (a . a)

A top-level definition may be established for any object, not just for procedures.

(define sandwich "peanut-butter-and-jelly")

sandwich  "peanut-butter-and-jelly"

Most often, though, top-level definitions are used for procedures.

As suggested above, top-level definitions may be shadowed by let or lambda bindings.

(define xyz '(x y z))
(let ([xyz '(z y x)])
  xyz)  (z y x)

Variables with top-level definitions act almost as if they were bound by a let expression enclosing all of the
expressions you type.

Given only the simple tools you have read about up to this point, it is already possible to define some of the
primitive procedures provided by Scheme and described later in this book. If you completed the exercises
from the last section, you should already know how to define list.

(define list (lambda x x))

Also, Scheme provides the abbreviations cadr and cddr for the compositions of car with cdr and cdr
with cdr. That is, (cadr list) is equivalent to (car (cdr list)), and, similarly, (cddr list)
is equivalent to (cdr (cdr list)). They are easily defined as follows.

(define cadr
  (lambda (x)
    (car (cdr x))))

(define cddr
  (lambda (x)
    (cdr (cdr x))))
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(cadr '(a b c))  b
(cddr '(a b c))  (c)

Any definition (define var expr) where expr is a lambda expression can be written in a shorter
form that suppresses the lambda. The exact syntax depends upon the format of the lambda expression's
formal parameter specifier, i.e., whether it is a proper list of variables, a single variable, or an improper list of
variables. A definition of the form

(define var0
  (lambda (var1 ... varn)

e1 e2 ...))

may be abbreviated

(define (var0 var1 ... varn)
e1 e2 ...)

while

(define var0
  (lambda varr

e1 e2 ...))

may be abbreviated

(define (var0 . varr)
e1 e2 ...)

and

(define var0
  (lambda (var1 ... varn . varr)

e1 e2 ...))

may be abbreviated

(define (var0 var1 ... varn . varr)
e1 e2 ...)

For example, the definitions of cadr and list might be written as follows.

(define (cadr x)
  (car (cdr x)))

(define (list . x) x)

This book does not often employ this alternative syntax. Although it is shorter, it tends to mask the reality that
procedures are not intimately tied to variables, or names, as they are in many other languages. This syntax is
often referred to, somewhat pejoratively, as the "defun" syntax for define, after the defun form provided
by Lisp languages in which procedures are more closely tied to their names.

Top-level definitions make it easier for us to experiment with a procedure interactively because we need not
retype the procedure each time it is used. Let's try defining a somewhat more complicated variation of
double-any, one that turns an "ordinary" two-argument procedure into a "doubling" one-argument
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procedure.

(define doubler
  (lambda (f)
    (lambda (x) (f x x))))

doubler accepts one argument, f, which must be a procedure that accepts two arguments. The procedure
returned by doubler accepts one argument, which it uses for both arguments in an application of f. We can
define, with doubler, the simple double and double-cons procedures of the last section.

(define double (doubler +))
(double 13/2)  13

(define double-cons (doubler cons))
(double-cons 'a)  (a . a)

We can also define double-any with doubler.

(define double-any
  (lambda (f x)
    ((doubler f) x)))

Within double and double-cons, f has the appropriate value, i.e., + or cons, even though the
procedures are clearly applied outside the scope of f.

What happens if you attempt to use a variable that is not bound by a let or lambda expression and that does
not have a top-level definition? Try using the variable i-am-not-defined to see what happens.

(i-am-not-defined 3)

Most Scheme systems print a message indicating that an unbound- or undefined-variable exception has
occurred.

The system should not, however, complain about the appearance of an undefined variable within a lambda
expression, until and unless the resulting procedure is applied. The following should not cause an exception,
even though we have not yet established a top-level definition of proc2.

(define proc1
  (lambda (x y)
    (proc2 y x)))

If you try to apply proc1 before defining proc2, you should get a undefined exception message. Let's give
proc2 a top-level definition and try proc1.

(define proc2 cons)
(proc1 'a 'b)  (b . a)

When you define proc1, the system accepts your promise to define proc2, and does not complain unless
you use proc1 before defining proc2. This allows you to define procedures in any order you please. This is
especially useful when you are trying to organize a file full of procedure definitions in a way that makes your
program more readable. It is necessary when two procedures defined at top level depend upon each other; we
will see some examples of this later.
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Exercise 2.6.1

What would happen if you were to type

(double-any double-any double-any)

given the definition of double-any from the beginning of this section?

Exercise 2.6.2

A more elegant (though possibly less efficient) way to define cadr and cddr than given in this section is to
define a procedure that composes two procedures to create a third. Write the procedure compose, such that
(compose p1 p2) is the composition of p1 and p2 (assuming both take one argument). That is,
(compose p1 p2) should return a new procedure of one argument that applies p1 to the result of applying
p2 to the argument. Use compose to define cadr and cddr.

Exercise 2.6.3

Scheme also provides caar, cdar, caaar, caadr, and so on, with any combination of up to four a's
(representing car) and d's (representing cdr) between the c and the r (see Section 6.3). Define each of these
with the compose procedure of the preceding exercise.

Section 2.7. Conditional Expressions

So far we have considered expressions that perform a given task unconditionally. Suppose that we wish to
write the procedure abs. If its argument x is negative, abs returns -x; otherwise, it returns x. The most
straightforward way to write abs is to determine whether the argument is negative and if so negate it, using
the if syntactic form.

(define abs
  (lambda (n)
    (if (< n 0)
        (- 0 n)
        n)))

(abs 77)  77
(abs -77)  77

An if expression has the form (if test consequent alternative), where consequent is the
expression to evaluate if test is true and alternative is the expression to evaluate if test is false. In
the expression above, test is (< n 0), consequent is (- 0 n), and alternative is n.

The procedure abs could be written in a variety of other ways. Any of the following are valid definitions of
abs.

(define abs
  (lambda (n)
    (if (>= n 0)
        n
        (- 0 n))))

(define abs
  (lambda (n)
    (if (not (< n 0))
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        n
        (- 0 n))))

(define abs
  (lambda (n)
    (if (or (> n 0) (= n 0))
        n
        (- 0 n))))

(define abs
  (lambda (n)
    (if (= n 0)
        0
        (if (< n 0)
            (- 0 n)
            n))))

(define abs
  (lambda (n)
    ((if (>= n 0) + -)
     0
     n)))

The first of these definitions asks if n is greater than or equal to zero, inverting the test. The second asks if n
is not less than zero, using the procedure not with <. The third asks if n is greater than zero or n is equal to
zero, using the syntactic form or. The fourth treats zero separately, though there is no benefit in doing so. The
fifth is somewhat tricky; n is either added to or subtracted from zero, depending upon whether n is greater
than or equal to zero.

Why is if a syntactic form and not a procedure? In order to answer this, let's revisit the definition of
reciprocal from the first section of this chapter.

(define reciprocal
  (lambda (n)
    (if (= n 0)
        "oops!"
        (/ 1 n))))

The second argument to the division procedure should not be zero, since the result is mathematically
undefined. Our definition of reciprocal avoids this problem by testing for zero before dividing. Were if
a procedure, its arguments (including (/ 1 n)) would be evaluated before it had a chance to choose
between the consequent and alternative. Like quote, which does not evaluate its only subexpression, if
does not evaluate all of its subexpressions and so cannot be a procedure.

The syntactic form or operates in a manner similar to if. The general form of an or expression is
(or expr ...). If there are no subexpressions, i.e., the expression is simply (or), the value is false.
Otherwise, each expr is evaluated in turn until either (a) one of the expressions evaluates to true or (b) no
more expressions are left. In case (a), the value is true; in case (b), the value is false.

To be more precise, in case (a), the value of the or expression is the value of the last subexpression evaluated.
This clarification is necessary because there are many possible true values. Usually, the value of a test
expression is one of the two objects #t, for true, or #f, for false.

(< -1 0)  #t
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(> -1 0)  #f

Every Scheme object, however, is considered to be either true or false by conditional expressions and by the
procedure not. Only #f is considered false; all other objects are considered true.

(if #t 'true 'false)  true
(if #f 'true 'false)  false
(if '() 'true 'false)  true
(if 1 'true 'false)  true
(if '(a b c) 'true 'false)  true

(not #t)  #f
(not "false")  #f
(not #f)  #t

(or)  #f
(or #f)  #f
(or #f #t)  #t
(or #f 'a #f)  a

The and syntactic form is similar in form to or, but an and expression is true if all its subexpressions are
true, and false otherwise. In the case where there are no subexpressions, i.e., the expression is simply (and),
the value is true. Otherwise, the subexpressions are evaluated in turn until either no more subexpressions are
left or the value of a subexpression is false. The value of the and expression is the value of the last
subexpression evaluated.

Using and, we can define a slightly different version of reciprocal.

(define reciprocal
  (lambda (n)
    (and (not (= n 0))
         (/ 1 n))))

(reciprocal 3)  1/3
(reciprocal 0.5)  2.0
(reciprocal 0)  #f

In this version, the value is #f if n is zero and 1/n otherwise.

The procedures =, <, >, <=, and >= are called predicates. A predicate is a procedure that answers a specific
question about its arguments and returns one of the two values #t or #f. The names of most predicates end
with a question mark ( ? ); the common numeric procedures listed above are exceptions to this rule. Not all
predicates require numeric arguments, of course. The predicate null? returns true if its argument is the
empty list () and false otherwise.

(null? '())  #t
(null? 'abc)  #f
(null? '(x y z))  #f
(null? (cdddr '(x y z)))  #t

The procedure cdr must not be passed anything other than a pair, and an exception is raised when this
happens. Common Lisp, however, defines (cdr '()) to be (). The following procedure, lisp-cdr, is
defined using null? to return () if its argument is ().
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(define lisp-cdr
  (lambda (x)
    (if (null? x)
        '()
        (cdr x))))

(lisp-cdr '(a b c))  (b c)
(lisp-cdr '(c))  ()
(lisp-cdr '())  ()

Another useful predicate is eqv?, which requires two arguments. If the two arguments are equivalent, eqv?
returns true. Otherwise, eqv? returns false.

(eqv? 'a 'a)  #t
(eqv? 'a 'b)  #f
(eqv? #f #f)  #t
(eqv? #t #t)  #t
(eqv? #f #t)  #f
(eqv? 3 3)  #t
(eqv? 3 2)  #f
(let ([x "Hi Mom!"])
  (eqv? x x))  #t
(let ([x (cons 'a 'b)])
  (eqv? x x))  #t
(eqv? (cons 'a 'b) (cons 'a 'b))  #f

As you can see, eqv? returns true if the arguments are the same symbol, boolean, number, pair, or string.
Two pairs are not the same by eqv? if they are created by different calls to cons, even if they have the same
contents. Detailed equivalence rules for eqv? are given in Section 6.2.

Scheme also provides a set of type predicates that return true or false depending on the type of the object, e.g.,
pair?, symbol?, number?, and string?. The predicate pair?, for example, returns true only if its
argument is a pair.

(pair? '(a . c))  #t
(pair? '(a b c))  #t
(pair? '())  #f
(pair? 'abc)  #f
(pair? "Hi Mom!")  #f
(pair? 1234567890)  #f

Type predicates are useful for deciding if the argument passed to a procedure is of the appropriate type. For
example, the following version of reciprocal checks first to see that its argument is a number before
testing against zero or performing the division.

(define reciprocal
  (lambda (n)
    (if (and (number? n) (not (= n 0)))
        (/ 1 n)
        "oops!")))

(reciprocal 2/3)  3/2
(reciprocal 'a)  "oops!"
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By the way, the code that uses reciprocal must check to see that the returned value is a number and not a
string. To relieve the caller of this obligation, it is usually preferable to report the error, using
assertion-violation, as follows.

(define reciprocal
  (lambda (n)
    (if (and (number? n) (not (= n 0)))
        (/ 1 n)
        (assertion-violation 'reciprocal
          "improper argument"
          n))))

(reciprocal .25)  4.0
(reciprocal 0) exception in reciprocal: improper argument 0
(reciprocal 'a) exception in reciprocal: improper argument a

The first argument to assertion-violation is a symbol identifying where the message originates, the
second is a string describing the error, and the third and subsequent arguments are "irritants" to be included
with the error message.

Let's look at one more conditional expression, cond, that is often useful in place of if. cond is similar to if
except that it allows multiple test and alternative expressions. Consider the following definition of sign,
which returns -1 for negative inputs, +1 for positive inputs, and 0 for zero.

(define sign
  (lambda (n)
    (if (< n 0)
        -1
        (if (> n 0)
            +1
            0))))

(sign -88.3)  -1
(sign 0)  0
(sign 333333333333)  1
(* (sign -88.3) (abs -88.3))  -88.3

The two if expressions may be replaced by a single cond expression as follows.

(define sign
  (lambda (n)
    (cond
      [(< n 0) -1]
      [(> n 0) +1]
      [else 0])))

A cond expression usually takes the form

(cond (test expr) ... (else expr))

though the else clause may be omitted. This should be done only when there is no possibility that all the
tests will fail, as in the new version of sign below.

(define sign
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  (lambda (n)
    (cond
      [(< n 0) -1]
      [(> n 0) +1]
      [(= n 0) 0])))

These definitions of sign do not depend on the order in which the tests are performed, since only one of the
tests can be true for any value of n. The following procedure computes the tax on a given amount of income
in a progressive tax system with breakpoints at 10,000, 20,000, and 30,000 dollars.

(define income-tax
  (lambda (income)
    (cond
      [(<= income 10000) (* income .05)]
      [(<= income 20000) (+ (* (- income 10000) .08) 500.00)]
      [(<= income 30000) (+ (* (- income 20000) .13) 1300.00)]
      [else (+ (* (- income 30000) .21) 2600.00)])))

(income-tax 5000)  250.0
(income-tax 15000)  900.0
(income-tax 25000)  1950.0
(income-tax 50000)  6800.0

In this example, the order in which the tests are performed, left to right (top to bottom), is significant.

Exercise 2.7.1

Define the predicate atom?, which returns true if its argument is not a pair and false if it is.

Exercise 2.7.2

The procedure length returns the length of its argument, which must be a list. For example,
(length '(a b c)) is 3. Using length, define the procedure shorter, which returns the shorter of
two list arguments. Have it return the first list if they have the same length.

(shorter '(a b) '(c d e))  (a b)
(shorter '(a b) '(c d))  (a b)
(shorter '(a b) '(c))  (c)

Section 2.8. Simple Recursion

We have seen how we can control whether or not expressions are evaluated with if, and, or, and cond. We
can also perform an expression more than once by creating a procedure containing the expression and
invoking the procedure more than once. What if we need to perform some expression repeatedly, say for all
the elements of a list or all the numbers from one to ten? We can do so via recursion. Recursion is a simple
concept: the application of a procedure from within that procedure. It can be tricky to master recursion at first,
but once mastered it provides expressive power far beyond ordinary looping constructs.

A recursive procedure is a procedure that applies itself. Perhaps the simplest recursive procedure is the
following, which we will call goodbye.

(define goodbye
  (lambda ()
    (goodbye)))
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(goodbye) 

This procedure takes no arguments and simply applies itself immediately. There is no value after the 
because goodbye never returns.

Obviously, to make practical use out of a recursive procedure, we must have some way to terminate the
recursion. Most recursive procedures should have at least two basic elements, a base case and a recursion
step. The base case terminates the recursion, giving the value of the procedure for some base argument. The
recursion step gives the value in terms of the value of the procedure applied to a different argument. In order
for the recursion to terminate, the different argument must be closer to the base argument in some way.

Let's consider the problem of finding the length of a proper list recursively. We need a base case and a
recursion step. The logical base argument for recursion on lists is nearly always the empty list. The length of
the empty list is zero, so the base case should give the value zero for the empty list. In order to become closer
to the empty list, the natural recursion step involves the cdr of the argument. A nonempty list is one element
longer than its cdr, so the recursion step gives the value as one more than the length of the cdr of the list.

(define length
  (lambda (ls)
    (if (null? ls)
        0
        (+ (length (cdr ls)) 1))))

(length '())  0
(length '(a))  1
(length '(a b))  2

The if expression asks if the list is empty. If so, the value is zero. This is the base case. If not, the value is
one more than the length of the cdr of the list. This is the recursion step.

Many Scheme implementations allow you to trace the execution of a procedure to see how it operates. In
Chez Scheme, for example, one way to trace a procedure is to type (trace name), where name is the
name of a procedure you have defined at top level. If you trace length as defined above and pass it the
argument '(a b c d), you should see something like this:

|(length (a b c d))
| (length (b c d))
| |(length (c d))
| | (length (d))
| | |(length ())
| | |0
| | 1
| |2
| 3
|4

The indentation shows the nesting level of the recursion; the vertical lines associate applications visually with
their values. Notice that on each application of length the list gets smaller until it finally reaches (). The
value at () is 0, and each outer level adds 1 to arrive at the final value.

Let's write a procedure, list-copy, that returns a copy of its argument, which must be a list. That is,
list-copy returns a new list consisting of the elements (but not the pairs) of the old list. Making a copy
might be useful if either the original list or the copy might be altered via set-car! or set-cdr!, which
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we discuss later.

(list-copy '())  ()
(list-copy '(a b c))  (a b c)

See if you can define list-copy before studying the definition below.

(define list-copy
  (lambda (ls)
    (if (null? ls)
        '()
        (cons (car ls)
              (list-copy (cdr ls))))))

The definition of list-copy is similar to the definition of length. The test in the base case is the same,
(null? ls). The value in the base case is (), however, not 0, because we are building up a list, not a
number. The recursive call is the same, but instead of adding one, list-copy conses the car of the list onto
the value of the recursive call.

There is no reason why there cannot be more than one base case. The procedure memv takes two arguments,
an object and a list. It returns the first sublist, or tail, of the list whose car is equal to the object, or #f if the
object is not found in the list. The value of memv may be used as a list or as a truth value in a conditional
expression.

(define memv
  (lambda (x ls)
    (cond
      [(null? ls) #f]
      [(eqv? (car ls) x) ls]
      [else (memv x (cdr ls))])))

(memv 'a '(a b b d))  (a b b d)
(memv 'b '(a b b d))  (b b d)
(memv 'c '(a b b d))  #f
(memv 'd '(a b b d))  (d)
(if (memv 'b '(a b b d))
    "yes"
    "no")  "yes"

Here there are two conditions to check, hence the use of cond. The first cond clause checks for the base value
of (); no object is a member of (), so the answer is #f. The second clause asks if the car of the list is the
object, in which case the list is returned, being the first tail whose car contains the object. The recursion step
just continues down the list.

There may also be more than one recursion case. Like memv, the procedure remv defined below takes two
arguments, an object and a list. It returns a new list with all occurrences of the object removed from the list.

(define remv
  (lambda (x ls)
    (cond
      [(null? ls) '()]
      [(eqv? (car ls) x) (remv x (cdr ls))]
      [else (cons (car ls) (remv x (cdr ls)))])))
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(remv 'a '(a b b d))  (b b d)
(remv 'b '(a b b d))  (a d)
(remv 'c '(a b b d))  (a b b d)
(remv 'd '(a b b d))  (a b b)

This definition is similar to the definition of memv above, except remv does not quit once it finds the element
in the car of the list. Rather, it continues, simply ignoring the element. If the element is not found in the car of
the list, remv does the same thing as list-copy above: it conses the car of the list onto the recursive value.

Up to now, the recursion has been only on the cdr of a list. It is sometimes useful, however, for a procedure to
recur on the car as well as the cdr of the list. The procedure tree-copy defined below treats the structure of
pairs as a tree rather than as a list, with the left subtree being the car of the pair and the right subtree being the
cdr of the pair. It performs a similar operation to list-copy, building new pairs while leaving the elements
(leaves) alone.

(define tree-copy
  (lambda (tr)
    (if (not (pair? tr))
        tr
        (cons (tree-copy (car tr))
              (tree-copy (cdr tr))))))

(tree-copy '((a . b) . c))  ((a . b) . c)

The natural base argument for a tree structure is anything that is not a pair, since the recursion traverses pairs
rather than lists. The recursive step in this case is doubly recursive, finding the value recursively for the car as
well as the cdr of the argument.

At this point, readers who are familiar with other languages that provide special iteration constructs, e.g.,
while or for loops, might wonder whether similar constructs are required in Scheme. Such constructs are
unnecessary; iteration in Scheme is expressed more clearly and succinctly via recursion. Recursion is more
general and eliminates the need for the variable assignments required by many other languages' iteration
constructs, resulting in code that is more reliable and easier to follow. Some recursion is essentially iteration
and executes as such; Section 3.2 has more to say about this. Often, there is no need to make a distinction,
however. Concentrate instead on writing clear, concise, and correct programs.

Before we leave the topic of recursion, let's consider a special form of repetition called mapping. Consider the
following procedure, abs-all, that takes a list of numbers as input and returns a list of their absolute values.

(define abs-all
  (lambda (ls)
    (if (null? ls)
        '()
        (cons (abs (car ls))
              (abs-all (cdr ls))))))

(abs-all '(1 -2 3 -4 5 -6))  (1 2 3 4 5 6)

This procedure forms a new list from the input list by applying the procedure abs to each element. We say
that abs-all maps abs over the input list to produce the output list. Mapping a procedure over a list is a
fairly common thing to do, so Scheme provides the procedure map, which maps its first argument, a
procedure, over its second, a list. We can use map to define abs-all.

(define abs-all

The Scheme Programming Language, 4th Edition

40 Section 2.8. Simple Recursion



  (lambda (ls)
    (map abs ls)))

We really do not need abs-all, however, since the corresponding direct application of map is just as short
and perhaps clearer.

(map abs '(1 -2 3 -4 5 -6))  (1 2 3 4 5 6)

Of course, we can use lambda to create the procedure argument to map, e.g., to square the elements of a list
of numbers.

(map (lambda (x) (* x x))
     '(1 -3 -5 7))  (1 9 25 49)

We can map a multiple-argument procedure over multiple lists, as in the following example.

(map cons '(a b c) '(1 2 3))  ((a . 1) (b . 2) (c . 3))

The lists must be of the same length, and the procedure should accept as many arguments as there are lists.
Each element of the output list is the result of applying the procedure to corresponding members of the input
list.

Looking at the first definition of abs-all above, you should be able to derive, before studying it, the
following definition of map1, a restricted version of map that maps a one-argument procedure over a single
list.

(define map1
  (lambda (p ls)
    (if (null? ls)
        '()
        (cons (p (car ls))
              (map1 p (cdr ls))))))

(map1 abs '(1 -2 3 -4 5 -6))  (1 2 3 4 5 6)

All we have done is to replace the call to abs in abs-all with a call to the new parameter p. A definition of
the more general map is given in Section 5.4.

Exercise 2.8.1

Describe what would happen if you switched the order of the arguments to cons in the definition of
tree-copy.

Exercise 2.8.2

Consult Section 6.3 for the description of append and define a two-argument version of it. What would
happen if you switched the order of the arguments in the call to append within your definition of append?

Exercise 2.8.3

Define the procedure make-list, which takes a nonnegative integer n and an object and returns a new list,
n long, each element of which is the object.

(make-list 7 '())  (() () () () () () ())
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[Hint: The base test should be (= n 0), and the recursion step should involve (- n 1). Whereas () is the
natural base case for recursion on lists, 0 is the natural base case for recursion on nonnegative integers.
Similarly, subtracting 1 is the natural way to bring a nonnegative integer closer to 0.]

Exercise 2.8.4

The procedures list-ref and list-tail return the nth element and nth tail of a list ls.

(list-ref '(1 2 3 4) 0)  1
(list-tail '(1 2 3 4) 0)  (1 2 3 4)
(list-ref '(a short (nested) list) 2)  (nested)
(list-tail '(a short (nested) list) 2)  ((nested) list)

Define both procedures.

Exercise 2.8.5

Exercise 2.7.2 had you use length in the definition of shorter, which returns the shorter of its two list
arguments, or the first if the two have the same length. Write shorter without using length. [Hint: Define
a recursive helper, shorter?, and use it in place of the length comparison.]

Exercise 2.8.6

All of the recursive procedures shown so far have been directly recursive. That is, each procedure directly
applies itself to a new argument. It is also possible to write two procedures that use each other, resulting in
indirect recursion. Define the procedures odd? and even?, each in terms of the other. [Hint: What should
each return when its argument is 0?]

(even? 17)  #f
(odd? 17)  #t

Exercise 2.8.7

Use map to define a procedure, transpose, that takes a list of pairs and returns a pair of lists as follows.

(transpose '((a . 1) (b . 2) (c . 3)))  ((a b c) 1 2 3)

[Hint: ((a b c) 1 2 3) is the same as ((a b c) . (1 2 3)).]

Section 2.9. Assignment

Although many programs can be written without them, assignments to top-level variables or let-bound and
lambda-bound variables are sometimes useful. Assignments do not create new bindings, as with let or
lambda, but rather change the values of existing bindings. Assignments are performed with set!.

(define abcde '(a b c d e))
abcde  (a b c d e)
(set! abcde (cdr abcde))
abcde  (b c d e)
(let ([abcde '(a b c d e)])
  (set! abcde (reverse abcde))
  abcde)  (e d c b a)
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Many languages require the use of assignments to initialize local variables, separate from the declaration or
binding of the variables. In Scheme, all local variables are given a value immediately upon binding. Besides
making the separate assignment to initialize local variables unnecessary, it ensures that the programmer
cannot forget to initialize them, a common source of errors in most languages.

In fact, most of the assignments that are either necessary or convenient in other languages are both
unnecessary and inconvenient in Scheme, since there is typically a clearer way to express the same algorithm
without assignments. One common practice in some languages is to sequence expression evaluation with a
series of assignments, as in the following procedure that finds the roots of a quadratic equation.

(define quadratic-formula
  (lambda (a b c)
    (let ([root1 0] [root2 0] [minusb 0] [radical 0] [divisor 0])
      (set! minusb (- 0 b))
      (set! radical (sqrt (- (* b b) (* 4 (* a c)))))
      (set! divisor (* 2 a))
      (set! root1 (/ (+ minusb radical) divisor))
      (set! root2 (/ (- minusb radical) divisor))
      (cons root1 root2))))

The roots are computed according to the well-known quadratic formula,

which yields the solutions to the equation 0 = ax2 + bx + c. The let expression in this definition is employed
solely to establish the variable bindings, corresponding to the declarations required in other languages. The
first three assignment expressions compute subpieces of the formula, namely -b, , and 2a. The last
two assignment expressions compute the two roots in terms of the subpieces. A pair of the two roots is the
value of quadratic-formula. For example, the two roots of 2x2 - 4x - 6 are x = 3 and x = -1.

(quadratic-formula 2 -4 -6)  (3 . -1)

The definition above works, but it can be written more clearly without the assignments, as shown below.

(define quadratic-formula
  (lambda (a b c)
    (let ([minusb (- 0 b)]
          [radical (sqrt (- (* b b) (* 4 (* a c))))]
          [divisor (* 2 a)])
      (let ([root1 (/ (+ minusb radical) divisor)]
            [root2 (/ (- minusb radical) divisor)])
        (cons root1 root2)))))

In this version, the set! expressions are gone, and we are left with essentially the same algorithm. By
employing two let expressions, however, the definition makes clear the dependency of root1 and root2
on the values of minusb, radical, and divisor. Equally important, the let expressions make clear the
lack of dependencies among minusb, radical, and divisor and between root1 and root2.

Assignments do have some uses in Scheme, otherwise the language would not support them. Consider the
following version of cons that counts the number of times it is called, storing the count in a variable named
cons-count. It uses set! to increment the count; there is no way to achieve the same behavior without
assignments.

(define kons-count 0)
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(define kons
  (lambda (x y)
    (set! kons-count (+ kons-count 1))
    (cons x y)))

(kons 'a '(b c))  (a b c)
kons-count  1
(kons 'a (kons 'b (kons 'c '())))  (a b c)
kons-count  4

Assignments are commonly used to implement procedures that must maintain some internal state. For
example, suppose we would like to define a procedure that returns 0 the first time it is called, 1 the second
time, 2 the third time, and so on indefinitely. We could write something similar to the definition of
cons-count above:

(define next 0)
(define count
  (lambda ()
    (let ([v next])
      (set! next (+ next 1))
      v)))

(count)  0
(count)  1

This solution is somewhat undesirable in that the variable next is visible at top level even though it need not
be. Since it is visible at top level, any code in the system can change its value, perhaps inadvertently affecting
the behavior of count in a subtle way. We can solve this problem by let-binding next outside of the
lambda expression:

(define count
  (let ([next 0])
    (lambda ()
      (let ([v next])
        (set! next (+ next 1))
        v))))

The latter solution also generalizes easily to provide multiple counters, each with its own local counter. The
procedure make-counter, defined below, returns a new counting procedure each time it is called.

(define make-counter
  (lambda ()
    (let ([next 0])
      (lambda ()
        (let ([v next])
          (set! next (+ next 1))
          v)))))

Since next is bound inside of make-counter but outside of the procedure returned by make-counter,
each procedure it returns maintains its own unique counter.

(define count1 (make-counter))
(define count2 (make-counter))
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(count1)  0
(count2)  0
(count1)  1
(count1)  2
(count2)  1

If a state variable must be shared by more than one procedure defined at top level, but we do not want the
state variable to be visible at top level, we can use let to bind the variable and set! to make the procedures
visible at top level.

(define shhh #f)
(define tell #f)
(let ([secret 0])
  (set! shhh
    (lambda (message)
      (set! secret message)))
  (set! tell
    (lambda ()
      secret)))

(shhh "sally likes harry")
(tell)  "sally likes harry"
secret exception: variable secret is not bound

Variables must be defined before they can be assigned, so we define shhh and tell to be #f initially. (Any
initial value would do.) We'll see this structure again in Section 3.5 and a better way to structure code like this
as a library in Section 3.6.

Local state is sometimes useful for caching computed values or allowing a computation to be evaluated lazily,
i.e., only once and only on demand. The procedure lazy below accepts a thunk, or zero-argument procedure,
as an argument. Thunks are often used to "freeze" computations that must be delayed for some reason, which
is exactly what we need to do in this situation. When passed a thunk t, lazy returns a new thunk that, when
invoked, returns the value of invoking t. Once computed, the value is saved in a local variable so that the
computation need not be performed again. A boolean flag is used to record whether t has been invoked and
its value saved.

(define lazy
  (lambda (t)
    (let ([val #f] [flag #f])
      (lambda ()
        (if (not flag)
            (begin (set! val (t))
                   (set! flag #t)))
        val))))

The syntactic form begin, used here for the first time, evaluates its subexpressions in sequence from left to
right and returns the value of the last subexpression, like the body of a let or lambda expression. We also
see that the alternative subexpression of an if expression can be omitted. This should be done only
when the value of the if is discarded, as it is in this case.

Lazy evaluation is especially useful for values that require considerable time to compute. By delaying the
evaluation, we might avoid computing the value altogether, and by saving the value, we avoid computing it
more than once.
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The operation of lazy can best be illustrated by printing a message from within a thunk passed to lazy.

(define p
  (lazy (lambda ()
          (display "Ouch!")
          (newline)
          "got me")))

The first time p is invoked, the message Ouch! is printed and the string "got me" is returned. Thereafter,
"got me" is returned but the message is not printed. The procedures display and newline are the first
examples of explicit input/output we have seen; display prints the string without quotation marks, and
newline prints a newline character.

To further illustrate the use of set!, let's consider the implementation of stack objects whose internal
workings are not visible on the outside. A stack object accepts one of four messages: empty?, which returns
#t if the stack is empty; push!, which adds an object to the top of the stack; top, which returns the object
on the top of the stack; and pop!, which removes the object on top of the stack. The procedure
make-stack given below creates a new stack each time it is called in a manner similar to
make-counter.

(define make-stack
  (lambda ()
    (let ([ls '()])
      (lambda (msg . args)
        (cond
          [(eqv? msg 'empty?) (null? ls)]
          [(eqv? msg 'push!) (set! ls (cons (car args) ls))]
          [(eqv? msg 'top) (car ls)]
          [(eqv? msg 'pop!) (set! ls (cdr ls))]
          [else "oops"])))))

Each stack is stored as a list bound to the variable ls; set! is used to change this binding for push! and
pop!. Notice that the argument list of the inner lambda expression uses the improper list syntax to bind
args to a list of all arguments but the first. This is useful here because in the case of empty?, top, and
pop! there is only one argument (the message), but in the case of push! there are two (the message and the
object to push onto the stack).

(define stack1 (make-stack))
(define stack2 (make-stack))
(list (stack1 'empty?) (stack2 'empty?))  (#t #t)

(stack1 'push! 'a)
(list (stack1 'empty?) (stack2 'empty?))  (#f #t)

(stack1 'push! 'b)
(stack2 'push! 'c)
(stack1 'top)  b
(stack2 'top)  c

(stack1 'pop!)
(stack1 'top)  a
(list (stack1 'empty?) (stack2 'empty?))  (#f #f)

(stack1 'pop!)
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(list (stack1 'empty?) (stack2 'empty?))  (#t #f)

As with the counters created by make-counter, the state maintained by each stack object is directly
accessible only within the object. Each reference or change to this state is made explicitly by the object itself.
One important benefit is that we can change the internal structure of the stack, perhaps to use a vector (see
Section 6.9) instead of a list to hold the elements, without changing its external behavior. Because the
behavior of the object is known abstractly (not operationally), it is known as an abstract object. See
Section 12.8 for more about creating abstract objects.

In addition to changing the values of variables, we can also change the values of the car and cdr fields of a
pair, using the procedures set-car! and set-cdr!.

(define p (list 1 2 3))
(set-car! (cdr p) 'two)
p  (1 two 3)
(set-cdr! p '())
p  (1)

We can use these operators to define a queue data type, which is like a stack except that new elements are
added at one end and extracted from the other. The following queue implementation uses a tconc structure. A
tconc consists of a nonempty list and a header. The header is a pair whose car points to the first pair (head) of
the list and whose cdr points to the last pair (end) of the list.

The last element of the list is a placeholder and not considered part of the queue.

Four operations on queues are defined below: make-queue, which constructs a queue; putq!, which adds
an element to the end of a queue; getq, which retrieves the element at the front of a queue; and delq!,
which removes the element at the front of a queue.

(define make-queue
  (lambda ()
    (let ([end (cons 'ignored '())])
      (cons end end))))

(define putq!
  (lambda (q v)
    (let ([end (cons 'ignored '())])
      (set-car! (cdr q) v)
      (set-cdr! (cdr q) end)
      (set-cdr! q end))))

(define getq
  (lambda (q)
    (car (car q))))

(define delq!
  (lambda (q)
    (set-car! q (cdr (car q)))))
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All are simple operations except for putq!, which modifies the end pair to contain the new value and adds a
new end pair.

(define myq (make-queue))

(putq! myq 'a)
(putq! myq 'b)
(getq myq)  a
(delq! myq)
(getq myq)  b
(delq! myq)
(putq! myq 'c)
(putq! myq 'd)
(getq myq)  c
(delq! myq)
(getq myq)  d

Exercise 2.9.1

Modify make-counter to take two arguments: an initial value for the counter to use in place of 0 and an
amount to increment the counter by each time.

Exercise 2.9.2

Look up the description of case in Section 5.3. Replace the cond expression in make-stack with an
equivalent case expression. Add mt? as a second name for the empty? message.

Exercise 2.9.3

Modify the stack object to allow the two messages ref and set!. (stack 'ref i) should return the
ith element from the top of the stack; (stack 'ref 0) should be equivalent to (stack 'top).
(stack 'set! i v) should change the ith element from the top of the stack to v.

(define stack (make-stack))

(stack 'push! 'a)
(stack 'push! 'b)
(stack 'push! 'c)

(stack 'ref 0)  c
(stack 'ref 2)  a
(stack 'set! 1 'd)
(stack 'ref 1)  d
(stack 'top)  c
(stack 'pop!)
(stack 'top)  d

[Hint: Use list-ref to implement ref and list-tail with set-car! to implement set!.]

Exercise 2.9.4

Scheme supports vectors as well as lists. Like lists, vectors are aggregate objects that contain other objects.
Unlike lists, vectors have a fixed size and are laid out in one flat block of memory, typically with a header
containing the length of the vector, as in the ten-element vector below.
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This makes vectors more suitable for applications needing fast access to any element of the aggregate but less
suitable for applications needing data structures that grow and shrink as needed.

Look up the basic vector operations in Section 6.9 and reimplement the stack object to use a vector instead
of a list to hold the stack contents. Include the ref and set! messages of Exercise 2.9.3. Have the new
make-stack accept a size argument n and make the vector length n, but do not otherwise change the
external (abstract) interface.

Exercise 2.9.5

Define a predicate, emptyq?, for determining if a queue is empty. Modify getq and delq! to raise an
exception when an empty queue is found, using assertion-violation.

Exercise 2.9.6

In the queue implementation, the last pair in the encapsulated list is a placeholder, i.e., it never holds anything
useful. Recode the queue operators to avoid this wasted pair. Make sure that the series of queue operations
given earlier works with the new implementation. Which implementation do you prefer?

Exercise 2.9.7

Using set-cdr!, it is possible to create cyclic lists. For example, the following expression evaluates to a list
whose car is the symbol a and whose cdr is the list itself.

(let ([ls (cons 'a '())])
  (set-cdr! ls ls)
  ls)

What happens when you enter the above expression during an interactive Scheme session? What will the
implementation of length on page 42 do when given a cyclic list? What does the built-in length primitive
do?

Exercise 2.9.8

Define the predicate list?, which returns #t if its argument is a proper list and #f otherwise (see
Section 6.3). It should return #f for cyclic lists as well as for lists terminated by objects other than ().

(list? '())  #t
(list? '(1 2 3))  #t
(list? '(a . b))  #f
(list? (let ([ls (cons 'a '())])
         (set-cdr! ls ls)
         ls))  #f

First write a simplified version of list? that does not handle cyclic lists, then extend this to handle cyclic
lists correctly. Revise your definition until you are satisfied that it is as clear and concise as possible. [Hint:
Use the following "hare and tortoise" algorithm to detect cycles. Define a recursive help procedure of two
arguments, the hare and the tortoise. Start both the hare and the tortoise at the beginning of the list. Have the
hare advance by two cdrs each time the tortoise advances by one cdr. If the hare catches the tortoise, there
must be a cycle.]
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Chapter 3. Going Further
The preceding chapter prepared you to write Scheme programs using a small set of the most useful primitive
syntactic forms and procedures. This chapter introduces a number of additional features and programming
techniques that will allow you to write more sophisticated and efficient programs.

Section 3.1. Syntactic Extension

As we saw in Section 2.5, the let syntactic form is merely a syntactic extension defined in terms of a
lambda expression and a procedure application, both core syntactic forms. At this point, you might be
wondering which syntactic forms are core forms and which are syntactic extensions, and how new syntactic
extensions may be defined. This section provides some answers to these questions.

In truth, it is not necessary for us to draw a distinction between core forms and syntactic extensions, since
once defined, a syntactic extension has exactly the same status as a core form. Drawing a distinction,
however, makes understanding the language easier, since it allows us to focus attention on the core forms and
to understand all others in terms of them.

It is necessary for a Scheme implementation to distinguish between core forms and syntactic extensions. A
Scheme implementation expands syntactic extensions into core forms as the first step of compilation or
interpretation, allowing the rest of the compiler or interpreter to focus only on the core forms. The set of core
forms remaining after expansion to be handled directly by the compiler or interpreter is
implementation-dependent, however, and may be different from the set of forms described as core here.

The exact set of syntactic forms making up the core of the language is thus subject to debate, although it must
be possible to derive all other forms from any set of forms declared to be core forms. The set described here is
among the simplest for which this constraint is satisfied.

The core syntactic forms include top-level define forms, constants, variables, procedure applications,
quote expressions, lambda expressions, if expressions, and set! expressions. The grammar below
describes the core syntax of Scheme in terms of these definitions and expressions. In the grammar, vertical
bars ( | ) separate alternatives, and a form followed by an asterisk ( * ) represents zero or more occurrences of
the form. <variable> is any Scheme identifier. <datum> is any Scheme object, such as a number, list, symbol,
or vector. <boolean> is either #t or #f, <number> is any number, <character> is any character, and <string>
is any string. We have already seen examples of numbers, strings, lists, symbols, and booleans. See Chapter 6
or the formal syntax description starting on page 455 for more on the object-level syntax of these and other
objects.

<program> <form>*
<form> <definition> | <expression>
<definition> <variable definition> | (begin <definition>*)
<variable definition> (define <variable> <expression>)
<expression> <constant>

| <variable>
| (quote <datum>)
| (lambda <formals> <expression> <expression>*)
| (if <expression> <expression> <expression>)
| (set! <variable> <expression>)
| <application>

<constant> <boolean> | <number> | <character> | <string>
<formals> <variable>
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| (<variable>*)
| (<variable> <variable>* . <variable>)

<application> (<expression> <expression>*)
The grammar is ambiguous in that the syntax for procedure applications conflicts with the syntaxes for
quote, lambda, if, and set! expressions. In order to qualify as a procedure application, the first
<expression> must not be one of these keywords, unless the keyword has been redefined or locally bound.

The "defun" syntax for define given in Section 2.6 is not included in the core, since definitions in that form
are straightforwardly translated into the simpler define syntax. Similarly, the core syntax for if does not
permit the alternative to be omitted, as did one example in Section 2.9. An if expression lacking an
alternative can be translated into the core syntax for if merely by replacing the missing subexpression
with an arbitrary constant, such as #f.

A begin that contains only definitions is considered to be a definition in the grammar; this is permitted in
order to allow syntactic extensions to expand into more than one definition. begin expressions, i.e., begin
forms containing expressions, are not considered core forms. A begin expression of the form

(begin e1 e2 ...)

is equivalent to the lambda application

((lambda () e1 e2 ...))

and hence need not be considered core.

Now that we have established a set of core syntactic forms, let's turn to a discussion of syntactic extensions.
Syntactic extensions are so called because they extend the syntax of Scheme beyond the core syntax. All
syntactic extensions in a Scheme program must ultimately be derived from the core forms. One syntactic
extension, however, may be defined in terms of another syntactic extension, as long as the latter is in some
sense "closer" to the core syntax. Syntactic forms may appear anywhere an expression or definition is
expected, as long as the extended form expands into a definition or expression as appropriate.

Syntactic extensions are defined with define-syntax. define-syntax is similar to define, except
that define-syntax associates a syntactic transformation procedure, or transformer, with a keyword (such
as let), rather than associating a value with a variable. Here is how we might define let with
define-syntax.

(define-syntax let
  (syntax-rules ()
    [(_ ((x e) ...) b1 b2 ...)
     ((lambda (x ...) b1 b2 ...) e ...)]))

The identifier appearing after define-syntax is the name, or keyword, of the syntactic extension being
defined, in this case let. The syntax-rules form is an expression that evaluates to a transformer. The
item following syntax-rules is a list of auxiliary keywords and is nearly always (). An example of an
auxiliary keyword is the else of cond. (Other examples requiring the use of auxiliary keywords are given in
Chapter 8.) Following the list of auxiliary keywords is a sequence of one or more rules, or pattern/template
pairs. Only one rule appears in our definition of let. The pattern part of a rule specifies the form that the
input must take, and the template specifies to what the input should be transformed.

The pattern should always be a structured expression whose first element is an underscore ( _ ). (As we will
see in Chapter 8, the use of _ is only a convention, but it is a good one to follow.) If more than one rule is
present, the appropriate one is chosen by matching the patterns, in order, against the input during expansion. It
is a syntax violation if none of the patterns match the input.
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Identifiers other than an underscore or ellipsis appearing within a pattern are pattern variables, unless they are
listed as auxiliary keywords. Pattern variables match any substructure and are bound to that substructure
within the corresponding template. The notation pat ... in the pattern allows for zero or more expressions
matching the ellipsis prototype pat in the input. Similarly, the notation expr ... in the template produces
zero or more expressions from the ellipsis prototype expr in the output. The number of pats in the input
determines the number of exprs in the output; in order for this to work, any ellipsis prototype in the template
must contain at least one pattern variable from an ellipsis prototype in the pattern.

The single rule in our definition of let should be fairly self-explanatory, but a few points are worth
mentioning. First, the syntax of let requires that the body contain at least one form; hence, we have specified
b1 b2 ... instead of b ..., which might seem more natural. On the other hand, let does not require
that there be at least one variable/value pair, so we were able to use, simply, (x e) .... Second, the pattern
variables x and e, though together within the same prototype in the pattern, are separated in the template; any
sort of rearrangement or recombination is possible. Finally, the three pattern variables x, e, and b2 that
appear in ellipsis prototypes in the pattern also appear in ellipsis prototypes in the template. This is not a
coincidence; it is a requirement. In general, if a pattern variable appears within an ellipsis prototype in the
pattern, it cannot appear outside an ellipsis prototype in the template.

The definition of and below is somewhat more complex than the one for let.

(define-syntax and
  (syntax-rules ()
    [(_) #t]
    [(_ e) e]
    [(_ e1 e2 e3 ...)
     (if e1 (and e2 e3 ...) #f)]))

This definition is recursive and involves more than one rule. Recall that (and) evaluates to #t; the first rule
takes care of this case. The second and third rules specify the base case and recursion steps of the recursion
and together translate and expressions with two or more subexpressions into nested if expressions. For
example, (and a b c) expands first into

(if a (and b c) #f)

then

(if a (if b (and c) #f) #f)

and finally

(if a (if b c #f) #f)

With this expansion, if a and b evaluate to a true value, then the value is the value of c, otherwise #f, as
desired.

The version of and below is simpler but, unfortunately, incorrect.

(define-syntax and ; incorrect!
  (syntax-rules ()
    [(_) #t]
    [(_ e1 e2 ...)
     (if e1 (and e2 ...) #f)]))

The expression
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(and (not (= x 0)) (/ 1 x))

should return the value of (/ 1 x) when x is not zero. With the incorrect version of and, the expression
expands as follows.

(if (not (= x 0)) (and (/ 1 x)) #f) 
  (if (not (= x 0)) (if (/ 1 x) (and) #f) #f) 
  (if (not (= x 0)) (if (/ 1 x) #t #f) #f)

The final answer if x is not zero is #t, not the value of (/ 1 x).

The definition of or below is similar to the one for and except that a temporary variable must be introduced
for each intermediate value so that we can both test the value and return it if it is a true value. (A temporary
variable is not needed for and since there is only one false value, #f.)

(define-syntax or
  (syntax-rules ()
    [(_) #f]
    [(_ e) e]
    [(_ e1 e2 e3 ...)
     (let ([t e1])
       (if t t (or e2 e3 ...)))]))

Like variables bound by lambda or let, identifiers introduced by a template are lexically scoped, i.e.,
visible only within expressions introduced by the template. Thus, even if one of the expressions e2 e3 ...
contains a reference to t, the introduced binding for t does not "capture" those references. This is typically
accomplished via automatic renaming of introduced identifiers.

As with the simpler version of and given above, the simpler version of or below is incorrect.

(define-syntax or ; incorrect!
  (syntax-rules ()
    [(_) #f]
    [(_ e1 e2 ...)
     (let ([t e1])
       (if t t (or e2 ...)))]))

The reason is more subtle, however, and is the subject of Exercise 3.2.6.

Exercise 3.1.1

Write out the expansion steps necessary to expand

(let ([x (memv 'a ls)])
  (and x (memv 'b x)))

into core forms.

Exercise 3.1.2

Write out the expansion steps necessary to expand

(or (memv x '(a b c)) (list x))
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into core forms.

Exercise 3.1.3

let* is similar to let but evaluates its bindings in sequence. Each of the right-hand-side expressions is
within the scope of the earlier bindings.

(let* ([a 5] [b (+ a a)] [c (+ a b)])
  (list a b c))  (5 10 15)

let* can be implemented as nested let expressions. For example, the let* expression above is equivalent
to the nested let expressions below.

(let ([a 5])
  (let ([b (+ a a)])
    (let ([c (+ a b)])
      (list a b c))))  (5 10 15)

Define let* with define-syntax.

Exercise 3.1.4

As we saw in Section 2.9, it is legal to omit the third, or alternative, subexpression of an if expression.
Doing so, however, often leads to confusion. Scheme provides two syntactic forms, when and unless, that
may be used in place of such "one-armed" if expressions.

(when test expr1 expr2 ...)
(unless test expr1 expr2 ...)

With both forms, test is evaluated first. For when, if test evaluates to true, the remaining forms are
evaluated in sequence as if enclosed in an implicit begin expression. If test evaluates to false, the
remaining forms are not evaluated, and the result is unspecified. unless is similar except that the remaining
forms are evaluated only if test evaluates to false.

(let ([x 3])
  (unless (= x 0) (set! x (+ x 1)))
  (when (= x 4) (set! x (* x 2)))
  x)  8

Define when as a syntactic extension in terms of if and begin, and define unless in terms of when.

Section 3.2. More Recursion

In Section 2.8, we saw how to define recursive procedures using top-level definitions. Before that, we saw
how to create local bindings for procedures using let. It is natural to wonder whether a let-bound
procedure can be recursive. The answer is no, at least not in a straightforward way. If you try to evaluate the
expression

(let ([sum (lambda (ls)
             (if (null? ls)
                 0
                 (+ (car ls) (sum (cdr ls)))))])
  (sum '(1 2 3 4 5)))
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it will probably raise an exception with a message to the effect that sum is undefined. This is because the
variable sum is visible only within the body of the let expression and not within the lambda expression
whose value is bound to sum. We can get around this problem by passing the procedure sum to itself as
follows.

(let ([sum (lambda (sum ls)
             (if (null? ls)
                 0
                 (+ (car ls) (sum sum (cdr ls)))))])
  (sum sum '(1 2 3 4 5)))  15

This works and is a clever solution, but there is an easier way, using letrec. Like let, the letrec
syntactic form includes a set of variable-value pairs, along with a sequence of expressions referred to as the
body of the letrec.

(letrec ((var expr) ...) body1 body2 ...)

Unlike let, the variables var ... are visible not only within the body of the letrec but also within
expr .... Thus, we can rewrite the expression above as follows.

(letrec ([sum (lambda (ls)
                (if (null? ls)
                    0
                    (+ (car ls) (sum (cdr ls)))))])
  (sum '(1 2 3 4 5)))  15

Using letrec, we can also define mutually recursive procedures, such as the procedures even? and odd?
that were the subject of Exercise 2.8.6.

(letrec ([even?
          (lambda (x)
            (or (= x 0)
                (odd? (- x 1))))]
         [odd?
          (lambda (x)
            (and (not (= x 0))
                 (even? (- x 1))))])
  (list (even? 20) (odd? 20)))  (#t #f)

In a letrec expression, expr ... are most often lambda expressions, though this need not be the case.
One restriction on the expressions must be obeyed, however. It must be possible to evaluate each expr
without evaluating any of the variables var .... This restriction is always satisfied if the expressions are all
lambda expressions, since even though the variables may appear within the lambda expressions, they
cannot be evaluated until the resulting procedures are invoked in the body of the letrec. The following
letrec expression obeys this restriction.

(letrec ([f (lambda () (+ x 2))]
         [x 1])
  (f))  3

while the following does not.

(letrec ([y (+ x 2)]
         [x 1])
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  y)

In this case, an exception is raised indicating that x is not defined where it is referenced.

We can use letrec to hide the definitions of "help" procedures so that they do not clutter the top-level
namespace. This is demonstrated by the definition of list? below, which follows the "hare and tortoise"
algorithm outlined in Exercise 2.9.8.

(define list?
  (lambda (x)
    (letrec ([race
              (lambda (h t)
                (if (pair? h)
                    (let ([h (cdr h)])
                      (if (pair? h)
                          (and (not (eq? h t))
                               (race (cdr h) (cdr t)))
                          (null? h)))
                    (null? h)))])
      (race x x))))

When a recursive procedure is called in only one place outside the procedure, as in the example above, it is
often clearer to use a named let expression. Named let expressions take the following form.

(let name ((var expr) ...)
body1 body2 ...)

Named let is similar to unnamed let in that it binds the variables var ... to the values of expr ...
within the body body1 body2 .... As with unnamed let, the variables are visible only within the body
and not within expr .... In addition, the variable name is bound within the body to a procedure that may
be called to recur; the arguments to the procedure become the new values for the variables var ....

The definition of list? has been rewritten below to use named let.

(define list?
  (lambda (x)
    (let race ([h x] [t x])
      (if (pair? h)
          (let ([h (cdr h)])
            (if (pair? h)
                (and (not (eq? h t))
                     (race (cdr h) (cdr t)))
                (null? h)))
          (null? h)))))

Just as let can be expressed as a simple direct application of a lambda expression to arguments, named
let can be expressed as the application of a recursive procedure to arguments. A named let of the form

(let name ((var expr) ...)
body1 body2 ...)

can be rewritten in terms of letrec as follows.

((letrec ((name (lambda (var ...) body1 body2 ...)))

The Scheme Programming Language, 4th Edition

Section 3.2. More Recursion 57



name)
expr ...)

Alternatively, it can be rewritten as

(letrec ((name (lambda (var ...) body1 body2 ...)))
  (name expr ...))

provided that the variable name does not appear free within expr ....

As we discussed in Section 2.8, some recursion is essentially iteration and executes as such. When a
procedure call is in tail position (see below) with respect to a lambda expression, it is considered to be a tail
call, and Scheme systems must treat it properly, as a "goto" or jump. When a procedure tail-calls itself or calls
itself indirectly through a series of tail calls, the result is tail recursion. Because tail calls are treated as jumps,
tail recursion can be used for indefinite iteration in place of the more restrictive iteration constructs provided
by other programming languages, without fear of overflowing any sort of recursion stack.

A call is in tail position with respect to a lambda expression if its value is returned directly from the
lambda expression, i.e., if nothing is left to do after the call but to return from the lambda expression. For
example, a call is in tail position if it is the last expression in the body of a lambda expression, the
consequent or alternative part of an if expression in tail position, the last subexpression of an and or or
expression in tail position, the last expression in the body of a let or letrec in tail position, etc. Each of
the calls to f in the expressions below are tail calls, but the calls to g are not.

(lambda () (f (g)))
(lambda () (if (g) (f) (f)))
(lambda () (let ([x 4]) (f)))
(lambda () (or (g) (f)))

In each case, the values of the calls to f are returned directly, whereas the calls to g are not.

Recursion in general and named let in particular provide a natural way to implement many algorithms,
whether iterative, recursive, or partly iterative and partly recursive; the programmer is not burdened with two
distinct mechanisms.

The following two definitions of factorial use named let expressions to compute the factorial, n!, of a
nonnegative integer n. The first employs the recursive definition n! = n × (n - 1)!, where 0! is defined to be 1.

(define factorial
  (lambda (n)
    (let fact ([i n])
      (if (= i 0)
          1
          (* i (fact (- i 1)))))))

(factorial 0)  1
(factorial 1)  1
(factorial 2)  2
(factorial 3)  6
(factorial 10)  3628800

The second is an iterative version that employs the iterative definition n! = n × (n - 1) × (n - 2) × ... × 1, using
an accumulator, a, to hold the intermediate products.
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(define factorial
  (lambda (n)
    (let fact ([i n] [a 1])
      (if (= i 0)
          a
          (fact (- i 1) (* a i))))))

A similar problem is to compute the nth Fibonacci number for a given n. The Fibonacci numbers are an
infinite sequence of integers, 0, 1, 1, 2, 3, 5, 8, etc., in which each number is the sum of the two preceding
numbers in the sequence. A procedure to compute the nth Fibonacci number is most naturally defined
recursively as follows.

(define fibonacci
  (lambda (n)
    (let fib ([i n])
      (cond
        [(= i 0) 0]
        [(= i 1) 1]
        [else (+ (fib (- i 1)) (fib (- i 2)))]))))

(fibonacci 0)  0
(fibonacci 1)  1
(fibonacci 2)  1
(fibonacci 3)  2
(fibonacci 4)  3
(fibonacci 5)  5
(fibonacci 6)  8
(fibonacci 20)  6765
(fibonacci 30)  832040

This solution requires the computation of the two preceding Fibonacci numbers at each step and hence is
doubly recursive. For example, to compute (fibonacci 4) requires the computation of both (fib 3)
and (fib 2), to compute (fib 3) requires computing both (fib 2) and (fib 1), and to compute
(fib 2) requires computing both (fib 1) and (fib 0). This is very inefficient, and it becomes more
inefficient as n grows. A more efficient solution is to adapt the accumulator solution of the factorial
example above to use two accumulators, a1 for the current Fibonacci number and a2 for the preceding one.

(define fibonacci
  (lambda (n)
    (if (= n 0)
        0
        (let fib ([i n] [a1 1] [a2 0])
          (if (= i 1)
              a1
              (fib (- i 1) (+ a1 a2) a1))))))

Here, zero is treated as a special case, since there is no preceding value. This allows us to use the single base
case (= i 1). The time it takes to compute the nth Fibonacci number using this iterative solution grows
linearly with n, which makes a significant difference when compared to the doubly recursive version. To get a
feel for the difference, try computing (fibonacci 35) and (fibonacci 40) using both definitions to
see how long each takes.

We can also get a feel for the difference by looking at a trace for each on small inputs. The first trace below
shows the calls to fib in the non-tail-recursive version of fibonacci, with input 5.
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|(fib 5)
| (fib 4)
| |(fib 3)
| | (fib 2)
| | |(fib 1)
| | |1
| | |(fib 0)
| | |0
| | 1
| | (fib 1)
| | 1
| |2
| |(fib 2)
| | (fib 1)
| | 1
| | (fib 0)
| | 0
| |1
| 3
| (fib 3)
| |(fib 2)
| | (fib 1)
| | 1
| | (fib 0)
| | 0
| |1
| |(fib 1)
| |1
| 2
|5

Notice how there are several calls to fib with arguments 2, 1, and 0. The second trace shows the calls to fib
in the tail-recursive version, again with input 5.

|(fib 5 1 0)
|(fib 4 1 1)
|(fib 3 2 1)
|(fib 2 3 2)
|(fib 1 5 3)
|5

Clearly, there is quite a difference.

The named let examples shown so far are either tail-recursive or not tail-recursive. It often happens that one
recursive call within the same expression is tail-recursive while another is not. The definition of factor
below computes the prime factors of its nonnegative integer argument. The first call to f is not tail-recursive,
but the second one is.

(define factor
  (lambda (n)
    (let f ([n n] [i 2])
      (cond
        [(>= i n) (list n)]
        [(integer? (/ n i))
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         (cons i (f (/ n i) i))]
        [else (f n (+ i 1))]))))

(factor 0)  (0)
(factor 1)  (1)
(factor 12)  (2 2 3)
(factor 3628800)  (2 2 2 2 2 2 2 2 3 3 3 3 5 5 7)
(factor 9239)  (9239)

A trace of the calls to f, produced in Chez Scheme by replacing let with trace-let, in the evaluation of
(factor 120) below highlights the difference between the nontail calls and the tail calls.

|(f 120 2)
| (f 60 2)
| |(f 30 2)
| | (f 15 2)
| | (f 15 3)
| | |(f 5 3)
| | |(f 5 4)
| | |(f 5 5)
| | |(5)
| | (3 5)
| |(2 3 5)
| (2 2 3 5)
|(2 2 2 3 5)

A nontail call to f is shown indented relative to its caller, since the caller is still active, whereas tail calls
appear at the same level of indentation.

Exercise 3.2.1

Which of the recursive procedures defined in Section 3.2 are tail-recursive, and which are not?

Exercise 3.2.2

Rewrite factor using letrec to bind f in place of named let. Which version do you prefer?

Exercise 3.2.3

Can the letrec expression below be rewritten using named let? If not, why not? If so, do it.

(letrec ([even?
          (lambda (x)
            (or (= x 0)
                (odd? (- x 1))))]
         [odd?
          (lambda (x)
            (and (not (= x 0))
                 (even? (- x 1))))])
  (even? 20))
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Exercise 3.2.4

Rewrite both definitions of fibonacci given in this section to count the number of recursive calls to fib,
using a counter similar to the one used in the cons-count example of Section 2.9. Count the number of
recursive calls made in each case for several input values. What do you notice?

Exercise 3.2.5

Augment the definition of let given in Section 3.1 to handle named let as well as unnamed let, using two
rules.

Exercise 3.2.6

The following definition of or is simpler than the one given in Section 3.1.

(define-syntax or ; incorrect!
  (syntax-rules ()
    [(_) #f]
    [(_ e1 e2 ...)
     (let ([t e1])
       (if t t (or e2 ...)))]))

Say why it is not correct. [Hint: Think about what would happen if this version of or were used in the even?
and odd? example given on page 66 for very large inputs.]

Exercise 3.2.7

The definition of factor is not the most efficient possible. First, no factors of n besides n itself can possibly
be found beyond . Second, the division (/ n i) is performed twice when a factor is found. Third, after
2, no even factors can possibly be found. Recode factor to correct all three problems. Which is the most
important problem to solve? Are there any additional improvements you can make?

Section 3.3. Continuations

During the evaluation of a Scheme expression, the implementation must keep track of two things: (1) what to
evaluate and (2) what to do with the value. Consider the evaluation of (null? x) within the expression
below.

(if (null? x) (quote ()) (cdr x))

The implementation must first evaluate (null? x) and, based on its value, evaluate either (quote ())
or (cdr x). "What to evaluate" is (null? x), and "what to do with the value" is to make the decision
which of (quote ()) and (cdr x) to evaluate and to do so. We call "what to do with the value" the
continuation of a computation.

Thus, at any point during the evaluation of any expression, there is a continuation ready to complete, or at
least continue, the computation from that point. Let's assume that x has the value (a b c). We can isolate
six continuations during the evaluation of (if (null? x) (quote ()) (cdr x)), the continuations
waiting for

the value of (if (null? x) (quote ()) (cdr x)), 1. 
the value of (null? x), 2. 
the value of null?, 3. 
the value of x, 4. 
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the value of cdr, and 5. 
the value of x (again).6. 

The continuation of (cdr x) is not listed because it is the same as the one waiting for
(if (null? x) (quote ()) (cdr x)).

Scheme allows the continuation of any expression to be captured with the procedure call/cc. call/cc
must be passed a procedure p of one argument. call/cc constructs a concrete representation of the current
continuation and passes it to p. The continuation itself is represented by a procedure k. Each time k is applied
to a value, it returns the value to the continuation of the call/cc application. This value becomes, in
essence, the value of the application of call/cc.

If p returns without invoking k, the value returned by the procedure becomes the value of the application of
call/cc.

Consider the simple examples below.

(call/cc
  (lambda (k)
    (* 5 4)))  20

(call/cc
  (lambda (k)
    (* 5 (k 4))))  4

(+ 2
   (call/cc
     (lambda (k)
       (* 5 (k 4)))))  6

In the first example, the continuation is captured and bound to k, but k is never used, so the value is simply
the product of 5 and 4. In the second, the continuation is invoked before the multiplication, so the value is the
value passed to the continuation, 4. In the third, the continuation includes the addition by 2; thus, the value is
the value passed to the continuation, 4, plus 2.

Here is a less trivial example, showing the use of call/cc to provide a nonlocal exit from a recursion.

(define product
  (lambda (ls)
    (call/cc
      (lambda (break)
        (let f ([ls ls])
          (cond
            [(null? ls) 1]
            [(= (car ls) 0) (break 0)]
            [else (* (car ls) (f (cdr ls)))]))))))

(product '(1 2 3 4 5))  120
(product '(7 3 8 0 1 9 5))  0

The nonlocal exit allows product to return immediately, without performing the pending multiplications,
when a zero value is detected.

Each of the continuation invocations above returns to the continuation while control remains within the
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procedure passed to call/cc. The following example uses the continuation after this procedure has already
returned.

(let ([x (call/cc (lambda (k) k))])
  (x (lambda (ignore) "hi")))  "hi"

The continuation captured by this invocation of call/cc may be described as "Take the value, bind it to x,
and apply the value of x to the value of (lambda (ignore) "hi")." Since (lambda (k) k) returns
its argument, x is bound to the continuation itself; this continuation is applied to the procedure resulting from
the evaluation of (lambda (ignore) "hi"). This has the effect of binding x (again!) to this procedure
and applying the procedure to itself. The procedure ignores its argument and returns "hi".

The following variation of the example above is probably the most confusing Scheme program of its size; it
might be easy to guess what it returns, but it takes some thought to figure out why.

(((call/cc (lambda (k) k)) (lambda (x) x)) "HEY!")  "HEY!"

The value of the call/cc is its own continuation, as in the preceding example. This is applied to the identity
procedure (lambda (x) x), so the call/cc returns a second time with this value. Then, the identity
procedure is applied to itself, yielding the identity procedure. This is finally applied to "HEY!", yielding
"HEY!".

Continuations used in this manner are not always so puzzling. Consider the following definition of
factorial that saves the continuation at the base of the recursion before returning 1, by assigning the
top-level variable retry.

(define retry #f)

(define factorial
  (lambda (x)
    (if (= x 0)
        (call/cc (lambda (k) (set! retry k) 1))
        (* x (factorial (- x 1))))))

With this definition, factorial works as we expect factorial to work, except it has the side effect of
assigning retry.

(factorial 4)  24
(retry 1)  24
(retry 2)  48

The continuation bound to retry might be described as "Multiply the value by 1, then multiply this result by
2, then multiply this result by 3, then multiply this result by 4." If we pass the continuation a different value,
i.e., not 1, we will cause the base value to be something other than 1 and hence change the end result.

(retry 2)  48
(retry 5)  120

This mechanism could be the basis for a breakpoint package implemented with call/cc; each time a
breakpoint is encountered, the continuation of the breakpoint is saved so that the computation may be
restarted from the breakpoint (more than once, if desired).

Continuations may be used to implement various forms of multitasking. The simple "light-weight process"
mechanism defined below allows multiple computations to be interleaved. Since it is nonpreemptive, it
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requires that each process voluntarily "pause" from time to time in order to allow the others to run.

(define lwp-list '())
(define lwp
  (lambda (thunk)
    (set! lwp-list (append lwp-list (list thunk)))))

(define start
  (lambda ()
    (let ([p (car lwp-list)])
      (set! lwp-list (cdr lwp-list))
      (p))))

(define pause
  (lambda ()
    (call/cc
      (lambda (k)
        (lwp (lambda () (k #f)))
        (start)))))

The following light-weight processes cooperate to print an infinite sequence of lines containing "hey!".

(lwp (lambda () (let f () (pause) (display "h") (f))))
(lwp (lambda () (let f () (pause) (display "e") (f))))
(lwp (lambda () (let f () (pause) (display "y") (f))))
(lwp (lambda () (let f () (pause) (display "!") (f))))
(lwp (lambda () (let f () (pause) (newline) (f))))
(start) hey!

hey!
hey!
hey!

See Section 12.11 for an implementation of engines, which support preemptive multitasking, with call/cc.

Exercise 3.3.1

Use call/cc to write a program that loops indefinitely, printing a sequence of numbers beginning at zero.
Do not use any recursive procedures, and do not use any assignments.

Exercise 3.3.2

Rewrite product without call/cc, retaining the feature that no multiplications are performed if any of the
list elements are zero.

Exercise 3.3.3

What would happen if a process created by lwp as defined above were to terminate, i.e., simply return
without calling pause? Define a quit procedure that allows a process to terminate without otherwise
affecting the lwp system. Be sure to handle the case in which the only remaining process terminates.
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Exercise 3.3.4

Each time lwp is called, the list of processes is copied because lwp uses append to add its argument to the
end of the process list. Modify the original lwp code to use the queue data type developed in Section 2.9 to
avoid this problem.

Exercise 3.3.5

The light-weight process mechanism allows new processes to be created dynamically, although the example
given in this section does not do so. Design an application that requires new processes to be created
dynamically and implement it using the light-weight process mechanism.

Section 3.4. Continuation Passing Style

As we discussed in the preceding section, a continuation waits for the value of each expression. In particular,
a continuation is associated with each procedure call. When one procedure invokes another via a nontail call,
the called procedure receives an implicit continuation that is responsible for completing what is left of the
calling procedure's body plus returning to the calling procedure's continuation. If the call is a tail call, the
called procedure simply receives the continuation of the calling procedure.

We can make the continuations explicit by encapsulating "what to do" in an explicit procedural argument
passed along on each call. For example, the continuation of the call to f in

(letrec ([f (lambda (x) (cons 'a x))]
         [g (lambda (x) (cons 'b (f x)))]
         [h (lambda (x) (g (cons 'c x)))])
  (cons 'd (h '())))  (d b a c)

conses the symbol b onto the value returned to it, then returns the result of this cons to the continuation of the
call to g. This continuation is the same as the continuation of the call to h, which conses the symbol d onto
the value returned to it. We can rewrite this in continuation-passing style, or CPS, by replacing these implicit
continuations with explicit procedures.

(letrec ([f (lambda (x k) (k (cons 'a x)))]
         [g (lambda (x k)
              (f x (lambda (v) (k (cons 'b v)))))]
         [h (lambda (x k) (g (cons 'c x) k))])
  (h '() (lambda (v) (cons 'd v))))

Like the implicit continuation of h and g in the preceding example, the explicit continuation passed to h and
on to g,

(lambda (v) (cons 'd v))

conses the symbol d onto the value passed to it. Similarly, the continuation passed to f,

(lambda (v) (k (cons 'b v)))

conses b onto the value passed to it, then passes this on to the continuation of g.

Expressions written in CPS are more complicated, of course, but this style of programming has some useful
applications. CPS allows a procedure to pass more than one result to its continuation, because the procedure
that implements the continuation can take any number of arguments.
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(define car&cdr
  (lambda (p k)
    (k (car p) (cdr p))))

(car&cdr '(a b c)
  (lambda (x y)
    (list y x)))  ((b c) a)
(car&cdr '(a b c) cons)  (a b c)
(car&cdr '(a b c a d) memv)  (a d)

(This can be done with multiple values as well; see Section 5.8.) CPS also allows a procedure to take separate
"success" and "failure" continuations, which may accept different numbers of arguments. An example is
integer-divide below, which passes the quotient and remainder of its first two arguments to its third,
unless the second argument (the divisor) is zero, in which case it passes an error message to its fourth
argument.

(define integer-divide
  (lambda (x y success failure)
    (if (= y 0)
        (failure "divide by zero")
        (let ([q (quotient x y)])
          (success q (- x (* q y)))))))

(integer-divide 10 3 list (lambda (x) x))  (3 1)
(integer-divide 10 0 list (lambda (x) x))  "divide by zero"

The procedure quotient, employed by integer-divide, returns the quotient of its two arguments,
truncated toward zero.

Explicit success and failure continuations can sometimes help to avoid the extra communication necessary to
separate successful execution of a procedure from unsuccessful execution. Furthermore, it is possible to have
multiple success or failure continuations for different flavors of success or failure, each possibly taking
different numbers and types of arguments. See Sections 12.10 and 12.11 for extended examples that employ
continuation-passing style.

At this point you might be wondering about the relationship between CPS and the continuations captured via
call/cc. It turns out that any program that uses call/cc can be rewritten in CPS without call/cc, but
a total rewrite of the program (sometimes including even system-defined primitives) might be necessary. Try
to convert the product example on page 75 into CPS before looking at the version below.

(define product
  (lambda (ls k)
    (let ([break k])
      (let f ([ls ls] [k k])
        (cond
          [(null? ls) (k 1)]
          [(= (car ls) 0) (break 0)]
          [else (f (cdr ls)
                   (lambda (x)
                     (k (* (car ls) x))))])))))

(product '(1 2 3 4 5) (lambda (x) x))  120
(product '(7 3 8 0 1 9 5) (lambda (x) x))  0
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Exercise 3.4.1

Rewrite the reciprocal example first given in Section 2.1 to accept both success and failure continuations,
like integer-divide above.

Exercise 3.4.2

Rewrite the retry example from page 75 to use CPS.

Exercise 3.4.3

Rewrite the following expression in CPS to avoid using call/cc.

(define reciprocals
  (lambda (ls)
    (call/cc
      (lambda (k)
        (map (lambda (x)
               (if (= x 0)
                   (k "zero found")
                   (/ 1 x)))
             ls)))))

(reciprocals '(2 1/3 5 1/4))  (1/2 3 1/5 4)
(reciprocals '(2 1/3 0 5 1/4))  "zero found"

[Hint: A single-list version of map is defined on page 46.]

Section 3.5. Internal Definitions

In Section 2.6, we discussed top-level definitions. Definitions may also appear at the front of a lambda, let,
or letrec body, in which case the bindings they create are local to the body.

(define f (lambda (x) (* x x)))
(let ([x 3])
  (define f (lambda (y) (+ y x)))
  (f 4))  7
(f 4)  16

Procedures bound by internal definitions can be mutually recursive, as with letrec. For example, we can
rewrite the even? and odd? example from Section 3.2 using internal definitions as follows.

(let ()
  (define even?
    (lambda (x)
      (or (= x 0)
          (odd? (- x 1)))))
  (define odd?
    (lambda (x)
      (and (not (= x 0))
           (even? (- x 1)))))
  (even? 20))  #t
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Similarly, we can replace the use of letrec to bind race with an internal definition of race in our first
definition of list?.

(define list?
  (lambda (x)
    (define race
      (lambda (h t)
        (if (pair? h)
            (let ([h (cdr h)])
              (if (pair? h)
                  (and (not (eq? h t))
                       (race (cdr h) (cdr t)))
                  (null? h)))
            (null? h))))
    (race x x)))

In fact, internal variable definitions and letrec are practically interchangeable. The only difference, other
than the obvious difference in syntax, is that variable definitions are guaranteed to be evaluated from left to
right, while the bindings of a letrec may be evaluated in any order. So we cannot quite replace a lambda,
let, or letrec body containing internal definitions with a letrec expression. We can, however, use
letrec*, which, like let*, guarantees left-to-right evaluation order. A body of the form

(define var expr0)

expr1
expr2

is equivalent to a letrec* expression binding the defined variables to the associated values in a body
comprising the expressions.

(letrec* ((var expr0) ...) expr1 expr2 ...)

Conversely, a letrec* of the form

(letrec* ((var expr0) ...) expr1 expr2 ...)

can be replaced with a let expression containing internal definitions and the expressions from the body as
follows.

(let ()
  (define var expr0)

expr1
expr2

)

The seeming lack of symmetry between these transformations is due to the fact that letrec* expressions
can appear anywhere an expression is valid, whereas internal definitions can appear only at the front of a
body. Thus, in replacing a letrec* with internal definitions, we must generally introduce a let expression
to hold the definitions.

Another difference between internal definitions and letrec or letrec* is that syntax definitions may
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appear among the internal definitions, while letrec and letrec* bind only variables.

(let ([x 3])
  (define-syntax set-x!
    (syntax-rules ()
      [(_ e) (set! x e)]))
  (set-x! (+ x x))
  x)  6

The scope of a syntactic extension established by an internal syntax definition, as with an internal variable
definition, is limited to the body in which the syntax definition appears.

Internal definitions may be used in conjunction with top-level definitions and assignments to help modularize
programs. Each module of a program should make visible only those bindings that are needed by other
modules, while hiding other bindings that would otherwise clutter the top-level namespace and possibly result
in unintended use or redefinition of those bindings. A common way of structuring a module is shown below.

(define export-var #f)

(let ()
  (define var expr)

init-expr

  (set! export-var export-val)

)

The first set of definitions establish top-level bindings for the variables we desire to export (make visible
globally). The second set of definitions establish local bindings visible only within the module. The
expressions init-expr ... perform any initialization that must occur after the local bindings have been
established. Finally, the set! expressions assign the exported variables to the appropriate values.

An advantage of this form of modularization is that the bracketing let expression may be removed or
"commented out" during program development, making the internal definitions top-level to facilitate
interactive testing. This form of modularization also has several disadvantages, as we discuss in the next
section.

The following module exports a single variable, calc, which is bound to a procedure that implements a
simple four-function calculator.

(define calc #f)
(let ()
  (define do-calc
    (lambda (ek expr)
      (cond
        [(number? expr) expr]
        [(and (list? expr) (= (length expr) 3))
         (let ([op (car expr)] [args (cdr expr)])
           (case op
             [(add) (apply-op ek + args)]
             [(sub) (apply-op ek - args)]
             [(mul) (apply-op ek * args)]
             [(div) (apply-op ek / args)]
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             [else (complain ek "invalid operator" op)]))]
        [else (complain ek "invalid expression" expr)])))
  (define apply-op
    (lambda (ek op args)
      (op (do-calc ek (car args)) (do-calc ek (cadr args)))))
  (define complain
    (lambda (ek msg expr)
      (ek (list msg expr))))
  (set! calc
    (lambda (expr)
      ; grab an error continuation ek
      (call/cc
        (lambda (ek)
          (do-calc ek expr))))))

(calc '(add (mul 3 2) -4))  2
(calc '(div 1/2 1/6))  3
(calc '(add (mul 3 2) (div 4)))  ("invalid expression" (div 4))
(calc '(mul (add 1 -2) (pow 2 7)))  ("invalid operator" pow)

This example uses a case expression to determine which operator to apply. case is similar to cond except
that the test is always the same: (memv val (key ...)), where val is the value of the first case
subform and (key ...) is the list of items at the front of each case clause. The case expression in the
example above could be rewritten using cond as follows.

(let ([temp op])
  (cond
    [(memv temp '(add)) (apply-op ek + args)]
    [(memv temp '(sub)) (apply-op ek - args)]
    [(memv temp '(mul)) (apply-op ek * args)]
    [(memv temp '(div)) (apply-op ek / args)]
    [else (complain ek "invalid operator" op)]))

Exercise 3.5.1

Redefine complain in the calc example as an equivalent syntactic extension.

Exercise 3.5.2

In the calc example, the error continuation ek is passed along on each call to apply-op, complain, and
do-calc. Move the definitions of apply-op, complain, and do-calc inward as far as necessary to
eliminate the ek argument from the definitions and applications of these procedures.

Exercise 3.5.3

Eliminate the call/cc from calc and rewrite complain to raise an exception using
assertion-violation.

Exercise 3.5.4

Extend calc to handle unary minus expressions, e.g.,

(calc '(minus (add 2 3)))  -5
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and other operators of your choice.

Section 3.6. Libraries

At the end of the preceding section, we discussed a form of modularization that involves assigning a set of
top-level variables from within a let while keeping unpublished helpers local to the let. This form of
modularization has several drawbacks:

It is unportable, because the behavior and even existence of an interactive top level is not guaranteed
by the Revised6 Report.

• 

It requires assignments, which make the code appear somewhat awkward and may inhibit compiler
analyses and optimizations.

• 

It does not support the publication of keyword bindings, since there is no analogue to set! for
keywords.

• 

An alternative that does not share these drawbacks is to create a library. A library exports a set of identifiers,
each defined within the library or imported from some other library. An exported identifier need not be bound
as a variable; it may be bound as a keyword instead.

The following library exports two identifiers: the variable gpa->grade and the keyword gpa. The variable
gpa->grade is bound to a procedure that takes a grade-point average (GPA), represented as a number, and
returns the corresponding letter grade, based on a four-point scale. The keyword gpa names a syntactic
extension whose subforms must all be letter grades and whose value is the GPA computed from those letter
grades.

(library (grades)
  (export gpa->grade gpa)
  (import (rnrs))

  (define in-range?
    (lambda (x n y)
      (and (>= n x) (< n y))))

  (define-syntax range-case 
    (syntax-rules (- else)
      [(_ expr ((x - y) e1 e2 ...) ... [else ee1 ee2 ...])
       (let ([tmp expr])
         (cond
           [(in-range? x tmp y) e1 e2 ...]
           ...
           [else ee1 ee2 ...]))]
      [(_ expr ((x - y) e1 e2 ...) ...)
       (let ([tmp expr])
         (cond
           [(in-range? x tmp y) e1 e2 ...]
           ...))]))

  (define letter->number
    (lambda (x)
      (case x
        [(a)  4.0]
        [(b)  3.0]
        [(c)  2.0]
        [(d)  1.0]
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        [(f)  0.0]
        [else (assertion-violation 'grade "invalid letter grade" x)])))

  (define gpa->grade
    (lambda (x)
      (range-case x
        [(0.0 - 0.5) 'f]
        [(0.5 - 1.5) 'd]
        [(1.5 - 2.5) 'c]
        [(2.5 - 3.5) 'b]
        [else 'a])))

  (define-syntax gpa
    (syntax-rules ()
      [(_ g1 g2 ...)
       (let ([ls (map letter->number '(g1 g2 ...))])
         (/ (apply + ls) (length ls)))])))

The name of the library is (grades). This may seem like a funny kind of name, but all library names are
parenthesized. The library imports from the standard (rnrs) library, which contains most of the primitive
and keyword bindings we have used in this chapter and the last, and everything we need to implement
gpa->grade and gpa.

Along with gpa->grade and gpa, several other syntactic extensions and procedures are defined within the
library, but none of the others are exported. The ones that aren't exported are simply helpers for the ones that
are. Everything used within the library should be familiar, except for the apply procedure, which is
described on page 107.

If your Scheme implementation supports import in the interactive top level, you can test the two exports as
shown below.

(import (grades))
(gpa c a c b b)  2.8
(gpa->grade 2.8)  b

Chapter 10 describes libraries in more detail and provides additional examples of their use.

Exercise 3.6.1

Modify gpa to handle "x" grades, which do not count in the grade-point average. Be careful to handle
gracefully the situation where each grade is x.

(import (grades))
(gpa a x b c)  3.0

Exercise 3.6.2

Export from (grades) a new syntactic form, distribution, that takes a set of grades, like gpa, but
returns a list of the form ((n g) ...), where n is the number of times g appears in the set, with one entry
for each g. Have distribution call an unexported procedure to do the actual work.

(import (grades))
(distribution a b a c c c a f b a)  ((4 a) (2 b) (3 c) (0 d) (1 f))
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Exercise 3.6.3

Now read about output operations in Section 7.8 and define a new export, histogram, as a procedure that
takes a textual output port and a distribution, such as might be produced by distribution, and
prints a histogram in the style illustrated by the example below.

(import (grades))
(histogram
  (current-output-port)
  (distribution a b a c c a c a f b a))

prints:
  a: *****
  b: **
  c: ***
  d: 
  f: *
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Chapter 4. Procedures and Variable Bindings
Procedures and variable bindings are the fundamental building blocks of Scheme programs. This chapter
describes the small set of syntactic forms whose primary purpose is to create procedures and manipulate
variable bindings. It begins with the two most fundamental building blocks of Scheme programs: variable
references and lambda expressions, and continues with descriptions of the variable binding and assignment
forms such as define, letrec, let-values, and set!.

Various other forms that bind or assign variables for which the binding or assignment is not the primary
purpose (such as named let) are found in Chapter 5.

Section 4.1. Variable References

syntax: variable
returns: the value of variable

Any identifier appearing as an expression in a program is a variable if a visible variable binding for the
identifier exists, e.g., the identifier appears within the scope of a binding created by define, lambda, let,
or some other variable-binding construct.

list  #<procedure>
(define x 'a)
(list x x)  (a a)
(let ([x 'b])
  (list x x))  (b b)
(let ([let 'let]) let)  let

It is a syntax violation for an identifier reference to appear within a library form or top-level program if it
is not bound as a variable, keyword, record name, or other entity. Since the scope of the definitions in a
library, top-level program, lambda, or other local body is the entire body, it is not necessary for the
definition of a variable to appear before its first reference appears, as long as the reference is not actually
evaluated until the definition has been completed. So, for example, the reference to g within the definition of
f below

(define f
  (lambda (x)
    (g x)))
(define g
  (lambda (x)
    (+ x x)))

is okay, but the reference to g in the definition of q below is not.

(define q (g 3))
(define g
  (lambda (x)
    (+ x x)))

Section 4.2. Lambda

syntax: (lambda formals body1 body2 ...)
returns: a procedure
libraries: (rnrs base), (rnrs)
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The lambda syntactic form is used to create procedures. Any operation that creates a procedure or
establishes local variable bindings is ultimately defined in terms of lambda or case-lambda.

The variables in formals are the formal parameters of the procedure, and the sequence of subforms
body1 body2 ... is its body.

The body may begin with a sequence of definitions, in which case the bindings created by the definitions are
local to the body. If definitions are present, the keyword bindings are used and discarded while expanding the
body, and the body is expanded into a letrec* expression formed from the variable definitions and the
remaining expressions, as described on page 292. The remainder of this description of lambda assumes that
this transformation has taken place, if necessary, so that the body is a sequence of expressions without
definitions.

When the procedure is created, the bindings of all variables occurring free within the body, excluding the
formal parameters, are retained with the procedure. Subsequently, whenever the procedure is applied to a
sequence of actual parameters, the formal parameters are bound to the actual parameters, the retained bindings
are restored, and the body is evaluated.

Upon application, the formal parameters defined by formals are bound to the actual parameters as follows.

If formals is a proper list of variables, e.g., (x y z), each variable is bound to the corresponding
actual parameter. An exception with condition type &assertion is raised if too few or too many
actual parameters are supplied.

• 

If formals is a single variable (not in a list), e.g., z, it is bound to a list of the actual parameters.• 
If formals is an improper list of variables terminated by a variable, e.g., (x y . z), each
variable but the last is bound to the corresponding actual parameter. The last variable is bound to a list
of the remaining actual parameters. An exception with condition type &assertion is raised if too
few actual parameters are supplied.

• 

When the body is evaluated, the expressions in the body are evaluated in sequence, and the procedure returns
the values of the last expression.

Procedures do not have a printed representation in the usual sense. Scheme systems print procedures in
different ways; this book uses the notation #<procedure>.

(lambda (x) (+ x 3))  #<procedure>
((lambda (x) (+ x 3)) 7)  10
((lambda (x y) (* x (+ x y))) 7 13)  140
((lambda (f x) (f x x)) + 11)  22
((lambda () (+ 3 4)))  7

((lambda (x . y) (list x y))
 28 37)  (28 (37))
((lambda (x . y) (list x y))
 28 37 47 28)  (28 (37 47 28))
((lambda (x y . z) (list x y z))
 1 2 3 4)  (1 2 (3 4))
((lambda x x) 7 13)  (7 13)

Section 4.3. Case-Lambda

A Scheme lambda expression always produces a procedure with a fixed number of arguments or with an
indefinite number of arguments greater than or equal to a certain number. In particular,
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(lambda (var1 ... varn) body1 body2 ...)

accepts exactly n arguments,

(lambda r body1 body2 ...)

accepts zero or more arguments, and

(lambda (var1 ... varn . r) body1 body2 ...)

accepts n or more arguments.

lambda cannot directly produce, however, a procedure that accepts, say, either two or three arguments. In
particular, procedures that accept optional arguments are not supported directly by lambda. The latter form
of lambda shown above can be used, in conjunction with length checks and compositions of car and cdr,
to implement procedures with optional arguments, though at the cost of clarity and efficiency.

The case-lambda syntactic form directly supports procedures with optional arguments as well as
procedures with fixed or indefinite numbers of arguments. case-lambda is based on the lambda*
syntactic form introduced in the article "A New Approach to Procedures with Variable Arity" [11].

syntax: (case-lambda clause ...)
returns: a procedure
libraries: (rnrs control), (rnrs)

A case-lambda expression consists of a set of clauses, each resembling a lambda expression. Each
clause has the form below.

[formals body1 body2 ...]

The formal parameters of a clause are defined by formals in the same manner as for a lambda expression.
The number of arguments accepted by the procedure value of a case-lambda expression is determined by
the numbers of arguments accepted by the individual clauses.

When a procedure created with case-lambda is invoked, the clauses are considered in order. The first
clause that accepts the given number of actual parameters is selected, the formal parameters defined by its
formals are bound to the corresponding actual parameters, and the body is evaluated as described for
lambda above. If formals in a clause is a proper list of identifiers, then the clause accepts exactly as many
actual parameters as there are formal parameters (identifiers) in formals. As with a lambda formals, a
case-lambda clause formals may be a single identifier, in which case the clause accepts any number of
arguments, or an improper list of identifiers terminated by an identifier, in which case the clause accepts any
number of arguments greater than or equal to the number of formal parameters excluding the terminating
identifier. If no clause accepts the number of actual parameters supplied, an exception with condition type
&assertion is raised.

The following definition for make-list uses case-lambda to support an optional fill parameter.

(define make-list
  (case-lambda
    [(n) (make-list n #f)]
    [(n x)
     (do ([n n (- n 1)] [ls '() (cons x ls)])
         ((zero? n) ls))]))
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The substring procedure may be extended with case-lambda to accept either no end index, in which
case it defaults to the end of the string, or no start and end indices, in which case substring is
equivalent to string-copy:

(define substring1
  (case-lambda
    [(s) (substring1 s 0 (string-length s))]
    [(s start) (substring1 s start (string-length s))]
    [(s start end) (substring s start end)]))

It is also possible to default the start index rather than the end index when only one index is supplied:

(define substring2
  (case-lambda
    [(s) (substring2 s 0 (string-length s))]
    [(s end) (substring2 s 0 end)]
    [(s start end) (substring s start end)]))

It is even possible to require that both or neither of the start and end indices be supplied, simply by
leaving out the middle clause:

(define substring3
  (case-lambda
    [(s) (substring3 s 0 (string-length s))]
    [(s start end) (substring s start end)]))

Section 4.4. Local Binding

syntax: (let ((var expr) ...) body1 body2 ...)
returns: the values of the final body expression
libraries: (rnrs base), (rnrs)

let establishes local variable bindings. Each variable var is bound to the value of the corresponding
expression expr. The body of the let, in which the variables are bound, is the sequence of subforms
body1 body2 ... and is processed and evaluated like a lambda body.

The forms let, let*, letrec, and letrec* (the others are described after let) are similar but serve
slightly different purposes. With let, in contrast with let*, letrec, and letrec*, the expressions
expr ... are all outside the scope of the variables var .... Also, in contrast with let* and letrec*,
no ordering is implied for the evaluation of the expressions expr .... They may be evaluated from left to
right, from right to left, or in any other order at the discretion of the implementation. Use let whenever the
values are independent of the variables and the order of evaluation is unimportant.

(let ([x (* 3.0 3.0)] [y (* 4.0 4.0)])
  (sqrt (+ x y)))  5.0

(let ([x 'a] [y '(b c)])
  (cons x y))  (a b c)

(let ([x 0] [y 1])
  (let ([x y] [y x])
    (list x y)))  (1 0)

The following definition of let shows the typical derivation of let from lambda.
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(define-syntax let
  (syntax-rules ()
    [(_ ((x e) ...) b1 b2 ...)
     ((lambda (x ...) b1 b2 ...) e ...)]))

Another form of let, named let, is described in Section 5.4, and a definition of the full let can be found
on page 312.

syntax: (let* ((var expr) ...) body1 body2 ...)
returns: the values of the final body expression
libraries: (rnrs base), (rnrs)

let* is similar to let except that the expressions expr ... are evaluated in sequence from left to right,
and each of these expressions is within the scope of the variables to the left. Use let* when there is a linear
dependency among the values or when the order of evaluation is important.

(let* ([x (* 5.0 5.0)]
       [y (- x (* 4.0 4.0))])
  (sqrt y))  3.0

(let ([x 0] [y 1])
  (let* ([x y] [y x])
    (list x y)))  (1 1)

Any let* expression may be converted to a set of nested let expressions. The following definition of let*
demonstrates the typical transformation.

(define-syntax let*
  (syntax-rules ()
    [(_ () e1 e2 ...)
     (let () e1 e2 ...)]
    [(_ ((x1 v1) (x2 v2) ...) e1 e2 ...)
     (let ((x1 v1))
       (let* ((x2 v2) ...) e1 e2 ...))]))

syntax: (letrec ((var expr) ...) body1 body2 ...)
returns: the values of the final body expression
libraries: (rnrs base), (rnrs)

letrec is similar to let and let*, except that all of the expressions expr ... are within the scope of all
of the variables var .... letrec allows the definition of mutually recursive procedures.

(letrec ([sum (lambda (x)
                (if (zero? x)
                    0
                    (+ x (sum (- x 1)))))])
  (sum 5))  15

The order of evaluation of the expressions expr ... is unspecified, so a program must not evaluate a
reference to any of the variables bound by the letrec expression before all of the values have been
computed. (Occurrence of a variable within a lambda expression does not count as a reference, unless the
resulting procedure is applied before all of the values have been computed.) If this restriction is violated, an
exception with condition type &assertion is raised.
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An expr should not return more than once. That is, it should not return both normally and via the invocation
of a continuation obtained during its evaluation, and it should not return twice via two invocations of such a
continuation. Implementations are not required to detect a violation of this restriction, but if they do, an
exception with condition type &assertion is raised.

Choose letrec over let or let* when there is a circular dependency among the variables and their values
and when the order of evaluation is unimportant. Choose letrec* over letrec when there is a circular
dependency and the bindings need to be evaluated from left to right.

A letrec expression of the form

(letrec ((var expr) ...) body1 body2 ...)

may be expressed in terms of let and set! as

(let ((var #f) ...)
  (let ((temp expr) ...)
    (set! var temp) ...
    (let () body1 body2 ...)))

where temp ... are fresh variables, i.e., ones that do not already appear in the letrec expression, one for
each (var expr) pair. The outer let expression establishes the variable bindings. The initial value given
each variable is unimportant, so any value suffices in place of #f. The bindings are established first so that
expr ... may contain occurrences of the variables, i.e., so that the expressions are computed within the
scope of the variables. The middle let evaluates the values and binds them to the temporary variables, and
the set! expressions assign each variable to the corresponding value. The inner let is present in case the
body contains internal definitions.

A definition of letrec that uses this transformation is shown on page 310.

This transformation does not enforce the restriction that the expr expressions must not evaluate any
references of or assignments to the variables. More elaborate transformations that enforce this restriction and
actually produce more efficient code are possible [31].

syntax: (letrec* ((var expr) ...) body1 body2 ...)
returns: the values of the final body expression
libraries: (rnrs base), (rnrs)

letrec* is similar to letrec, except that letrec* evaluates expr ... in sequence from left to right.
While programs must still not evaluate a reference to any var before the corresponding expr has been
evaluated, references to var may be evaluated any time thereafter, including during the evaluation of the
expr of any subsequent binding.

A letrec* expression of the form

(letrec* ((var expr) ...) body1 body2 ...)

may be expressed in terms of let and set! as

(let ((var #f) ...)
  (set! var expr) ...
  (let () body1 body2 ...))

The outer let expression creates the bindings, each assignment evaluates an expression and immediately sets
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the corresponding variable to its value, in sequence, and the inner let evaluates the body. let is used in the
latter case rather than begin since the body may include internal definitions as well as expressions.

(letrec* ([sum (lambda (x)
                 (if (zero? x)
                     0
                     (+ x (sum (- x 1)))))]
          [f (lambda () (cons n n-sum))]
          [n 15]
          [n-sum (sum n)])
  (f))  (15 . 120)

(letrec* ([f (lambda () (lambda () g))]
          [g (f)])
  (eq? (g) g))  #t

(letrec* ([g (f)]
          [f (lambda () (lambda () g))])
  (eq? (g) g)) exception: attempt to reference undefined variable f

Section 4.5. Multiple Values

syntax: (let-values ((formals expr) ...) body1 body2 ...)
syntax: (let*-values ((formals expr) ...) body1 body2 ...)
returns: the values of the final body expression
libraries: (rnrs base), (rnrs)

let-values is a convenient way to receive multiple values and bind them to variables. It is structured like
let but permits an arbitrary formals list (like lambda) on each left-hand side. let*-values is similar but
performs the bindings in left-to-right order, as with let*. An exception with condition type &assertion is
raised if the number of values returned by an expr is not appropriate for the corresponding formals, as
described in the entry for lambda above. A definition of let-values is given on page 310.

(let-values ([(a b) (values 1 2)] [c (values 1 2 3)])
  (list a b c))  (1 2 (1 2 3))

(let*-values ([(a b) (values 1 2)] [(a b) (values b a)])
  (list a b))  (2 1)

Section 4.6. Variable Definitions

syntax: (define var expr)
syntax: (define var)
syntax: (define (var0 var1 ...) body1 body2 ...)
syntax: (define (var0 . varr) body1 body2 ...)
syntax: (define (var0 var1 var2 ... . varr) body1 body2 ...)
libraries: (rnrs base), (rnrs)

In the first form, define creates a new binding of var to the value of expr. The expr should not return
more than once. That is, it should not return both normally and via the invocation of a continuation obtained
during its evaluation, and it should not return twice via two invocations of such a continuation.
Implementations are not required to detect a violation of this restriction, but if they do, an exception with
condition type &assertion is raised.
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The second form is equivalent to (define var unspecified), where unspecified is some
unspecified value. The remaining are shorthand forms for binding variables to procedures; they are identical
to the following definition in terms of lambda.

(define var
  (lambda formals

body1 body2 ...))

where formals is (var1 ...), varr, or (var1 var2 ... . varr) for the third, fourth, and fifth
define formats.

Definitions may appear at the front of a library body, anywhere among the forms of a top-level-program
body, and at the front of a lambda or case-lambda body or the body of any form derived from lambda,
e.g., let, or letrec*. Any body that begins with a sequence of definitions is transformed during macro
expansion into a letrec* expression as described on page 292.

Syntax definitions may appear along with variable definitions wherever variable definitions may appear; see
Chapter 8.

(define x 3)
x  3

(define f
  (lambda (x y)
    (* (+ x y) 2)))
(f 5 4)  18

(define (sum-of-squares x y)
  (+ (* x x) (* y y)))
(sum-of-squares 3 4)  25

(define f
  (lambda (x)
    (+ x 1)))
(let ([x 2])
  (define f
    (lambda (y)
      (+ y x)))
  (f 3))  5
(f 3)  4

A set of definitions may be grouped by enclosing them in a begin form. Definitions grouped in this manner
may appear wherever ordinary variable and syntax definitions may appear. They are treated as if written
separately, i.e., without the enclosing begin form. This feature allows syntactic extensions to expand into
groups of definitions.

(define-syntax multi-define-syntax
  (syntax-rules ()
    [(_ (var expr) ...)
     (begin
       (define-syntax var expr)
       ...)]))
(let ()
  (define plus
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    (lambda (x y)
        (if (zero? x)
            y
            (plus (sub1 x) (add1 y)))))
  (multi-define-syntax
    (add1 (syntax-rules () [(_ e) (+ e 1)]))
    (sub1 (syntax-rules () [(_ e) (- e 1)])))
  (plus 7 8))  15

Many implementations support an interactive "top level" in which variable and other definitions may be
entered interactively or loaded from files. The behavior of these top-level definitions is outside the scope of
the Revised6 Report, but as long as top-level variables are defined before any references or assignments to
them are evaluated, the behavior is consistent across most implementations. So, for example, the reference to
g in the top-level definition of f below is okay if g is not already defined, and g is assumed to name a
variable to be defined at some later point.

(define f
  (lambda (x)
    (g x)))

If this is then followed by a definition of g before f is evaluated, the assumption that g would be defined as a
variable is proven correct, and a call to f works as expected.

(define g
  (lambda (x)
    (+ x x)))
(f 3)  6

If g were defined instead as the keyword for a syntactic extension, the assumption that g would be bound as a
variable is proven false, and if f is not redefined before it is invoked, the implementation is likely to raise an
exception.

Section 4.7. Assignment

syntax: (set! var expr)
returns: unspecified
libraries: (rnrs base), (rnrs)

set! does not establish a new binding for var but rather alters the value of an existing binding. It first
evaluates expr, then assigns var to the value of expr. Any subsequent reference to var within the scope
of the altered binding evaluates to the new value.

Assignments are not employed as frequently in Scheme as in most other languages, but they are useful for
implementing state changes.

(define flip-flop
  (let ([state #f])
    (lambda ()
      (set! state (not state))
      state)))

(flip-flop)  #t
(flip-flop)  #f
(flip-flop)  #t
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Assignments are also useful for caching values. The example below uses a technique called memoization, in
which a procedure records the values associated with old input values so it need not recompute them, to
implement a fast version of the otherwise exponential doubly recursive definition of the Fibonacci function
(see page 69).

(define memoize
  (lambda (proc)
    (let ([cache '()])
      (lambda (x)
        (cond
          [(assq x cache) => cdr]
          [else
           (let ([ans (proc x)])
             (set! cache (cons (cons x ans) cache))
             ans)])))))

(define fibonacci
  (memoize
    (lambda (n)
      (if (< n 2)
          1
          (+ (fibonacci (- n 1)) (fibonacci (- n 2)))))))

(fibonacci 100)  573147844013817084101
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Chapter 5. Control Operations
This chapter introduces the syntactic forms and procedures that serve as control structures for Scheme
programs, The first section covers the most basic control structure, procedure application, and the remaining
sections cover sequencing, conditional evaluation, recursion, mapping, continuations, delayed evaluation,
multiple values, and evaluation of programs constructed at run time.

Section 5.1. Procedure Application

syntax: (expr0 expr1 ...)
returns: values of applying the value of expr0 to the values of expr1 ...

Procedure application is the most basic Scheme control structure. Any structured form without a syntax
keyword in the first position is a procedure application. The expressions expr0 and expr1 ... are
evaluated; each should evaluate to a single value. After each of these expressions has been evaluated, the
value of expr0 is applied to the values of expr1 .... If expr0 does not evaluate to a procedure, or if the
procedure does not accept the number of arguments provided, an exception with condition type
&assertion is raised.

The order in which the procedure and argument expressions are evaluated is unspecified. It may be left to
right, right to left, or any other order. The evaluation is guaranteed to be sequential, however: whatever order
is chosen, each expression is fully evaluated before evaluation of the next is started.

(+ 3 4)  7

((if (odd? 3) + -) 6 2)  8

((lambda (x) x) 5)  5

(let ([f (lambda (x) (+ x x))])
  (f 8))  16

procedure: (apply procedure obj ... list)
returns: the values of applying procedure to obj ... and the elements of list
libraries: (rnrs base), (rnrs)

apply invokes procedure, passing the first obj as the first argument, the second obj as the second
argument, and so on for each object in obj ..., and passing the elements of list in order as the remaining
arguments. Thus, procedure is called with as many arguments as there are objs plus elements of list.

apply is useful when some or all of the arguments to be passed to a procedure are in a list, since it frees the
programmer from explicitly destructuring the list.

(apply + '(4 5))  9

(apply min '(6 8 3 2 5))  2

(apply min  5 1 3 '(6 8 3 2 5))  1

(apply vector 'a 'b '(c d e))  #(a b c d e)

(define first
  (lambda (ls)
    (apply (lambda (x . y) x) ls)))
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(define rest
  (lambda (ls)
    (apply (lambda (x . y) y) ls)))
(first '(a b c d))  a
(rest '(a b c d))  (b c d)

(apply append
  '(1 2 3)
  '((a b) (c d e) (f)))  (1 2 3 a b c d e f)

Section 5.2. Sequencing

syntax: (begin expr1 expr2 ...)
returns: the values of the last subexpression
libraries: (rnrs base), (rnrs)

The expressions expr1 expr2 ... are evaluated in sequence from left to right. begin is used to sequence
assignments, input/output, or other operations that cause side effects.

(define x 3)
(begin
  (set! x (+ x 1))
  (+ x x))  8

A begin form may contain zero or more definitions in place of the expressions expr1 expr2 ..., in
which case it is considered to be a definition and may appear only where definitions are valid.

(let ()
  (begin (define x 3) (define y 4))
  (+ x y))  7

This form of begin is primarily used by syntactic extensions that must expand into multiple definitions. (See
page 101.)

The bodies of many syntactic forms, including lambda, case-lambda, let, let*, letrec, and
letrec*, as well as the result clauses of cond, case, and do, are treated as if they were inside an implicit
begin; i.e., the expressions making up the body or result clause are executed in sequence, with the values of
the last expression being returned.

(define swap-pair!
  (lambda (x)
    (let ([temp (car x)])
      (set-car! x (cdr x))
      (set-cdr! x temp)
      x)))
(swap-pair! (cons 'a 'b))  (b . a)

Section 5.3. Conditionals

syntax: (if test consequent alternative)
syntax: (if test consequent)
returns: the values of consequent or alternative depending on the value of test
libraries: (rnrs base), (rnrs)
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The test, consequent, and alternative subforms must be expressions. If test evaluates to a true
value (anything other than #f), consequent is evaluated and its values are returned. Otherwise,
alternative is evaluated and its values are returned. With the second, "one-armed," form, which has no
alternative, the result is unspecified if test evaluates to false.

(let ([ls '(a b c)])
  (if (null? ls)
      '()
      (cdr ls)))  (b c)

(let ([ls '()])
  (if (null? ls)
      '()
      (cdr ls)))  ()

(let ([abs
       (lambda (x)
         (if (< x 0)
             (- 0 x)
             x))])
  (abs -4))  4

(let ([x -4])
  (if (< x 0)
      (list 'minus (- 0 x))
      (list 'plus 4)))  (minus 4)

procedure: (not obj)
returns: #t if obj is false, #f otherwise
libraries: (rnrs base), (rnrs)

not is equivalent to (lambda (x) (if x #f #t)).

(not #f)  #t
(not #t)  #f
(not '())  #f
(not (< 4 5))  #f

syntax: (and expr ...)
returns: see below
libraries: (rnrs base), (rnrs)

If no subexpressions are present, the and form evaluates to #t. Otherwise, and evaluates each subexpression
in sequence from left to right until only one subexpression remains or a subexpression returns #f. If one
subexpression remains, it is evaluated and its values are returned. If a subexpression returns #f, and returns
#f without evaluating the remaining subexpressions. A syntax definition of and appears on page 62.

(let ([x 3])
  (and (> x 2) (< x 4)))  #t

(let ([x 5])
  (and (> x 2) (< x 4)))  #f

(and #f '(a b) '(c d))  #f
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(and '(a b) '(c d) '(e f))  (e f)

syntax: (or expr ...)
returns: see below
libraries: (rnrs base), (rnrs)

If no subexpressions are present, the or form evaluates to #f. Otherwise, or evaluates each subexpression in
sequence from left to right until only one subexpression remains or a subexpression returns a value other than
#f. If one subexpression remains, it is evaluated and its values are returned. If a subexpression returns a value
other than #f, or returns that value without evaluating the remaining subexpressions. A syntax definition of
or appears on page 63.

(let ([x 3])
  (or (< x 2) (> x 4)))  #f

(let ([x 5])
  (or (< x 2) (> x 4)))  #t

(or #f '(a b) '(c d))  (a b)

syntax: (cond clause1 clause2 ...)
returns: see below
libraries: (rnrs base), (rnrs)

Each clause but the last must take one of the forms below.

(test)
(test expr1 expr2 ...)
(test => expr)

The last clause may be in any of the above forms, or it may be an "else clause" of the form

(else expr1 expr2 ...)

Each test is evaluated in order until one evaluates to a true value or until all of the tests have been
evaluated. If the first clause whose test evaluates to a true value is in the first form given above, the value of
test is returned.

If the first clause whose test evaluates to a true value is in the second form given above, the expressions
expr1 expr2... are evaluated in sequence and the values of the last expression are returned.

If the first clause whose test evaluates to a true value is in the third form given above, the expression expr
is evaluated. The value should be a procedure of one argument, which is applied to the value of test. The
values of this application are returned.

If none of the tests evaluates to a true value and an else clause is present, the expressions
expr1 expr2 ... of the else clause are evaluated in sequence and the values of the last expression are
returned.

If none of the tests evaluates to a true value and no else clause is present, the value or values are
unspecified.

See page 305 for a syntax definition of cond.
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(let ([x 0])
  (cond
    [(< x 0) (list 'minus (abs x))]
    [(> x 0) (list 'plus x)]
    [else (list 'zero x)]))  (zero 0)

(define select
  (lambda (x)
    (cond
      [(not (symbol? x))]
      [(assq x '((a . 1) (b . 2) (c . 3))) => cdr]
      [else 0])))

(select 3)  #t
(select 'b)  2
(select 'e)  0

syntax: else
syntax: =>
libraries: (rnrs base), (rnrs exceptions), (rnrs)

These identifiers are auxiliary keywords for cond. Both also serve as auxiliary keywords for guard, and
else also serves as an auxiliary keyword for case. It is a syntax violation to reference these identifiers
except in contexts where they are recognized as auxiliary keywords.

syntax: (when test-expr expr1 expr2 ...)
syntax: (unless test-expr expr1 expr2 ...)
returns: see below
libraries: (rnrs control), (rnrs)

For when, if test-expr evaluates to a true value, the expressions expr1 expr2 ... are evaluated in
sequence, and the values of the last expression are returned. If test-expr evaluates to false, none of the
other expressions are evaluated, and the value or values of when are unspecified.

For unless, if test-expr evaluates to false, the expressions expr1 expr2 ... are evaluated in
sequence, and the values of the last expression are returned. If test-expr evaluates to a true value, none of
the other expressions are evaluated, and the value or values of unless are unspecified.

A when or unless expression is usually clearer than the corresponding "one-armed" if expression.

(let ([x -4] [sign 'plus])
  (when (< x 0)
    (set! x (- 0 x))
    (set! sign 'minus))
  (list sign x))  (minus 4)

(define check-pair
  (lambda (x)
    (unless (pair? x)
      (syntax-violation 'check-pair "invalid argument" x))
    x))

(check-pair '(a b c))  (a b c)
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when may be defined as follows:

(define-syntax when
  (syntax-rules ()
    [(_ e0 e1 e2 ...)
     (if e0 (begin e1 e2 ...))]))

unless may be defined as follows:

(define-syntax unless
  (syntax-rules ()
    [(_ e0 e1 e2 ...)
     (if (not e0) (begin e1 e2 ...))]))

or in terms of when as follows:

(define-syntax unless
  (syntax-rules ()
    [(_ e0 e1 e2 ...)
     (when (not e0) e1 e2 ...)]))

syntax: (case expr0 clause1 clause2 ...)
returns: see below
libraries: (rnrs base), (rnrs)

Each clause but the last must take the form

((key ...) expr1 expr2 ...)

where each key is a datum distinct from the other keys. The last clause may be in the above form or it may be
an else clause of the form

(else expr1 expr2 ...)

expr0 is evaluated and the result is compared (using eqv?) against the keys of each clause in order. If a
clause containing a matching key is found, the expressions expr1 expr2 ... are evaluated in sequence
and the values of the last expression are returned.

If none of the clauses contains a matching key and an else clause is present, the expressions
expr1 expr2 ... of the else clause are evaluated in sequence and the values of the last expression are
returned.

If none of the clauses contains a matching key and no else clause is present, the value or values are
unspecified.

See page 306 for a syntax definition of case.

(let ([x 4] [y 5])
  (case (+ x y)
    [(1 3 5 7 9) 'odd]
    [(0 2 4 6 8) 'even]
    [else 'out-of-range]))  odd
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Section 5.4. Recursion and Iteration

syntax: (let name ((var expr) ...) body1 body2 ...)
returns: values of the final body expression
libraries: (rnrs base), (rnrs)

This form of let, called named let, is a general-purpose iteration and recursion construct. It is similar to
the more common form of let (see Section 4.4) in the binding of the variables var ... to the values of
expr ... within the body body1 body2 ..., which is processed and evaluated like a lambda body. In
addition, the variable name is bound within the body to a procedure that may be called to recur or iterate; the
arguments to the procedure become the new values of the variables var ....

A named let expression of the form

(let name ((var expr) ...)
body1 body2 ...)

can be rewritten with letrec as follows.

((letrec ((name (lambda (var ...) body1 body2 ...)))
name)

expr ...)

A syntax definition of let that implements this transformation and handles unnamed let as well can be
found on page 312.

The procedure divisors defined below uses named let to compute the nontrivial divisors of a
nonnegative integer.

(define divisors
  (lambda (n)
    (let f ([i 2])
      (cond
        [(>= i n) '()]
        [(integer? (/ n i)) (cons i (f (+ i 1)))]
        [else (f (+ i 1))]))))

(divisors 5)  ()
(divisors 32)  (2 4 8 16)

The version above is non-tail-recursive when a divisor is found and tail-recursive when a divisor is not found.
The version below is fully tail-recursive. It builds up the list in reverse order, but this is easy to remedy, if
desired, by reversing the list on exit.

(define divisors
  (lambda (n)
    (let f ([i 2] [ls '()])
      (cond
        [(>= i n) ls]
        [(integer? (/ n i)) (f (+ i 1) (cons i ls))]
        [else (f (+ i 1) ls)]))))

syntax: (do ((var init update) ...) (test result ...) expr ...)
returns: the values of the last result expression
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libraries: (rnrs control), (rnrs)

do allows a common restricted form of iteration to be expressed succinctly. The variables var ... are
bound initially to the values of init ... and are rebound on each subsequent iteration to the values of
update .... The expressions test, update ..., expr ..., and result ... are all within the
scope of the bindings established for var ....

On each step, the test expression test is evaluated. If the value of test is true, iteration ceases, the
expressions result ... are evaluated in sequence, and the values of the last expression are returned. If no
result expressions are present, the value or values of the do expression are unspecified.

If the value of test is false, the expressions expr ... are evaluated in sequence, the expressions
update ... are evaluated, new bindings for var ... to the values of update ... are created, and
iteration continues.

The expressions expr ... are evaluated only for effect and are often omitted entirely. Any update
expression may be omitted, in which case the effect is the same as if the update were simply the
corresponding var.

Although looping constructs in most languages require that the loop iterands be updated via assignment, do
requires the loop iterands var ... to be updated via rebinding. In fact, no side effects are involved in the
evaluation of a do expression unless they are performed explicitly by its subexpressions.

See page 313 for a syntax definition of do.

The definitions of factorial and fibonacci below are straightforward translations of the tail-recursive
named-let versions given in Section 3.2.

(define factorial
  (lambda (n)
    (do ([i n (- i 1)] [a 1 (* a i)])
        ((zero? i) a))))

(factorial 10)  3628800

(define fibonacci
  (lambda (n)
    (if (= n 0)
        0
        (do ([i n (- i 1)] [a1 1 (+ a1 a2)] [a2 0 a1])
            ((= i 1) a1)))))

(fibonacci 6)  8

The definition of divisors below is similar to the tail-recursive definition of divisors given with the
description of named let above.

(define divisors
  (lambda (n)
    (do ([i 2 (+ i 1)]
         [ls '()
             (if (integer? (/ n i))
                 (cons i ls)
                 ls)])
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        ((>= i n) ls))))

The definition of scale-vector! below, which scales each element of a vector v by a constant k,
demonstrates a nonempty do body.

(define scale-vector!
  (lambda (v k)
    (let ([n (vector-length v)])
      (do ([i 0 (+ i 1)])
          ((= i n))
        (vector-set! v i (* (vector-ref v i) k))))))

(define vec (vector 1 2 3 4 5))
(scale-vector! vec 2)
vec  #(2 4 6 8 10)

Section 5.5. Mapping and Folding

When a program must recur or iterate over the elements of a list, a mapping or folding operator is often more
convenient. These operators abstract away from null checks and explicit recursion by applying a procedure to
the elements of the list one by one. A few mapping operators are also available for vectors and strings.

procedure: (map procedure list1 list2 ...)
returns: list of results
libraries: (rnrs base), (rnrs)

map applies procedure to corresponding elements of the lists list1 list2 ... and returns a list of the
resulting values. The lists list1 list2 ... must be of the same length. procedure should accept as
many arguments as there are lists, should return a single value, and should not mutate the list arguments.

(map abs '(1 -2 3 -4 5 -6))  (1 2 3 4 5 6)

(map (lambda (x y) (* x y))
     '(1 2 3 4)
     '(8 7 6 5))  (8 14 18 20)

While the order in which the applications themselves occur is not specified, the order of the values in the
output list is the same as that of the corresponding values in the input lists.

map might be defined as follows.

(define map
  (lambda (f ls . more)
    (if (null? more)
        (let map1 ([ls ls])
          (if (null? ls)
              '()
              (cons (f (car ls))
                    (map1 (cdr ls)))))
        (let map-more ([ls ls] [more more])
          (if (null? ls)
              '()
              (cons
                (apply f (car ls) (map car more))
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                (map-more (cdr ls) (map cdr more))))))))

No error checking is done by this version of map; f is assumed to be a procedure and the other arguments are
assumed to be proper lists of the same length. An interesting feature of this definition is that map uses itself to
pull out the cars and cdrs of the list of input lists; this works because of the special treatment of the single-list
case.

procedure: (for-each procedure list1 list2 ...)
returns: unspecified
libraries: (rnrs base), (rnrs)

for-each is similar to map except that for-each does not create and return a list of the resulting values,
and for-each guarantees to perform the applications in sequence over the elements from left to right.
procedure should accept as many arguments as there are lists and should not mutate the list arguments.
for-each may be defined without error checks as follows.

(define for-each
  (lambda (f ls . more)
    (do ([ls ls (cdr ls)] [more more (map cdr more)])
        ((null? ls))
      (apply f (car ls) (map car more)))))

(let ([same-count 0])
  (for-each
    (lambda (x y)
      (when (= x y)
        (set! same-count (+ same-count 1))))
    '(1 2 3 4 5 6)
    '(2 3 3 4 7 6))
  same-count)  3

procedure: (exists procedure list1 list2 ...)
returns: see below
libraries: (rnrs lists), (rnrs)

The lists list1 list2 ... must be of the same length. procedure should accept as many arguments as
there are lists and should not mutate the list arguments. If the lists are empty, exists returns #f.
Otherwise, exists applies procedure to corresponding elements of the lists list1 list2 ... in
sequence until either the lists each have only one element or procedure returns a true value t. In the former
case, exists tail-calls procedure, applying it to the remaining element of each list. In the latter case,
exists returns t.

(exists symbol? '(1.0 #\a "hi" '()))  #f

(exists member
        '(a b c)
        '((c b) (b a) (a c)))  (b a)

(exists (lambda (x y z) (= (+ x y) z))
        '(1 2 3 4)
        '(1.2 2.3 3.4 4.5)
        '(2.3 4.4 6.4 8.6))  #t

exists may be defined (somewhat inefficiently and without error checks) as follows:
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(define exists
  (lambda (f ls . more)
    (and (not (null? ls))
      (let exists ([x (car ls)] [ls (cdr ls)] [more more])
        (if (null? ls)
            (apply f x (map car more))
            (or (apply f x (map car more))
                (exists (car ls) (cdr ls) (map cdr more))))))))

procedure: (for-all procedure list1 list2 ...)
returns: see below
libraries: (rnrs lists), (rnrs)

The lists list1 list2 ... must be of the same length. procedure should accept as many arguments as
there are lists and should not mutate the list arguments. If the lists are empty, for-all returns #t.
Otherwise, for-all applies procedure to corresponding elements of the lists list1 list2 ... in
sequence until either the lists each have only one element left or procedure returns #f. In the former case,
for-all tail-calls procedure, applying it to the remaining element of each list. In the latter case,
for-all returns #f.

(for-all symbol? '(a b c d))  #t

(for-all =
         '(1 2 3 4)
         '(1.0 2.0 3.0 4.0))  #t

(for-all (lambda (x y z) (= (+ x y) z))
         '(1 2 3 4)
         '(1.2 2.3 3.4 4.5)
         '(2.2 4.3 6.5 8.5))  #f

for-all may be defined (somewhat inefficiently and without error checks) as follows:

(define for-all
  (lambda (f ls . more)
    (or (null? ls)
      (let for-all ([x (car ls)] [ls (cdr ls)] [more more])
        (if (null? ls)
            (apply f x (map car more))
            (and (apply f x (map car more))
                 (for-all (car ls) (cdr ls) (map cdr more))))))))

procedure: (fold-left procedure obj list1 list2 ...)
returns: see below
libraries: (rnrs lists), (rnrs)

The list arguments should all have the same length. procedure should accept one more argument than
the number of list arguments and return a single value. It should not mutate the list arguments.

fold-left returns obj if the list arguments are empty. If they are not empty, fold-left applies
procedure to obj and the cars of list1 list2 ..., then recurs with the value returned by
procedure in place of obj and the cdr of each list in place of the list.

(fold-left cons '() '(1 2 3 4))  ((((() . 1) . 2) . 3) . 4)
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(fold-left
  (lambda (a x) (+ a (* x x)))
  0 '(1 2 3 4 5))  55

(fold-left
  (lambda (a . args) (append args a))
  '(question)
  '(that not to)
  '(is to be)
  '(the be: or))  (to be or not to be: that is the question)

procedure: (fold-right procedure obj list1 list2 ...)
returns: see below
libraries: (rnrs lists), (rnrs)

The list arguments should all have the same length. procedure should accept one more argument than
the number of list arguments and return a single value. It should not mutate the list arguments.

fold-right returns obj if the list arguments are empty. If they are not empty, fold-right recurs
with the cdr of each list replacing the list, then applies procedure to the cars of list1 list2 ...
and the result returned by the recursion.

(fold-right cons '() '(1 2 3 4))  (1 2 3 4)

(fold-right
  (lambda (x a) (+ a (* x x)))
  0 '(1 2 3 4 5))  55

(fold-right
  (lambda (x y a) (cons* x y a))    (parting is such sweet sorrow
  '((with apologies))                gotta go see ya tomorrow
  '(parting such sorrow go ya)       (with apologies))
  '(is sweet gotta see tomorrow))

procedure: (vector-map procedure vector1 vector1 ...)
returns: vector of results
libraries: (rnrs base), (rnrs)

vector-map applies procedure to corresponding elements of vector1 vector2 ... and returns a
vector of the resulting values. The vectors vector1 vector2 ... must be of the same length, and
procedure should accept as many arguments as there are vectors and return a single value.

(vector-map abs '#(1 -2 3 -4 5 -6))  #(1 2 3 4 5 6)
(vector-map (lambda (x y) (* x y))
  '#(1 2 3 4)
  '#(8 7 6 5))  #(8 14 18 20)

While the order in which the applications themselves occur is not specified, the order of the values in the
output vector is the same as that of the corresponding values in the input vectors.

procedure: (vector-for-each procedure vector1 vector2 ...)
returns: unspecified
libraries: (rnrs base), (rnrs)
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vector-for-each is similar to vector-map except that vector-for-each does not create and
return a vector of the resulting values, and vector-for-each guarantees to perform the applications in
sequence over the elements from left to right.

(let ([same-count 0])
  (vector-for-each
    (lambda (x y)
      (when (= x y)
        (set! same-count (+ same-count 1))))
    '#(1 2 3 4 5 6)
    '#(2 3 3 4 7 6))
  same-count)  3

procedure: (string-for-each procedure string1 string2 ...)
returns: unspecified
libraries: (rnrs base), (rnrs)

string-for-each is similar to for-each and vector-for-each except that the inputs are strings
rather than lists or vectors.

(let ([ls '()])
  (string-for-each
    (lambda r (set! ls (cons r ls)))
    "abcd"
    "===="
    "1234")
  (map list->string (reverse ls)))  ("a=1" "b=2" "c=3" "d=4")

Section 5.6. Continuations

Continuations in Scheme are procedures that represent the remainder of a computation from a given point in
the computation. They may be obtained with call-with-current-continuation, which can be
abbreviated to call/cc.

procedure: (call/cc procedure)
procedure: (call-with-current-continuation procedure)
returns: see below
libraries: (rnrs base), (rnrs)

These procedures are the same. The shorter name is often used for the obvious reason that it requires fewer
keystrokes to type.

call/cc obtains its continuation and passes it to procedure, which should accept one argument. The
continuation itself is represented by a procedure. Each time this procedure is applied to zero or more values, it
returns the values to the continuation of the call/cc application. That is, when the continuation procedure
is called, it returns its arguments as the values of the application of call/cc.

If procedure returns normally when passed the continuation procedure, the values returned by call/cc
are the values returned by procedure.

Continuations allow the implementation of nonlocal exits, backtracking [14,29], coroutines [16], and
multitasking [10,32].

The example below illustrates the use of a continuation to perform a nonlocal exit from a loop.
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(define member
  (lambda (x ls)
    (call/cc
      (lambda (break)
        (do ([ls ls (cdr ls)])
            ((null? ls) #f)
          (when (equal? x (car ls))
            (break ls)))))))

(member 'd '(a b c))  #f
(member 'b '(a b c))  (b c)

Additional examples are given in Sections 3.3 and 12.11.

The current continuation is typically represented internally as a stack of procedure activation records, and
obtaining the continuation involves encapsulating the stack within a procedural object. Since an encapsulated
stack has indefinite extent, some mechanism must be used to preserve the stack contents indefinitely. This can
be done with surprising ease and efficiency and with no impact on programs that do not use
continuations [17].

procedure: (dynamic-wind in body out)
returns: values resulting from the application of body
libraries: (rnrs base), (rnrs)

dynamic-wind offers "protection" from continuation invocation. It is useful for performing tasks that must
be performed whenever control enters or leaves body, either normally or by continuation application.

The three arguments in, body, and out must be procedures and should accept zero arguments, i.e., they
should be thunks. Before applying body, and each time body is entered subsequently by the application of
a continuation created within body, the in thunk is applied. Upon normal exit from body and each time
body is exited by the application of a continuation created outside body, the out thunk is applied.

Thus, it is guaranteed that in is invoked at least once. In addition, if body ever returns, out is invoked at
least once.

The following example demonstrates the use of dynamic-wind to be sure that an input port is closed after
processing, regardless of whether the processing completes normally.

(let ([p (open-input-file "input-file")])
  (dynamic-wind
    (lambda () #f)
    (lambda () (process p))
    (lambda () (close-port p))))

Common Lisp provides a similar facility (unwind-protect) for protection from nonlocal exits. This is
often sufficient. unwind-protect provides only the equivalent to out, however, since Common Lisp does
not support fully general continuations. Here is how unwind-protect might be specified with
dynamic-wind.

(define-syntax unwind-protect
  (syntax-rules ()
    [(_ body cleanup ...)
     (dynamic-wind
       (lambda () #f)

The Scheme Programming Language, 4th Edition

100 Section 5.6. Continuations



       (lambda () body)
       (lambda () cleanup ...))]))

((call/cc
   (let ([x 'a])
     (lambda (k)
       (unwind-protect
         (k (lambda () x))
         (set! x 'b))))))  b

Some Scheme implementations support a controlled form of assignment known as fluid binding, in which a
variable takes on a temporary value during a given computation and reverts to the old value after the
computation has completed. The syntactic form fluid-let defined below in terms of dynamic-wind
permits the fluid binding of a single variable x to the value of an expression e within a the body
b1 b2 ....

(define-syntax fluid-let
  (syntax-rules ()
    [(_ ((x e)) b1 b2 ...)
     (let ([y e])
       (let ([swap (lambda () (let ([t x]) (set! x y) (set! y t)))])
         (dynamic-wind swap (lambda () b1 b2 ...) swap)))]))

Implementations that support fluid-let typically extend it to allow an indefinite number of (x e) pairs,
as with let.

If no continuations are invoked within the body of a fluid-let, the behavior is the same as if the variable
were simply assigned the new value on entry and assigned the old value on return.

(let ([x 3])
  (+ (fluid-let ([x 5])
       x)
     x))  8

A fluid-bound variable also reverts to the old value if a continuation created outside of the fluid-let is
invoked.

(let ([x 'a])
  (let ([f (lambda () x)])
    (cons (call/cc
            (lambda (k)
              (fluid-let ([x 'b])
                (k (f)))))
          (f))))  (b . a)

If control has left a fluid-let body, either normally or by the invocation of a continuation, and control
reenters the body by the invocation of a continuation, the temporary value of the fluid-bound variable is
reinstated. Furthermore, any changes to the temporary value are maintained and reflected upon reentry.

(define reenter #f)
(define x 0)
(fluid-let ([x 1])
  (call/cc (lambda (k) (set! reenter k)))
  (set! x (+ x 1))

The Scheme Programming Language, 4th Edition

Section 5.6. Continuations 101



  x)  2
x  0
(reenter '*)  3
(reenter '*)  4
x  0

A library showing how dynamic-wind might be implemented were it not already built in is given below. In
addition to defining dynamic-wind, the code defines a version of call/cc that does its part to support
dynamic-wind.

(library (dynamic-wind)
  (export dynamic-wind call/cc
    (rename (call/cc call-with-current-continuation)))
  (import (rename (except (rnrs) dynamic-wind) (call/cc rnrs:call/cc)))

  (define winders '())

  (define common-tail
    (lambda (x y)
      (let ([lx (length x)] [ly (length y)])
        (do ([x (if (> lx ly) (list-tail x (- lx ly)) x) (cdr x)]
             [y (if (> ly lx) (list-tail y (- ly lx)) y) (cdr y)])
            ((eq? x y) x)))))

  (define do-wind
    (lambda (new)
      (let ([tail (common-tail new winders)])
        (let f ([ls winders])
          (if (not (eq? ls tail))
              (begin
                (set! winders (cdr ls))
                ((cdar ls))
                (f (cdr ls)))))
        (let f ([ls new])
          (if (not (eq? ls tail))
              (begin
                (f (cdr ls))
                ((caar ls))
                (set! winders ls)))))))

  (define call/cc
    (lambda (f)
      (rnrs:call/cc
        (lambda (k)
          (f (let ([save winders])
               (lambda (x)
                 (unless (eq? save winders) (do-wind save))
                 (k x))))))))

  (define dynamic-wind
    (lambda (in body out)
      (in)
      (set! winders (cons (cons in out) winders))
      (let-values ([ans* (body)])
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        (set! winders (cdr winders))
        (out)
        (apply values ans*)))))

Together, dynamic-wind and call/cc manage a list of winders. A winder is a pair of in and out thunks
established by a call to dynamic-wind. Whenever dynamic-wind is invoked, the in thunk is invoked, a
new winder containing the in and out thunks is placed on the winders list, the body thunk is invoked, the
winder is removed from the winders list, and the out thunk is invoked. This ordering ensures that the winder is
on the winders list only when control has passed through in and not yet entered out. Whenever a continuation
is obtained, the winders list is saved, and whenever the continuation is invoked, the saved winders list is
reinstated. During reinstatement, the out thunk of each winder on the current winders list that is not also on
the saved winders list is invoked, followed by the in thunk of each winder on the saved winders list that is not
also on the current winders list. The winders list is updated incrementally, again to ensure that a winder is on
the current winders list only if control has passed through its in thunk and not entered its out thunk.

The test (not (eq? save winders)) performed in call/cc is not strictly necessary but makes
invoking a continuation less costly whenever the saved winders list is the same as the current winders list.

Section 5.7. Delayed Evaluation

The syntactic form delay and the procedure force may be used in combination to implement lazy
evaluation. An expression subject to lazy evaluation is not evaluated until its value is required and, once
evaluated, is never reevaluated.

syntax: (delay expr)
returns: a promise
procedure: (force promise)
returns: result of forcing promise
libraries: (rnrs r5rs)

The first time a promise created by delay is forced (with force), it evaluates expr, "remembering" the
resulting value. Thereafter, each time the promise is forced, it returns the remembered value instead of
reevaluating expr.

delay and force are typically used only in the absence of side effects, e.g., assignments, so that the order
of evaluation is unimportant.

The benefit of using delay and force is that some amount of computation might be avoided altogether if it
is delayed until absolutely required. Delayed evaluation may be used to construct conceptually infinite lists, or
streams. The example below shows how a stream abstraction may be built with delay and force. A stream
is a promise that, when forced, returns a pair whose cdr is a stream.

(define stream-car
  (lambda (s)
    (car (force s))))

(define stream-cdr
  (lambda (s)
    (cdr (force s))))

(define counters
  (let next ([n 1])
    (delay (cons n (next (+ n 1))))))
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(stream-car counters)  1

(stream-car (stream-cdr counters))  2

(define stream-add
  (lambda (s1 s2)
    (delay (cons
             (+ (stream-car s1) (stream-car s2))
             (stream-add (stream-cdr s1) (stream-cdr s2))))))

(define even-counters
  (stream-add counters counters))

(stream-car even-counters)  2

(stream-car (stream-cdr even-counters))  4

delay may be defined by

(define-syntax delay
  (syntax-rules ()
    [(_ expr) (make-promise (lambda () expr))]))

where make-promise might be defined as follows.

(define make-promise
  (lambda (p)
    (let ([val #f] [set? #f])
      (lambda ()
        (unless set?
          (let ([x (p)])
            (unless set?
              (set! val x)
              (set! set? #t))))
        val))))

With this definition of delay, force simply invokes the promise to force evaluation or to retrieve the saved
value.

(define force
  (lambda (promise)
    (promise)))

The second test of the variable set? in make-promise is necessary in the event that, as a result of
applying p, the promise is recursively forced. Since a promise must always return the same value, the result of
the first application of p to complete is returned.

Whether delay and force handle multiple return values is unspecified; the implementation given above
does not, but the following version does, with the help of call-with-values and apply.

(define make-promise
  (lambda (p)
    (let ([vals #f] [set? #f])
      (lambda ()
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        (unless set?
          (call-with-values p
            (lambda x
              (unless set?
                (set! vals x)
                (set! set? #t)))))
        (apply values vals)))))

(define p (delay (values 1 2 3)))
(force p)  1

 2
 3

(call-with-values (lambda () (force p)) +)  6

Neither implementation is quite right, since force must raise an exception with condition type
&assertion if its argument is not a promise. Since distinguishing procedures created by make-promise
from other procedures is impossible, force cannot do so reliably. The following reimplementation of
make-promise and force represents promises as records of the type promise to allow force to make
the required check.

(define-record-type promise
  (fields (immutable p) (mutable vals) (mutable set?))
  (protocol (lambda (new) (lambda (p) (new p #f #f)))))

(define force
  (lambda (promise)
    (unless (promise? promise)
      (assertion-violation 'promise "invalid argument" promise))
    (unless (promise-set? promise)
      (call-with-values (promise-p promise)
        (lambda x
          (unless (promise-set? promise)
            (promise-vals-set! promise x)
            (promise-set?-set! promise #t)))))
    (apply values (promise-vals promise))))

Section 5.8. Multiple Values

While all Scheme primitives and most user-defined procedures return exactly one value, some programming
problems are best solved by returning zero values, more than one value, or even a variable number of values.
For example, a procedure that partitions a list of values into two sublists needs to return two values. While it
is possible for the producer of multiple values to package them into a data structure and for the consumer to
extract them, it is often cleaner to use the built-in multiple-values interface. This interface consists of two
procedures: values and call-with-values. The former produces multiple values and the latter links
procedures that produce multiple-value values with procedures that consume them.

procedure: (values obj ...)
returns: obj ...
libraries: (rnrs base), (rnrs)

The procedure values accepts any number of arguments and simply passes (returns) the arguments to its
continuation.
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(values) 

(values 1)  1

(values 1 2 3)  1
 2
 3

(define head&tail
  (lambda (ls)
    (values (car ls) (cdr ls))))

(head&tail '(a b c))  a
 (b c)

procedure: (call-with-values producer consumer)
returns: see below
libraries: (rnrs base), (rnrs)

producer and consumer must be procedures. call-with-values applies consumer to the values
returned by invoking producer without arguments.

(call-with-values
  (lambda () (values 'bond 'james))
  (lambda (x y) (cons y x)))  (james . bond)

(call-with-values values list)  '()

In the second example, values itself serves as the producer. It receives no arguments and thus returns no
values. list is thus applied to no arguments and so returns the empty list.

The procedure dxdy defined below computes the change in x and y coordinates for a pair of points whose
coordinates are represented by (x . y) pairs.

(define dxdy
  (lambda (p1 p2)
    (values (- (car p2) (car p1))
            (- (cdr p2) (cdr p1)))))

(dxdy '(0 . 0) '(0 . 5))  0
 5

dxdy can be used to compute the length and slope of a segment represented by two endpoints.

(define segment-length
  (lambda (p1 p2)
    (call-with-values
      (lambda () (dxdy p1 p2))
      (lambda (dx dy) (sqrt (+ (* dx dx) (* dy dy)))))))

(define segment-slope
  (lambda (p1 p2)
    (call-with-values
      (lambda () (dxdy p1 p2))

The Scheme Programming Language, 4th Edition

106 Section 5.8. Multiple Values



      (lambda (dx dy) (/ dy dx)))))

(segment-length '(1 . 4) '(4 . 8))  5
(segment-slope '(1 . 4) '(4 . 8))  4/3

We can of course combine these to form one procedure that returns two values.

(define describe-segment
  (lambda (p1 p2)
    (call-with-values
      (lambda () (dxdy p1 p2))
      (lambda (dx dy)
        (values
          (sqrt (+ (* dx dx) (* dy dy)))
          (/ dy dx))))))

(describe-segment '(1 . 4) '(4 . 8))  5
 4/3

The example below employs multiple values to divide a list nondestructively into two sublists of alternating
elements.

(define split
  (lambda (ls)
    (if (or (null? ls) (null? (cdr ls)))
        (values ls '())
        (call-with-values
          (lambda () (split (cddr ls)))
          (lambda (odds evens)
            (values (cons (car ls) odds)
                    (cons (cadr ls) evens)))))))

(split '(a b c d e f))  (a c e)
 (b d f)

At each level of recursion, the procedure split returns two values: a list of the odd-numbered elements from
the argument list and a list of the even-numbered elements.

The continuation of a call to values need not be one established by a call to call-with-values, nor
must only values be used to return to a continuation established by call-with-values. In particular,
(values e) and e are equivalent expressions. For example:

(+ (values 2) 4)  6

(if (values #t) 1 2)  1

(call-with-values
  (lambda () 4)
  (lambda (x) x))  4

Similarly, values may be used to pass any number of values to a continuation that ignores the values, as in
the following.

(begin (values 1 2 3) 4)  4
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Because a continuation may accept zero or more than one value, continuations obtained via call/cc may
accept zero or more than one argument.

(call-with-values
  (lambda ()
    (call/cc (lambda (k) (k 2 3))))
  (lambda (x y) (list x y)))  (2 3)

The behavior is unspecified when a continuation expecting exactly one value receives zero values or more
than one value. For example, the behavior of each of the following expressions is unspecified. Some
implementations raise an exception, while others silently suppress additional values or supply defaults for
missing values.

(if (values 1 2) 'x 'y)

(+ (values) 5)

Programs that wish to force extra values to be ignored in particular contexts can do so easily by calling
call-with-values explicitly. A syntactic form, which we might call first, can be defined to abstract
the discarding of more than one value when only one is desired.

(define-syntax first
  (syntax-rules ()
    [(_ expr)
     (call-with-values
       (lambda () expr)
       (lambda (x . y) x))]))

(if (first (values #t #f)) 'a 'b)  a

Since implementations are required to raise an exception with condition type &assertion if a procedure
does not accept the number of arguments passed to it, each of the following raises an exception.

(call-with-values
  (lambda () (values 2 3 4))
  (lambda (x y) x))

(call-with-values
  (lambda () (call/cc (lambda (k) (k 0))))
  (lambda (x y) x))

Since producer is most often a lambda expression, it is often convenient to use a syntactic extension that
suppresses the lambda expression in the interest of readability.

(define-syntax with-values
  (syntax-rules ()
    [(_ expr consumer)
     (call-with-values (lambda () expr) consumer)]))

(with-values (values 1 2) list)  (1 2)
(with-values (split '(1 2 3 4))
  (lambda (odds evens)
    evens))  (2 4)
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If the consumer is also a lambda expression, the multiple-value variants of let and let* described in
Section 4.5 are usually even more convenient.

(let-values ([(odds evens) (split '(1 2 3 4))])
  evens)  (2 4)

(let-values ([ls (values 'a 'b 'c)])
  ls)  (a b c)

Many standard syntactic forms and procedures pass along multiple values. Most of these are "automatic," in
the sense that nothing special must be done by the implementation to make this happen. The usual expansion
of let into a direct lambda call automatically propagates multiple values produced by the body of the let.
Other operators must be coded specially to pass along multiple values. The call-with-port procedure
(page 7.6), for example, calls its procedure argument, then closes the port argument before returning the
procedure's values, so it must save the values temporarily. This is easily accomplished via let-values,
apply, and values:

(define call-with-port
  (lambda (port proc)
    (let-values ([val* (proc port)])
      (close-port port)
      (apply values val*))))

If this seems like too much overhead when a single value is returned, the code can use
call-with-values and case-lambda to handle the single-value case more efficiently:

(define call-with-port
  (lambda (port proc)
    (call-with-values (lambda () (proc port))
      (case-lambda
        [(val) (close-port port) val]
        [val* (close-port port) (apply values val*)]))))

The definitions of values and call-with-values (and concomitant redefinition of call/cc) in the
library below demonstrate that the multiple-return-values interface could be implemented in Scheme if it were
not already built in. No error checking can be done, however, for the case in which more than one value is
returned to a single-value context, such as the test part of an if expression.

(library (mrvs)
  (export call-with-values values call/cc
    (rename (call/cc call-with-current-continuation)))
  (import
    (rename
      (except (rnrs) values call-with-values)
      (call/cc rnrs:call/cc)))

  (define magic (cons 'multiple 'values))

  (define magic?
    (lambda (x)
      (and (pair? x) (eq? (car x) magic))))

  (define call/cc
    (lambda (p)
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      (rnrs:call/cc
        (lambda (k)
          (p (lambda args
               (k (apply values args))))))))

  (define values
    (lambda args
      (if (and (not (null? args)) (null? (cdr args)))
          (car args)
          (cons magic args))))

  (define call-with-values
    (lambda (producer consumer)
      (let ([x (producer)])
        (if (magic? x)
            (apply consumer (cdr x))
            (consumer x))))))

Multiple values can be implemented more efficiently [2], but this code serves to illustrate the meanings of the
operators and may be used to provide multiple values in older, nonstandard implementations that do not
support them.

Section 5.9. Eval

Scheme's eval procedure allows programmers to write programs that construct and evaluate other programs.
This ability to do run-time meta programming should not be overused but is handy when needed.

procedure: (eval obj environment)
returns: values of the Scheme expression represented by obj in environment
libraries: (rnrs eval)

If obj does not represent a syntactically valid expression, eval raises an exception with condition type
&syntax. The environments returned by environment, scheme-report-environment, and
null-environment are immutable. Thus, eval also raises an exception with condition type &syntax if
an assignment to any of the variables in the environment appears within the expression.

(define cons 'not-cons)
(eval '(let ([x 3]) (cons x 4)) (environment '(rnrs)))  (3 . 4)

(define lambda 'not-lambda)
(eval '(lambda (x) x) (environment '(rnrs)))  #<procedure>

(eval '(cons 3 4) (environment)) exception

procedure: (environment import-spec ...)
returns: an environment
libraries: (rnrs eval)

environment returns an environment formed from the combined bindings of the given import specifiers.
Each import-spec must be an s-expression representing a valid import specifier (see Chapter 10).

(define env (environment '(rnrs) '(prefix (rnrs lists) $)))
(eval '($cons* 3 4 (* 5 8)) env)  (3 4 . 40)
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procedure: (null-environment version)
procedure: (scheme-report-environment version)
returns: an R5RS compatibility environment
libraries: (rnrs r5rs)

version must be the exact integer 5.

null-environment returns an environment containing bindings for the keywords whose meanings are
defined by the Revised5 Report on Scheme, along with bindings for the auxiliary keywords else, =>, ...,
and _.

scheme-report-environment returns an environment containing the same keyword bindings as the
environment returned by null-environment along with bindings for the variables whose meanings are
defined by the Revised5 Report on Scheme, except those not defined by the Revised6 Report: load,
interaction-environment, transcript-on, transcript-off, and char-ready?.

The bindings for each of the identifiers in the environments returned by these procedures are those of the
corresponding Revised6 Report library, so this does not provide full backward compatibility, even if the
excepted identifier bindings are not used.
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Chapter 6. Operations on Objects
This chapter describes the operations on objects, including lists, numbers, characters, strings, vectors,
bytevectors, symbols, booleans, hashtables, and enumerations. The first section covers constant objects and
quotation. The second section describes generic equivalence predicates for comparing two objects and
predicates for determining the type of an object. Later sections describe procedures that deal primarily with
one of the object types mentioned above. There is no section treating operations on procedures, since the only
operation defined specifically for procedures is application, and this is described in Chapter 5. Operations on
ports are covered in the more general discussion of input and output in Chapter 7. A mechanism for defining
new data types is described in Chapter 9.

Section 6.1. Constants and Quotation

syntax: constant
returns: constant

constant is any self-evaluating constant, i.e., a number, boolean, character, string, or bytevector. Constants
are immutable; see the note in the description of quote below.

3.2  3.2
#f  #f
#\c  #\c
"hi"  "hi"
#vu8(3 4 5)  #vu8(3 4 5)

syntax: (quote obj)
syntax: 'obj
returns: obj
libraries: (rnrs base), (rnrs)

'obj is equivalent to (quote obj). The abbreviated form is converted into the longer form by the
Scheme reader (see read).

quote inhibits the normal evaluation rule for obj, allowing obj to be employed as data. Although any
Scheme object may be quoted, quotation is not necessary for self-evaluating constants, i.e., numbers,
booleans, characters, strings, and bytevectors.

Quoted and self-evaluating constants are immutable. That is, programs should not alter a constant via
set-car!, string-set!, etc., and implementations are permitted to raise an exception with condition
type &assertion if such an alteration is attempted. If an attempt to alter an immutable object is undetected,
the behavior of the program is unspecified. An implementation may choose to share storage among different
constants to save space.

(+ 2 3)  5
'(+ 2 3)  (+ 2 3)
(quote (+ 2 3))  (+ 2 3)
'a  a
'cons  cons
'()  ()
'7  7

syntax: (quasiquote obj ...)
syntax: `obj
syntax: (unquote obj ...)
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syntax: ,obj
syntax: (unquote-splicing obj ...)
syntax: ,@obj
returns: see below
libraries: (rnrs base), (rnrs)

`obj is equivalent to (quasiquote obj), ,obj is equivalent to (unquote obj), and ,@obj is
equivalent to (unquote-splicing obj). The abbreviated forms are converted into the longer forms by
the Scheme reader (see read).

quasiquote is similar to quote, but it allows parts of the quoted text to be "unquoted." Within a
quasiquote expression, unquote and unquote-splicing subforms are evaluated, and everything
else is quoted, i.e., left unevaluated. The value of each unquote subform is inserted into the output in place
of the unquote form, while the value of each unquote-splicing subform is spliced into the
surrounding list or vector structure. unquote and unquote-splicing are valid only within
quasiquote expressions.

quasiquote expressions may be nested, with each quasiquote introducing a new level of quotation and
each unquote or unquote-splicing taking away a level of quotation. An expression nested within n
quasiquote expressions must be within n unquote or unquote-splicing expressions to be
evaluated.

`(+ 2 3)  (+ 2 3)

`(+ 2 ,(* 3 4))  (+ 2 12)
`(a b (,(+ 2 3) c) d)  (a b (5 c) d)
`(a b ,(reverse '(c d e)) f g)  (a b (e d c) f g)
(let ([a 1] [b 2])
  `(,a . ,b))  (1 . 2)

`(+ ,@(cdr '(* 2 3)))  (+ 2 3)
`(a b ,@(reverse '(c d e)) f g)  (a b e d c f g)
(let ([a 1] [b 2])
  `(,a ,@b))  (1 . 2)
`#(,@(list 1 2 3))  #(1 2 3)

'`,(cons 'a 'b)  `,(cons 'a 'b)
`',(cons 'a 'b)  '(a . b)

unquote and unquote-splicing forms with zero or more than one subform are valid only in splicing
(list or vector) contexts. (unquote obj ...) is equivalent to (unquote obj) ..., and
(unquote-splicing obj ...) is equivalent to (unquote-splicing obj) .... These forms
are primarily useful as intermediate forms in the output of the quasiquote expander. They support certain
useful nested quasiquotation idioms [3], such as ,@,@, which has the effect of a doubly indirect splicing
when used within a doubly nested and doubly evaluated quasiquote expression.

`(a (unquote) b)  (a b)
`(a (unquote (+ 3 3)) b)  (a 6 b)
`(a (unquote (+ 3 3) (* 3 3)) b)  (a 6 9 b)

(let ([x '(m n)]) ``(a ,@,@x f))  `(a (unquote-splicing m n) f)
(let ([x '(m n)])
  (eval `(let ([m '(b c)] [n '(d e)]) `(a ,@,@x f))
        (environment '(rnrs))))  (a b c d e f)
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unquote and unquote-splicing are auxiliary keywords for quasiquote. It is a syntax violation to
reference these identifiers except in contexts where they are recognized as auxiliary keywords.

Section 6.2. Generic Equivalence and Type Predicates

This section describes the basic Scheme predicates (procedures returning one of the boolean values #t or #f)
for determining the type of an object or the equivalence of two objects. The equivalence predicates eq?,
eqv?, and equal? are discussed first, followed by the type predicates.

procedure: (eq? obj1 obj2)
returns: #t if obj1 and obj2 are identical, #f otherwise
libraries: (rnrs base), (rnrs)

In most Scheme systems, two objects are considered identical if they are represented internally by the same
pointer value and distinct (not identical) if they are represented internally by different pointer values, although
other criteria, such as time-stamping, are possible.

Although the particular rules for object identity vary somewhat from system to system, the following rules
always hold.

Two objects of different types (booleans, the empty list, pairs, numbers, characters, strings, vectors,
symbols, and procedures) are distinct.

• 

Two objects of the same type with different contents or values are distinct.• 
The boolean object #t is identical to itself wherever it appears, and #f is identical to itself wherever
it appears, but #t and #f are distinct.

• 

The empty list () is identical to itself wherever it appears.• 
Two symbols are identical if and only if they have the same name (by string=?).• 
A constant pair, vector, string, or bytevector is identical to itself, as is a pair, vector, string, or
bytevector created by an application of cons, vector, string, make-bytevector, etc. Two
pairs, vectors, strings, or bytevectors created by different applications of cons, vector, string,
make-bytevector, etc., are distinct. One consequence is that cons, for example, may be used to
create a unique object distinct from all other objects.

• 

Two procedures that may behave differently are distinct. A procedure created by an evaluation of a
lambda expression is identical to itself. Two procedures created by the same lambda expression at
different times, or by similar lambda expressions, may or may not be distinct.

• 

eq? cannot be used to compare numbers and characters reliably. Although every inexact number is distinct
from every exact number, two exact numbers, two inexact numbers, or two characters with the same value
may or may not be identical.

Since constant objects are immutable, i.e., programs should not modify them via vector-set!,
set-car!, or any other structure mutation operation, all or portions of different quoted constants or
self-evaluating literals may be represented internally by the same object. Thus, eq? may return #t when
applied to equal parts of different immutable constants.

eq? is most often used to compare symbols or to check for pointer equivalence of allocated objects, e.g.,
pairs, vectors, or record instances.

(eq? 'a 3)  #f
(eq? #t 't)  #f
(eq? "abc" 'abc)  #f
(eq? "hi" '(hi))  #f
(eq? #f '())  #f
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(eq? 9/2 7/2)  #f
(eq? 3.4 53344)  #f
(eq? 3 3.0)  #f
(eq? 1/3 #i1/3)  #f

(eq? 9/2 9/2) unspecified
(eq? 3.4 (+ 3.0 .4)) unspecified
(let ([x (* 12345678987654321 2)])
  (eq? x x)) unspecified

(eq? #\a #\b)  #f
(eq? #\a #\a) unspecified
(let ([x (string-ref "hi" 0)])
  (eq? x x)) unspecified

(eq? #t #t)  #t
(eq? #f #f)  #t
(eq? #t #f)  #f
(eq? (null? '()) #t)  #t
(eq? (null? '(a)) #f)  #t

(eq? (cdr '(a)) '())  #t

(eq? 'a 'a)  #t
(eq? 'a 'b)  #f
(eq? 'a (string->symbol "a"))  #t

(eq? '(a) '(b))  #f
(eq? '(a) '(a)) unspecified
(let ([x '(a . b)]) (eq? x x))  #t
(let ([x (cons 'a 'b)])
  (eq? x x))  #t
(eq? (cons 'a 'b) (cons 'a 'b))  #f

(eq? "abc" "cba")  #f
(eq? "abc" "abc") unspecified
(let ([x "hi"]) (eq? x x))  #t
(let ([x (string #\h #\i)]) (eq? x x))  #t
(eq? (string #\h #\i)
     (string #\h #\i))  #f

(eq? '#vu8(1) '#vu8(1)) unspecified
(eq? '#vu8(1) '#vu8(2))  #f
(let ([x (make-bytevector 10 0)])
  (eq? x x))  #t
(let ([x (make-bytevector 10 0)])
  (eq? x (make-bytevector 10 0)))  #f

(eq? '#(a) '#(b))  #f
(eq? '#(a) '#(a)) unspecified
(let ([x '#(a)]) (eq? x x))  #t
(let ([x (vector 'a)])
  (eq? x x))  #t
(eq? (vector 'a) (vector 'a))  #f
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(eq? car car)  #t
(eq? car cdr)  #f
(let ([f (lambda (x) x)])
  (eq? f f))  #t
(let ([f (lambda () (lambda (x) x))])
  (eq? (f) (f))) unspecified
(eq? (lambda (x) x) (lambda (y) y)) unspecified

(let ([f (lambda (x)
           (lambda ()
             (set! x (+ x 1))
             x))])
  (eq? (f 0) (f 0)))  #f

procedure: (eqv? obj1 obj2)
returns: #t if obj1 and obj2 are equivalent, #f otherwise
libraries: (rnrs base), (rnrs)

eqv? is similar to eq? except eqv? is guaranteed to return #t for two characters that are considered equal
by char=? and two numbers that are (a) considered equal by = and (b) cannot be distinguished by any other
operation besides eq? and eqv?. A consequence of (b) is that (eqv? -0.0 +0.0) is #f even though
(= -0.0 +0.0) is #t in systems that distinguish -0.0 and +0.0, such as those based on IEEE
floating-point arithmetic. This is because operations such as / can expose the difference:

(/ 1.0 -0.0)  -inf.0
(/ 1.0 +0.0)  +inf.0

Similarly, although 3.0 and 3.0+0.0i are considered numerically equal, they are not considered equivalent by
eqv? if -0.0 and 0.0 have different representations.

(= 3.0+0.0i 3.0)  #t
(eqv? 3.0+0.0i 3.0)  #f

The boolean value returned by eqv? is not specified when the arguments are NaNs.

(eqv? +nan.0 (/ 0.0 0.0)) unspecified

eqv? is less implementation-dependent but generally more expensive than eq?.

(eqv? 'a 3)  #f
(eqv? #t 't)  #f
(eqv? "abc" 'abc)  #f
(eqv? "hi" '(hi))  #f
(eqv? #f '())  #f

(eqv? 9/2 7/2)  #f
(eqv? 3.4 53344)  #f
(eqv? 3 3.0)  #f
(eqv? 1/3 #i1/3)  #f

(eqv? 9/2 9/2)  #t
(eqv? 3.4 (+ 3.0 .4))  #t
(let ([x (* 12345678987654321 2)])
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  (eqv? x x))  #t

(eqv? #\a #\b)  #f
(eqv? #\a #\a)  #t
(let ([x (string-ref "hi" 0)])
  (eqv? x x))  #t

(eqv? #t #t)  #t
(eqv? #f #f)  #t
(eqv? #t #f)  #f
(eqv? (null? '()) #t)  #t
(eqv? (null? '(a)) #f)  #t

(eqv? (cdr '(a)) '())  #t

(eqv? 'a 'a)  #t
(eqv? 'a 'b)  #f
(eqv? 'a (string->symbol "a"))  #t

(eqv? '(a) '(b))  #f
(eqv? '(a) '(a)) unspecified
(let ([x '(a . b)]) (eqv? x x))  #t
(let ([x (cons 'a 'b)])
  (eqv? x x))  #t
(eqv? (cons 'a 'b) (cons 'a 'b))  #f

(eqv? "abc" "cba")  #f
(eqv? "abc" "abc") unspecified
(let ([x "hi"]) (eqv? x x))  #t
(let ([x (string #\h #\i)]) (eqv? x x))  #t
(eqv? (string #\h #\i)
      (string #\h #\i))  #f

(eqv? '#vu8(1) '#vu8(1)) unspecified
(eqv? '#vu8(1) '#vu8(2))  #f
(let ([x (make-bytevector 10 0)])
  (eqv? x x))  #t
(let ([x (make-bytevector 10 0)])
  (eqv? x (make-bytevector 10 0)))  #f

(eqv? '#(a) '#(b))  #f
(eqv? '#(a) '#(a)) unspecified
(let ([x '#(a)]) (eqv? x x))  #t
(let ([x (vector 'a)])
  (eqv? x x))  #t
(eqv? (vector 'a) (vector 'a))  #f

(eqv? car car)  #t
(eqv? car cdr)  #f
(let ([f (lambda (x) x)])
  (eqv? f f))  #t
(let ([f (lambda () (lambda (x) x))])
  (eqv? (f) (f))) unspecified
(eqv? (lambda (x) x) (lambda (y) y)) unspecified
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(let ([f (lambda (x)
           (lambda ()
             (set! x (+ x 1))
             x))])
  (eqv? (f 0) (f 0)))  #f

procedure: (equal? obj1 obj2)
returns: #t if obj1 and obj2 have the same structure and contents, #f otherwise
libraries: (rnrs base), (rnrs)

Two objects are equal if they are equivalent according to eqv?, strings that are string=?, bytevectors that
are bytevector=?, pairs whose cars and cdrs are equal, or vectors of the same length whose corresponding
elements are equal.

equal? is required to terminate even for cyclic arguments and return #t "if and only if the (possibly infinite)
unfoldings of its arguments into regular trees are equal as ordered trees" [24]. In essence, two values are
equivalent, in the sense of equal?, if the structure of the two objects cannot be distinguished by any
composition of pair and vector accessors along with the eqv?, string=?, and bytevector=? procedures
for comparing data at the leaves.

Implementing equal? efficiently is tricky [1], and even with a good implementation, it is likely to be more
expensive than either eqv? or eq?.

(equal? 'a 3)  #f
(equal? #t 't)  #f
(equal? "abc" 'abc)  #f
(equal? "hi" '(hi))  #f
(equal? #f '())  #f

(equal? 9/2 7/2)  #f
(equal? 3.4 53344)  #f
(equal? 3 3.0)  #f
(equal? 1/3 #i1/3)  #f

(equal? 9/2 9/2)  #t
(equal? 3.4 (+ 3.0 .4))  #t
(let ([x (* 12345678987654321 2)])
  (equal? x x))  #t

(equal? #\a #\b)  #f
(equal? #\a #\a)  #t
(let ([x (string-ref "hi" 0)])
  (equal? x x))  #t

(equal? #t #t)  #t
(equal? #f #f)  #t
(equal? #t #f)  #f
(equal? (null? '()) #t)  #t
(equal? (null? '(a)) #f)  #t

(equal? (cdr '(a)) '())  #t

(equal? 'a 'a)  #t
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(equal? 'a 'b)  #f
(equal? 'a (string->symbol "a"))  #t

(equal? '(a) '(b))  #f
(equal? '(a) '(a))  #t
(let ([x '(a . b)]) (equal? x x))  #t
(let ([x (cons 'a 'b)])
  (equal? x x))  #t
(equal? (cons 'a 'b) (cons 'a 'b))  #t

(equal? "abc" "cba")  #f
(equal? "abc" "abc")  #t
(let ([x "hi"]) (equal? x x))  #t
(let ([x (string #\h #\i)]) (equal? x x))  #t
(equal? (string #\h #\i)
        (string #\h #\i))  #t

(equal? '#vu8(1) '#vu8(1))  #t
(equal? '#vu8(1) '#vu8(2))  #f
(let ([x (make-bytevector 10 0)])
  (equal? x x))  #t
(let ([x (make-bytevector 10 0)])
  (equal? x (make-bytevector 10 0)))  #t

(equal? '#(a) '#(b))  #f
(equal? '#(a) '#(a))  #t
(let ([x '#(a)]) (equal? x x))  #t
(let ([x (vector 'a)])
  (equal? x x))  #t
(equal? (vector 'a) (vector 'a))  #t

(equal? car car)  #t
(equal? car cdr)  #f
(let ([f (lambda (x) x)])
  (equal? f f))  #t
(let ([f (lambda () (lambda (x) x))])
  (equal? (f) (f))) unspecified
(equal? (lambda (x) x) (lambda (y) y)) unspecified

(let ([f (lambda (x)
           (lambda ()
             (set! x (+ x 1))
             x))])
  (equal? (f 0) (f 0)))  #f

(equal?
  (let ([x (cons 'x 'x)])
    (set-car! x x)
    (set-cdr! x x)
    x)
  (let ([x (cons 'x 'x)])
    (set-car! x x)
    (set-cdr! x x)
    (cons x x)))  #t
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procedure: (boolean? obj)
returns: #t if obj is either #t or #f, #f otherwise
libraries: (rnrs base), (rnrs)

boolean? is equivalent to (lambda (x) (or (eq? x #t) (eq? x #f))).

(boolean? #t)  #t
(boolean? #f)  #t
(or (boolean? 't) (boolean? '()))  #f

procedure: (null? obj)
returns: #t if obj is the empty list, #f otherwise
libraries: (rnrs base), (rnrs)

null? is equivalent to (lambda (x) (eq? x '())).

(null? '())  #t
(null? '(a))  #f
(null? (cdr '(a)))  #t
(null? 3)  #f
(null? #f)  #f

procedure: (pair? obj)
returns: #t if obj is a pair, #f otherwise
libraries: (rnrs base), (rnrs)

(pair? '(a b c))  #t
(pair? '(3 . 4))  #t
(pair? '())  #f
(pair? '#(a b))  #f
(pair? 3)  #f

procedure: (number? obj)
returns: #t if obj is a number object, #f otherwise
procedure: (complex? obj)
returns: #t if obj is a complex number object, #f otherwise
procedure: (real? obj)
returns: #t if obj is a real number object, #f otherwise
procedure: (rational? obj)
returns: #t if obj is a rational number object, #f otherwise
procedure: (integer? obj)
returns: #t if obj is an integer object, #f otherwise
libraries: (rnrs base), (rnrs)

These predicates form a hierarchy: any integer is rational, any rational is real, any real is complex, and any
complex is numeric. Most implementations do not provide internal representations for irrational numbers, so
all real numbers are typically rational as well.

The real?, rational?, and integer? predicates do not recognize as real, rational, or integer complex
numbers with inexact zero imaginary parts.

(integer? 1901)  #t
(rational? 1901)  #t
(real? 1901)  #t
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(complex? 1901)  #t
(number? 1901)  #t

(integer? -3.0)  #t
(rational? -3.0)  #t
(real? -3.0)  #t
(complex? -3.0)  #t
(number? -3.0)  #t

(integer? 7+0i)  #t
(rational? 7+0i)  #t
(real? 7+0i)  #t
(complex? 7+0i)  #t
(number? 7+0i)  #t

(integer? -2/3)  #f
(rational? -2/3)  #t
(real? -2/3)  #t
(complex? -2/3)  #t
(number? -2/3)  #t

(integer? -2.345)  #f
(rational? -2.345)  #t
(real? -2.345)  #t
(complex? -2.345)  #t
(number? -2.345)  #t

(integer? 7.0+0.0i)  #f
(rational? 7.0+0.0i)  #f
(real? 7.0+0.0i)  #f
(complex? 7.0+0.0i)  #t
(number? 7.0+0.0i)  #t

(integer? 3.2-2.01i)  #f
(rational? 3.2-2.01i)  #f
(real? 3.2-2.01i)  #f
(complex? 3.2-2.01i)  #t
(number? 3.2-2.01i)  #t

(integer? 'a)  #f
(rational? '(a b c))  #f
(real? "3")  #f
(complex? '#(1 2))  #f
(number? #\a)  #f

procedure: (real-valued? obj)
returns: #t if obj is a real number, #f otherwise
procedure: (rational-valued? obj)
returns: #t if obj is a rational number, #f otherwise
procedure: (integer-valued? obj)
returns: #t if obj is an integer, #f otherwise
libraries: (rnrs base), (rnrs)

These predicates are similar to real?, rational?, and integer?, but treat as real, rational, or integral
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complex numbers with inexact zero imaginary parts.

(integer-valued? 1901)  #t
(rational-valued? 1901)  #t
(real-valued? 1901)  #t

(integer-valued? -3.0)  #t
(rational-valued? -3.0)  #t
(real-valued? -3.0)  #t

(integer-valued? 7+0i)  #t
(rational-valued? 7+0i)  #t
(real-valued? 7+0i)  #t

(integer-valued? -2/3)  #f
(rational-valued? -2/3)  #t
(real-valued? -2/3)  #t

(integer-valued? -2.345)  #f
(rational-valued? -2.345)  #t
(real-valued? -2.345)  #t

(integer-valued? 7.0+0.0i)  #t
(rational-valued? 7.0+0.0i)  #t
(real-valued? 7.0+0.0i)  #t

(integer-valued? 3.2-2.01i)  #f
(rational-valued? 3.2-2.01i)  #f
(real-valued? 3.2-2.01i)  #f

As with real?, rational?, and integer?, these predicates return #f for all non-numeric values.

(integer-valued? 'a)  #f
(rational-valued? '(a b c))  #f
(real-valued? "3")  #f

procedure: (char? obj)
returns: #t if obj is a character, #f otherwise
libraries: (rnrs base), (rnrs)

(char? 'a)  #f
(char? 97)  #f
(char? #\a)  #t
(char? "a")  #f
(char? (string-ref (make-string 1) 0))  #t

procedure: (string? obj)
returns: #t if obj is a string, #f otherwise
libraries: (rnrs base), (rnrs)

(string? "hi")  #t
(string? 'hi)  #f
(string? #\h)  #f
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procedure: (vector? obj)
returns: #t if obj is a vector, #f otherwise
libraries: (rnrs base), (rnrs)

(vector? '#())  #t
(vector? '#(a b c))  #t
(vector? (vector 'a 'b 'c))  #t
(vector? '())  #f
(vector? '(a b c))  #f
(vector? "abc")  #f

procedure: (symbol? obj)
returns: #t if obj is a symbol, #f otherwise
libraries: (rnrs base), (rnrs)

(symbol? 't)  #t
(symbol? "t")  #f
(symbol? '(t))  #f
(symbol? #\t)  #f
(symbol? 3)  #f
(symbol? #t)  #f

procedure: (procedure? obj)
returns: #t if obj is a procedure, #f otherwise
libraries: (rnrs base), (rnrs)

(procedure? car)  #t
(procedure? 'car)  #f
(procedure? (lambda (x) x))  #t
(procedure? '(lambda (x) x))  #f
(call/cc procedure?)  #t

procedure: (bytevector? obj)
returns: #t if obj is a bytevector, #f otherwise
libraries: (rnrs bytevectors), (rnrs)

(bytevector? #vu8())  #t
(bytevector? '#())  #f
(bytevector? "abc")  #f

procedure: (hashtable? obj)
returns: #t if obj is a hashtable, #f otherwise
libraries: (rnrs hashtables), (rnrs)

(hashtable? (make-eq-hashtable))  #t
(hashtable? '(not a hash table))  #f

Section 6.3. Lists and Pairs

The pair, or cons cell, is the most fundamental of Scheme's structured object types. The most common use for
pairs is to build lists, which are ordered sequences of pairs linked one to the next by the cdr field. The
elements of the list occupy the car fields of the pairs. The cdr of the last pair in a proper list is the empty list,
(); the cdr of the last pair in an improper list can be anything other than ().
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Pairs may be used to construct binary trees. Each pair in the tree structure is an internal node of the binary
tree; its car and cdr are the children of the node.

Proper lists are printed as sequences of objects separated by whitespace and enclosed in parentheses.
Matching pairs of brackets ( [ ] ) may be used in place of parentheses. For example, (1 2 3) and
(a [nested list]) are proper lists. The empty list is written as ().

Improper lists and trees require a slightly more complex syntax. A single pair is written as two objects
separated by whitespace and a dot, e.g., (a . b). This is referred to as dotted-pair notation. Improper lists
and trees are also written in dotted-pair notation; the dot appears wherever necessary, e.g., (1 2 3 . 4) or
((1 . 2) . 3). Proper lists may be written in dotted-pair notation as well. For example, (1 2 3) may
be written as (1 . (2 . (3 . ()))).

It is possible to create a circular list or a cyclic graph by destructively altering the car or cdr field of a pair,
using set-car! or set-cdr!. Such lists are not considered proper lists.

Procedures that accept a list argument are required to detect that the list is improper only to the extent that
they actually traverse the list far enough either (a) to attempt to operate on a non-list tail or (b) to loop
indefinitely due to a circularity. For example, member need not detect that a list is improper if it actually
finds the element being sought, and list-ref need never detect circularities, because its recursion is
bounded by the index argument.

procedure: (cons obj1 obj2)
returns: a new pair whose car and cdr are obj1 and obj2
libraries: (rnrs base), (rnrs)

cons is the pair constructor procedure. obj1 becomes the car and obj2 becomes the cdr of the new pair.

(cons 'a '())  (a)
(cons 'a '(b c))  (a b c)
(cons 3 4)  (3 . 4)

procedure: (car pair)
returns: the car of pair
libraries: (rnrs base), (rnrs)

The empty list is not a pair, so the argument must not be the empty list.

(car '(a))  a
(car '(a b c))  a
(car (cons 3 4))  3

procedure: (cdr pair)
returns: the cdr of pair
libraries: (rnrs base), (rnrs)

The empty list is not a pair, so the argument must not be the empty list.

(cdr '(a))  ()
(cdr '(a b c))  (b c)
(cdr (cons 3 4))  4

procedure: (set-car! pair obj)
returns: unspecified
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libraries: (rnrs mutable-pairs)

set-car! changes the car of pair to obj.

(let ([x (list 'a 'b 'c)])
  (set-car! x 1)
  x)  (1 b c)

procedure: (set-cdr! pair obj)
returns: unspecified
libraries: (rnrs mutable-pairs)

set-cdr! changes the cdr of pair to obj.

(let ([x (list 'a 'b 'c)])
  (set-cdr! x 1)
  x)  (a . 1)

procedure: (caar pair)
procedure: (cadr pair)
procedure: (cddddr pair)
returns: the caar, cadr, ..., or cddddr of pair
libraries: (rnrs base), (rnrs)

These procedures are defined as the composition of up to four cars and cdrs. The a's and d's between the c
and r represent the application of car or cdr in order from right to left. For example, the procedure cadr
applied to a pair yields the car of the cdr of the pair and is equivalent to
(lambda (x) (car (cdr x))).

(caar '((a)))  a
(cadr '(a b c))  b
(cdddr '(a b c d))  (d)
(cadadr '(a (b c)))  c

procedure: (list obj ...)
returns: a list of obj ...
libraries: (rnrs base), (rnrs)

list is equivalent to (lambda x x).

(list)  ()
(list 1 2 3)  (1 2 3)
(list 3 2 1)  (3 2 1)

procedure: (cons* obj ... final-obj)
returns: a list of obj ... terminated by final-obj
libraries: (rnrs lists), (rnrs)

If the objects obj ... are omitted, the result is simply final-obj. Otherwise, a list of obj ... is
constructed, as with list, except that the final cdr field is final-obj instead of (). If final-obj is not
a list, the result is an improper list.

(cons* '())  ()
(cons* '(a b))  (a b)
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(cons* 'a 'b 'c)  (a b . c)
(cons* 'a 'b '(c d))  (a b c d)

procedure: (list? obj)
returns: #t if obj is a proper list, #f otherwise
libraries: (rnrs base), (rnrs)

list? must return #f for all improper lists, including cyclic lists. A definition of list? is shown on
page 67.

(list? '())  #t
(list? '(a b c))  #t
(list? 'a)  #f
(list? '(3 . 4))  #f
(list? 3)  #f
(let ([x (list 'a 'b 'c)])
  (set-cdr! (cddr x) x)
  (list? x))  #f

procedure: (length list)
returns: the number of elements in list
libraries: (rnrs base), (rnrs)

length may be defined as follows, using an adaptation of the hare and tortoise algorithm used for the
definition of list? on page 67.

(define length
  (lambda (x)
    (define improper-list
      (lambda ()
        (assertion-violation 'length "not a proper list" x)))

    (let f ([h x] [t x] [n 0])
      (if (pair? h)
          (let ([h (cdr h)])
            (if (pair? h)
                (if (eq? h t)
                    (improper-list)
                    (f (cdr h) (cdr t) (+ n 2)))
                (if (null? h)
                    (+ n 1)
                    (improper-list))))
          (if (null? h)
              n
              (improper-list))))))

(length '())  0
(length '(a b c))  3
(length '(a b . c)) exception
(length
  (let ([ls (list 'a 'b)])
    (set-cdr! (cdr ls) ls) exception
    ls))
(length
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  (let ([ls (list 'a 'b)])
    (set-car! (cdr ls) ls)  2
    ls))

procedure: (list-ref list n)
returns: the nth element (zero-based) of list
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer less than the length of list. list-ref may be defined without
error checks as follows.

(define list-ref
  (lambda (ls n)
    (if (= n 0)
        (car ls)
        (list-ref (cdr ls) (- n 1)))))

(list-ref '(a b c) 0)  a
(list-ref '(a b c) 1)  b
(list-ref '(a b c) 2)  c

procedure: (list-tail list n)
returns: the nth tail (zero-based) of list
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer less than or equal to the length of list. The result is not a copy; the
tail is eq? to the nth cdr of list (or to list itself, if n is zero).

list-tail may be defined without error checks as follows.

(define list-tail
  (lambda (ls n)
    (if (= n 0)
        ls
        (list-tail (cdr ls) (- n 1)))))

(list-tail '(a b c) 0)  (a b c)
(list-tail '(a b c) 2)  (c)
(list-tail '(a b c) 3)  ()
(list-tail '(a b c . d) 2)  (c . d)
(list-tail '(a b c . d) 3)  d
(let ([x (list 1 2 3)])
  (eq? (list-tail x 2)
       (cddr x)))  #t

procedure: (append)
procedure: (append list ... obj)
returns: the concatenation of the input lists
libraries: (rnrs base), (rnrs)

append returns a new list consisting of the elements of the first list followed by the elements of the second
list, the elements of the third list, and so on. The new list is made from new pairs for all arguments but the
last; the last (which need not be a list) is merely placed at the end of the new structure. append may be
defined without error checks as follows.
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(define append
  (lambda args
    (let f ([ls '()] [args args])
      (if (null? args)
          ls
          (let g ([ls ls])
            (if (null? ls)
                (f (car args) (cdr args))
                (cons (car ls) (g (cdr ls)))))))))

(append '(a b c) '())  (a b c)
(append '() '(a b c))  (a b c)
(append '(a b) '(c d))  (a b c d)
(append '(a b) 'c)  (a b . c)
(let ([x (list 'b)])
  (eq? x (cdr (append '(a) x))))  #t

procedure: (reverse list)
returns: a new list containing the elements of list in reverse order
libraries: (rnrs base), (rnrs)

reverse may be defined without error checks as follows.

(define reverse
  (lambda (ls)
    (let rev ([ls ls] [new '()])
      (if (null? ls)
          new
          (rev (cdr ls) (cons (car ls) new))))))

(reverse '())  ()
(reverse '(a b c))  (c b a)

procedure: (memq obj list)
procedure: (memv obj list)
procedure: (member obj list)
returns: the first tail of list whose car is equivalent to obj, or #f
libraries: (rnrs lists), (rnrs)

These procedures traverse the argument list in order, comparing the elements of list against obj. If an
object equivalent to obj is found, the tail of the list whose first element is that object is returned. If the list
contains more than one object equivalent to obj, the first tail whose first element is equivalent to obj is
returned. If no object equivalent to obj is found, #f is returned. The equivalence test for memq is eq?, for
memv is eqv?, and for member is equal?.

These procedures are most often used as predicates, but their names do not end with a question mark because
they return a useful true value in place of #t. memq may be defined without error checks as follows.

(define memq
  (lambda (x ls)
    (cond
      [(null? ls) #f]
      [(eq? (car ls) x) ls]
      [else (memq x (cdr ls))])))
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memv and member may be defined similarly, with eqv? and equal? in place of eq?.

(memq 'a '(b c a d e))  (a d e)
(memq 'a '(b c d e g))  #f
(memq 'a '(b a c a d a))  (a c a d a)

(memv 3.4 '(1.2 2.3 3.4 4.5))  (3.4 4.5)
(memv 3.4 '(1.3 2.5 3.7 4.9))  #f
(let ([ls (list 'a 'b 'c)])
  (set-car! (memv 'b ls) 'z)
  ls)  (a z c)

(member '(b) '((a) (b) (c)))  ((b) (c))
(member '(d) '((a) (b) (c)))  #f
(member "b" '("a" "b" "c"))  ("b" "c")

(let ()
  (define member?
    (lambda (x ls)
      (and (member x ls) #t)))
  (member? '(b) '((a) (b) (c))))  #t

(define count-occurrences
  (lambda (x ls)
    (cond
      [(memq x ls) =>
       (lambda (ls)
         (+ (count-occurrences x (cdr ls)) 1))]
      [else 0])))

(count-occurrences 'a '(a b c d a))  2

procedure: (memp procedure list)
returns: the first tail of list for whose car procedure returns true, or #f
libraries: (rnrs lists), (rnrs)

procedure should accept one argument and return a single value. It should not modify list.

(memp odd? '(1 2 3 4))  (1 2 3 4)
(memp even? '(1 2 3 4))  (2 3 4)
(let ([ls (list 1 2 3 4)])
  (eq? (memp odd? ls) ls))  #t
(let ([ls (list 1 2 3 4)])
  (eq? (memp even? ls) (cdr ls)))  #t
(memp odd? '(2 4 6 8))  #f

procedure: (remq obj list)
procedure: (remv obj list)
procedure: (remove obj list)
returns: a list containing the elements of list with all occurrences of obj removed
libraries: (rnrs lists), (rnrs)

These procedures traverse the argument list, removing any objects that are equivalent to obj. The
elements remaining in the output list are in the same order as they appear in the input list. If a tail of list
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(including list itself) contains no occurrences of obj, the corresponding tail of the result list may be the
same (by eq?) as the tail of the input list.

The equivalence test for remq is eq?, for remv is eqv?, and for remove is equal?.

(remq 'a '(a b a c a d))  (b c d)
(remq 'a '(b c d))  (b c d)

(remv 1/2 '(1.2 1/2 0.5 3/2 4))  (1.2 0.5 3/2 4)

(remove '(b) '((a) (b) (c)))  ((a) (c))

procedure: (remp procedure list)
returns: a list of the elements of list for which procedure returns #f
libraries: (rnrs lists), (rnrs)

procedure should accept one argument and return a single value. It should not modify list.

remp applies procedure to each element of list and returns a list containing only the elements for which
procedure returns #f. The elements of the returned list appear in the same order as they appeared in the
original list.

(remp odd? '(1 2 3 4))  (2 4)
(remp
  (lambda (x) (and (> x 0) (< x 10)))
  '(-5 15 3 14 -20 6 0 -9))  (-5 15 14 -20 0 -9)

procedure: (filter procedure list)
returns: a list of the elements of list for which procedure returns true
libraries: (rnrs lists), (rnrs)

procedure should accept one argument and return a single value. It should not modify list.

filter applies procedure to each element of list and returns a new list containing only the elements
for which procedure returns true. The elements of the returned list appear in the same order as they
appeared in the original list.

(filter odd? '(1 2 3 4))  (1 3)
(filter
  (lambda (x) (and (> x 0) (< x 10)))
  '(-5 15 3 14 -20 6 0 -9))  (3 6)

procedure: (partition procedure list)
returns: see below
libraries: (rnrs lists), (rnrs)

procedure should accept one argument and return a single value. It should not modify list.

partition applies procedure to each element of list and returns two values: a new list containing
only the elements for which procedure returns true, and a new list containing only the elements for which
procedure returns #f. The elements of the returned lists appear in the same order as they appeared in the
original list.

(partition odd? '(1 2 3 4))  (1 3)
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 (2 4)
(partition
  (lambda (x) (and (> x 0) (< x 10)))
  '(-5 15 3 14 -20 6 0 -9))  (3 6)

 (-5 15 14 -20 0 -9)

The values returned by partition can be obtained by calling filter and remp separately, but this
would require two calls to procedure for each element of list.

procedure: (find procedure list)
returns: the first element of list for which procedure returns true, or #f
libraries: (rnrs lists), (rnrs)

procedure should accept one argument and return a single value. It should not modify list.

find traverses the argument list in order, applying procedure to each element in turn. If procedure
returns a true value for a given element, find returns that element without applying procedure to the
remaining elements. If procedure returns #f for each element of list, find returns #f.

If a program must distinguish between finding #f in the list and finding no element at all, memp should be
used instead.

(find odd? '(1 2 3 4))  1
(find even? '(1 2 3 4))  2
(find odd? '(2 4 6 8))  #f
(find not '(1 a #f 55))  #f

procedure: (assq obj alist)
procedure: (assv obj alist)
procedure: (assoc obj alist)
returns: first element of alist whose car is equivalent to obj, or #f
libraries: (rnrs lists), (rnrs)

The argument alist must be an association list. An association list is a proper list whose elements are
key-value pairs of the form (key . value). Associations are useful for storing information (values)
associated with certain objects (keys).

These procedures traverse the association list, testing each key for equivalence with obj. If an equivalent key
is found, the key-value pair is returned. Otherwise, #f is returned.

The equivalence test for assq is eq?, for assv is eqv?, and for assoc is equal?. assq may be defined
without error checks as follows.

(define assq
  (lambda (x ls)
    (cond
      [(null? ls) #f]
      [(eq? (caar ls) x) (car ls)]
      [else (assq x (cdr ls))])))

assv and assoc may be defined similarly, with eqv? and equal? in place of eq?.

(assq 'b '((a . 1) (b . 2)))  (b . 2)
(cdr (assq 'b '((a . 1) (b . 2))))  2
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(assq 'c '((a . 1) (b . 2)))  #f

(assv 2/3 '((1/3 . 1) (2/3 . 2)))  (2/3 . 2)
(assv 2/3 '((1/3 . a) (3/4 . b)))  #f

(assoc '(a) '(((a) . a) (-1 . b)))  ((a) . a)
(assoc '(a) '(((b) . b) (a . c)))  #f

(let ([alist (list (cons 2 'a) (cons 3 'b))])
  (set-cdr! (assv 3 alist) 'c)
  alist)  ((2 . a) (3 . c))

The interpreter given in Section 12.7 represents environments as association lists and uses assq for both
variable lookup and assignment.

procedure: (assp procedure alist)
returns: first element of alist for whose car procedure returns true, or #f
libraries: (rnrs lists), (rnrs)

alist must be an association list. An association list is a proper list whose elements are key-value pairs of
the form (key . value). procedure should accept one argument and return a single value. It should
not modify list.

(assp odd? '((1 . a) (2 . b)))  (1 . a)
(assp even? '((1 . a) (2 . b)))  (2 . b)
(let ([ls (list (cons 1 'a) (cons 2 'b))])
  (eq? (assp odd? ls) (car ls)))  #t
(let ([ls (list (cons 1 'a) (cons 2 'b))])
  (eq? (assp even? ls) (cadr ls)))  #t
(assp odd? '((2 . b)))  #f

procedure: (list-sort predicate list)
returns: a list containing the elements of list sorted according to predicate
libraries: (rnrs sorting), (rnrs)

predicate should be a procedure that expects two arguments and returns #t if its first argument must
precede its second in the sorted list. That is, if predicate is applied to two elements x and y, where x
appears after y in the input list, it should return true only if x should appear before y in the output list. If this
constraint is met, list-sort performs a stable sort, i.e., two elements are reordered only when necessary
according to predicate. Duplicate elements are not removed. This procedure may call predicate up to
nlogn times, where n is the length of list.

(list-sort < '(3 4 2 1 2 5))  (1 2 2 3 4 5)
(list-sort > '(0.5 1/2))  (0.5 1/2)
(list-sort > '(1/2 0.5))  (1/2 0.5)
(list->string
  (list-sort char>?
    (string->list "hello")))  "ollhe"

Section 6.4. Numbers

Scheme numbers may be classified as integers, rational numbers, real numbers, or complex numbers. This
classification is hierarchical, in that all integers are rational, all rational numbers are real, and all real numbers
are complex. The predicates integer?, rational?, real?, and complex? described in Section 6.2 are
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used to determine into which of these classes a number falls.

A Scheme number may also be classified as exact or inexact, depending upon the quality of operations used to
derive the number and the inputs to these operations. The predicates exact? and inexact? may be used to
determine the exactness of a number. Most operations on numbers in Scheme are exactness preserving: if
given exact operands they return exact values, and if given inexact operands or a combination of exact and
inexact operands they return inexact values.

Exact integer and rational arithmetic is typically supported to arbitrary precision; the size of an integer or of
the denominator or numerator of a ratio is limited only by system storage constraints. Although other
representations are possible, inexact numbers are typically represented by floating-point numbers supported
by the host computer's hardware or by system software. Complex numbers are typically represented as
ordered pairs (real-part, imag-part), where real-part and imag-part are exact integers, exact
rationals, or floating-point numbers.

Scheme numbers are written in a straightforward manner not much different from ordinary conventions for
writing numbers. An exact integer is normally written as a sequence of numerals preceded by an optional sign.
For example, 3, +19, -100000, and 208423089237489374 all represent exact integers.

An exact rational number is normally written as two sequences of numerals separated by a slash (/) and
preceded by an optional sign. For example, 3/4, -6/5, and 1/1208203823 are all exact rational numbers.
A ratio is reduced immediately to lowest terms when it is read and may in fact reduce to an exact integer.

Inexact real numbers are normally written in either floating-point or scientific notation. Floating-point
notation consists of a sequence of numerals followed by a decimal point and another sequence of numerals, all
preceded by an optional sign. Scientific notation consists of an optional sign, a sequence of numerals, an
optional decimal point followed by a second string of numerals, and an exponent; an exponent is written as
the letter e followed by an optional sign and a sequence of numerals. For example, 1.0 and -200.0 are
valid inexact integers, and 1.5, 0.034, -10e-10 and 1.5e-5 are valid inexact rational numbers. The
exponent is the power of ten by which the number preceding the exponent should be scaled, so that 2e3 is
equivalent to 2000.0.

A mantissa width |w may appear as the suffix of a real number or the real components of a complex number
written in floating-point or scientific notation. The mantissa width m represents the number of significant bits
in the representation of the number. The mantissa width defaults to 53, the number of significant bits in a
normalized IEEE double floating-point number, or more. For denormalized IEEE double floating-point
numbers, the mantissa width is less than 53. If an implementation cannot represent a number with the
mantissa width specified, it uses a representation with at least as many significant bits as requested if possible,
otherwise it uses its representation with the largest mantissa width.

Exact and inexact real numbers are written as exact or inexact integers or rational numbers; no provision is
made in the syntax of Scheme numbers for nonrational real numbers, i.e., irrational numbers.

Complex numbers may be written in either rectangular or polar form. In rectangular form, a complex number
is written as x+yi or x-yi, where x is an integer, rational, or real number and y is an unsigned integer,
rational, or real number. The real part, x, may be omitted, in which case it is assumed to be zero. For example,
3+4i, 3.2-3/4i, +i, and -3e-5i are complex numbers written in rectangular form. In polar form, a
complex number is written as x@y, where x and y are integer, rational, or real numbers. For example,
1.1@1.764 and -1@-1/2 are complex numbers written in polar form.

The syntaxes +inf.0 and -inf.0 represent inexact real numbers that represent positive and negative
infinity. The syntaxes +nan.0 and -nan.0 represent an inexact "not-a-number" (NaN) value. Infinities may
be produced by dividing inexact positive and negative values by inexact zero, and NaNs may also be produced
by dividing inexact zero by inexact zero, among other ways.
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The exactness of a numeric representation may be overridden by preceding the representation by either #e or
#i. #e forces the number to be exact, and #i forces it to be inexact. For example, 1, #e1, 1/1, #e1/1,
#e1.0, and #e1e0 all represent the exact integer 1, and #i3/10, 0.3, #i0.3, and 3e-1 all represent the
inexact rational 0.3.

Numbers are written by default in base 10, although the special prefixes #b (binary), #o (octal), #d
(decimal), and #x (hexadecimal) can be used to specify base 2, base 8, base 10, or base 16. For radix 16, the
letters a through f or A through F serve as the additional numerals required to express digit values 10 through
15. For example, #b10101 is the binary equivalent of 2110, #o72 is the octal equivalent of 5810, and #xC7
is the hexadecimal equivalent of 19910. Numbers written in floating-point and scientific notations are always
written in base 10.

If both are present, radix and exactness prefixes may appear in either order.

A Scheme implementation may support more than one size of internal representation for inexact quantities.
The exponent markers s (short), f (single), d (double), and l (long) may appear in place of the default
exponent marker e to override the default size for numbers written in scientific notation. In implementations
that support multiple representations, the default size has at least as much precision as double.

A precise grammar for Scheme numbers is given on page 459.

Any number can be written in a variety of different ways, but the system printer (invoked by put-datum,
write, and display) and number->string express numbers in a compact form, using the fewest
number of digits necessary to retain the property that, when read, the printed number is identical to the
original number.

The remainder of this section describes "generic arithmetic" procedures that operate on numbers. The two
sections that follow this section describe operations specific to fixnums and flonums, which are representations
of exact, fixed-precision integer values and inexact real values.

The types of numeric arguments accepted by the procedures in this section are implied by the names given to
the arguments: num for complex numbers (that is, all numbers), real for real numbers, rat for rational
numbers, and int for integers. If a real, rat, or int is required, the argument must be considered real,
rational, or integral by real?, rational?, or integer?, i.e., the imaginary part of the number must be
exactly zero. Where exact integers are required, the name exint is used. In each case, a suffix may appear
on the name, e.g., int2.

procedure: (exact? num)
returns: #t if num is exact, #f otherwise
libraries: (rnrs base), (rnrs)

(exact? 1)  #t
(exact? -15/16)  #t
(exact? 2.01)  #f
(exact? #i77)  #f
(exact? #i2/3)  #f
(exact? 1.0-2i)  #f

procedure: (inexact? num)
returns: #t if num is inexact, #f otherwise
libraries: (rnrs base), (rnrs)

(inexact? -123)  #f
(inexact? #i123)  #t
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(inexact? 1e23)  #t
(inexact? +i)  #f

procedure: (= num1 num2 num3 ...)
procedure: (< real1 real2 real3 ...)
procedure: (> real1 real2 real3 ...)
procedure: (<= real1 real2 real3 ...)
procedure: (>= real1 real2 real3 ...)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs base), (rnrs)

The predicate = returns #t if its arguments are equal. The predicate < returns #t if its arguments are
monotonically increasing, i.e., each argument is greater than the preceding ones, while > returns #t if its
arguments are monotonically decreasing. The predicate <= returns #t if its arguments are monotonically
nondecreasing, i.e., each argument is not less than the preceding ones, while >= returns #t if its arguments
are monotonically nonincreasing.

As implied by the names of the arguments, = is defined for complex arguments while the other relational
predicates are defined only for real arguments. Two complex numbers are considered equal if their real and
imaginary parts are equal. Comparisons involving NaNs always return #f.

(= 7 7)  #t
(= 7 9)  #f

(< 2e3 3e2)  #f
(<= 1 2 3 3 4 5)  #t
(<= 1 2 3 4 5)  #t

(> 1 2 2 3 3 4)  #f
(>= 1 2 2 3 3 4)  #f

(= -1/2 -0.5)  #t
(= 2/3 .667)  #f
(= 7.2+0i 7.2)  #t
(= 7.2-3i 7)  #f

(< 1/2 2/3 3/4)  #t
(> 8 4.102 2/3 -5)  #t

(let ([x 0.218723452])
  (< 0.210 x 0.220))  #t

(let ([i 1] [v (vector 'a 'b 'c)])
  (< -1 i (vector-length v)))  #t

(apply < '(1 2 3 4))  #t
(apply > '(4 3 3 2))  #f

(= +nan.0 +nan.0)  #f
(< +nan.0 +nan.0)  #f
(> +nan.0 +nan.0)  #f
(>= +inf.0 +nan.0)  #f
(>= +nan.0 -inf.0)  #f
(> +nan.0 0.0)  #f

The Scheme Programming Language, 4th Edition

136 Section 6.4. Numbers



procedure: (+ num ...)
returns: the sum of the arguments num ...
libraries: (rnrs base), (rnrs)

When called with no arguments, + returns 0.

(+)  0
(+ 1 2)  3
(+ 1/2 2/3)  7/6
(+ 3 4 5)  12
(+ 3.0 4)  7.0
(+ 3+4i 4+3i)  7+7i
(apply + '(1 2 3 4 5))  15

procedure: (- num)
returns: the additive inverse of num
procedure: (- num1 num2 num3 ...)
returns: the difference between num1 and the sum of num2 num3 ...
libraries: (rnrs base), (rnrs)

(- 3)  -3
(- -2/3)  2/3
(- 4 3.0)  1.0
(- 3.25+4.25i 1/4+1/4i)  3.0+4.0i
(- 4 3 2 1)  -2

procedure: (* num ...)
returns: the product of the arguments num ...
libraries: (rnrs base), (rnrs)

When called with no arguments, * returns 1.

(*)  1
(* 3.4)  3.4
(* 1 1/2)  1/2
(* 3 4 5.5)  66.0
(* 1+2i 3+4i)  -5+10i
(apply * '(1 2 3 4 5))  120

procedure: (/ num)
returns: the multiplicative inverse of num
procedure: (/ num1 num2 num3 ...)
returns: the result of dividing num1 by the product of num2 num3 ...
libraries: (rnrs base), (rnrs)

(/ -17)  -1/17
(/ 1/2)  2
(/ .5)  2.0
(/ 3 4)  3/4
(/ 3.0 4)  .75
(/ -5+10i 3+4i)  1+2i
(/ 60 5 4 3 2)  1/2

procedure: (zero? num)
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returns: #t if num is zero, #f otherwise
libraries: (rnrs base), (rnrs)

zero? is equivalent to (lambda (x) (= x 0)).

(zero? 0)  #t
(zero? 1)  #f
(zero? (- 3.0 3.0))  #t
(zero? (+ 1/2 1/2))  #f
(zero? 0+0i)  #t
(zero? 0.0-0.0i)  #t

procedure: (positive? real)
returns: #t if real is greater than zero, #f otherwise
libraries: (rnrs base), (rnrs)

positive? is equivalent to (lambda (x) (> x 0)).

(positive? 128)  #t
(positive? 0.0)  #f
(positive? 1.8e-15)  #t
(positive? -2/3)  #f
(positive? .001-0.0i) exception: not a real number

procedure: (negative? real)
returns: #t if real is less than zero, #f otherwise
libraries: (rnrs base), (rnrs)

negative? is equivalent to (lambda (x) (< x 0)).

(negative? -65)  #t
(negative? 0)  #f
(negative? -0.0121)  #t
(negative? 15/16)  #f
(negative? -7.0+0.0i) exception: not a real number

procedure: (even? int)
returns: #t if int is even, #f otherwise
procedure: (odd? int)
returns: #t if int is odd, #f otherwise
libraries: (rnrs base), (rnrs)

(even? 0)  #t
(even? 1)  #f
(even? 2.0)  #t
(even? -120762398465)  #f
(even? 2.0+0.0i) exception: not an integer

(odd? 0)  #f
(odd? 1)  #t
(odd? 2.0)  #f
(odd? -120762398465)  #t
(odd? 2.0+0.0i) exception: not an integer
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procedure: (finite? real)
returns: #t if real is finite, #f otherwise
procedure: (infinite? real)
returns: #t if real is infinite, #f otherwise
procedure: (nan? real)
returns: #t if real is a NaN, #f otherwise
libraries: (rnrs base), (rnrs)

(finite? 2/3)  #t
(infinite? 2/3)  #f
(nan? 2/3)  #f

(finite? 3.1415)  #t
(infinite? 3.1415)  #f
(nan? 3.1415)  #f

(finite? +inf.0)  #f
(infinite? -inf.0)  #t
(nan? -inf.0)  #f

(finite? +nan.0)  #f
(infinite? +nan.0)  #f
(nan? +nan.0)  #t

procedure: (quotient int1 int2)
returns: the integer quotient of int1 and int2
procedure: (remainder int1 int2)
returns: the integer remainder of int1 and int2
procedure: (modulo int1 int2)
returns: the integer modulus of int1 and int2
libraries: (rnrs r5rs)

The result of remainder has the same sign as int1, while the result of modulo has the same sign as int2.

(quotient 45 6)  7
(quotient 6.0 2.0)  3.0
(quotient 3.0 -2)  -1.0

(remainder 16 4)  0
(remainder 5 2)  1
(remainder -45.0 7)  -3.0
(remainder 10.0 -3.0)  1.0
(remainder -17 -9)  -8

(modulo 16 4)  0
(modulo 5 2)  1
(modulo -45.0 7)  4.0
(modulo 10.0 -3.0)  -2.0
(modulo -17 -9)  -8

procedure: (div x1 x2)
procedure: (mod x1 x2)
procedure: (div-and-mod x1 x2)
returns: see below
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libraries: (rnrs base), (rnrs)

If x1 and x2 are exact, x2 must not be zero. These procedures implement number-theoretic integer division,
with the div operation being related to quotient and the mod operation being related to remainder or
modulo, but in both cases extended to handle real numbers.

The value nd of (div x1 x2) is an integer, and the value xm of (mod x1 x2) is a real number such that x1
= nd · x2 + xm and 0 ≤ xm < |x2|. In situations where the implementation cannot represent the mathematical
results prescribed by these equations as a number object, div and mod return an unspecified number or raise
an exception with condition type &implementation-restriction.

The div-and-mod procedure behaves as if defined as follows.

(define (div-and-mod x1 x2) (values (div x1 x2) (mod x1 x2)))

That is, unless it raises an exception in the circumstance described above, it returns two values: the result of
calling div on the two arguments and the result of calling mod on the two arguments.

(div 17 3)  5
(mod 17 3)  2
(div -17 3)  -6
(mod -17 3)  1
(div 17 -3)  -5
(mod 17 -3)  2
(div -17 -3)  6
(mod -17 -3)  1

(div-and-mod 17.5 3)  5.0
 2.5

procedure: (div0 x1 x2)
procedure: (mod0 x1 x2)
procedure: (div0-and-mod0 x1 x2)
returns: see below
libraries: (rnrs base), (rnrs)

If x1 and x2 are exact, x2 must not be zero. These procedures are similar to div, mod, and div-and-mod,
but constrain the "mod" value differently, which also affects the "div" value. The value nd of (div0 x1 x2)
is an integer, and the value xm of (mod0 x1 x2) is a real number such that x1 = nd · x2 + xm and -|x2/2| ≤ xm
< |x2/2|. In situations where the implementation cannot represent the mathematical results prescribed by these
equations as a number object, div0 and mod0 return an unspecified number or raise an exception with
condition type &implementation-restriction.

The div0-and-mod0 procedure behaves as if defined as follows.

(define (div0-and-mod0 x1 x2) (values (div0 x1 x2) (mod0 x1 x2)))

That is, unless it raises an exception in the circumstance described above, it returns two values: the result of
calling div0 on the two arguments and the result of calling mod0 on the two arguments.

(div0 17 3)  6
(mod0 17 3)  -1
(div0 -17 3)  -6
(mod0 -17 3)  1
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(div0 17 -3)  -6
(mod0 17 -3)  -1
(div0 -17 -3)  6
(mod0 -17 -3)  1

(div0-and-mod0 17.5 3)  6.0
 -0.5

procedure: (truncate real)
returns: the integer closest to real toward zero
libraries: (rnrs base), (rnrs)

If real is an infinity or NaN, truncate returns real.

(truncate 19)  19
(truncate 2/3)  0
(truncate -2/3)  0
(truncate 17.3)  17.0
(truncate -17/2)  -8

procedure: (floor real)
returns: the integer closest to real toward 
libraries: (rnrs base), (rnrs)

If real is an infinity or NaN, floor returns real.

(floor 19)  19
(floor 2/3)  0
(floor -2/3)  -1
(floor 17.3)  17.0
(floor -17/2)  -9

procedure: (ceiling real)
returns: the integer closest to real toward 
libraries: (rnrs base), (rnrs)

If real is an infinity or NaN, ceiling returns real.

(ceiling 19)  19
(ceiling 2/3)  1
(ceiling -2/3)  0
(ceiling 17.3)  18.0
(ceiling -17/2)  -8

procedure: (round real)
returns: the integer closest to real
libraries: (rnrs base), (rnrs)

If real is exactly between two integers, the closest even integer is returned. If real is an infinity or NaN,
round returns real.

(round 19)  19
(round 2/3)  1
(round -2/3)  -1
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(round 17.3)  17.0
(round -17/2)  -8
(round 2.5)  2.0
(round 3.5)  4.0

procedure: (abs real)
returns: the absolute value of real
libraries: (rnrs base), (rnrs)

abs is equivalent to (lambda (x) (if (< x 0) (- x) x)). abs and magnitude (see page 183)
are identical for real inputs.

(abs 1)  1
(abs -3/4)  3/4
(abs 1.83)  1.83
(abs -0.093)  0.093

procedure: (max real1 real2 ...)
returns: the maximum of real1 real2 ...
libraries: (rnrs base), (rnrs)

(max 4 -7 2 0 -6)  4
(max 1/2 3/4 4/5 5/6 6/7)  6/7
(max 1.5 1.3 -0.3 0.4 2.0 1.8)  2.0
(max 5 2.0)  5.0
(max -5 -2.0)  -2.0
(let ([ls '(7 3 5 2 9 8)])
  (apply max ls))  9

procedure: (min real1 real2 ...)
returns: the minimum of real1 real2 ...
libraries: (rnrs base), (rnrs)

(min 4 -7 2 0 -6)  -7
(min 1/2 3/4 4/5 5/6 6/7)  1/2
(min 1.5 1.3 -0.3 0.4 2.0 1.8)  -0.3
(min 5 2.0)  2.0
(min -5 -2.0)  -5.0
(let ([ls '(7 3 5 2 9 8)])
  (apply min ls))  2

procedure: (gcd int ...)
returns: the greatest common divisor of its arguments int ...
libraries: (rnrs base), (rnrs)

The result is always nonnegative, i.e., factors of -1 are ignored. When called with no arguments, gcd returns
0.

(gcd)  0
(gcd 34)  34
(gcd 33.0 15.0)  3.0
(gcd 70 -42 28)  14

procedure: (lcm int ...)
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returns: the least common multiple of its arguments int ...
libraries: (rnrs base), (rnrs)

The result is always nonnegative, i.e., common multiples of -1 are ignored. Although lcm should probably
return  when called with no arguments, it is defined to return 1. If one or more of the arguments is 0, lcm
returns 0.

(lcm)  1
(lcm 34)  34
(lcm 33.0 15.0)  165.0
(lcm 70 -42 28)  420
(lcm 17.0 0)  0.0

procedure: (expt num1 num2)
returns: num1 raised to the num2 power
libraries: (rnrs base), (rnrs)

If both arguments are 0, expt returns 1.

(expt 2 10)  1024
(expt 2 -10)  1/1024
(expt 2 -10.0)  9.765625e-4
(expt -1/2 5)  -1/32
(expt 3.0 3)  27.0
(expt +i 2)  -1

procedure: (inexact num)
returns: an inexact representation of num
libraries: (rnrs base), (rnrs)

If num is already inexact, it is returned unchanged. If no inexact representation for num is supported by the
implementation, an exception with condition type &implementation-violation may be raised.
inexact may also return +inf.0 or -inf.0 for inputs whose magnitude exceeds the range of the
implementation's inexact number representations.

(inexact 3)  3.0
(inexact 3.0)  3.0
(inexact -1/4)  -.25
(inexact 3+4i)  3.0+4.0i
(inexact (expt 10 20))  1e20

procedure: (exact num)
returns: an exact representation of num
libraries: (rnrs base), (rnrs)

If num is already exact, it is returned unchanged. If no exact representation for num is supported by the
implementation, an exception with condition type &implementation-violation may be raised.

(exact 3.0)  3
(exact 3)  3
(exact -.25)  -1/4
(exact 3.0+4.0i)  3+4i
(exact 1e20)  100000000000000000000
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procedure: (exact->inexact num)
returns: an inexact representation of num
procedure: (inexact->exact num)
returns: an exact representation of num
libraries: (rnrs r5rs)

These are alternative names for inexact and exact, supported for compatibility with the Revised5 Report.

procedure: (rationalize real1 real2)
returns: see below
libraries: (rnrs base), (rnrs)

rationalize returns the simplest rational number that differs from real1 by no more than real2. A
rational number q1 = n1/m1 is simpler than another rational number q2 = n2/m2 if |n1| ≤ |n2| and |m1| ≤ |m2| and
either |n1| < |n2| or |m1| < |m2|.

(rationalize 3/10 1/10)  1/3
(rationalize .3 1/10)  0.3333333333333333
(eqv? (rationalize .3 1/10) #i1/3)  #t

procedure: (numerator rat)
returns: the numerator of rat
libraries: (rnrs base), (rnrs)

If rat is an integer, the numerator is rat.

(numerator 9)  9
(numerator 9.0)  9.0
(numerator 0.0)  0.0
(numerator 2/3)  2
(numerator -9/4)  -9
(numerator -2.25)  -9.0

procedure: (denominator rat)
returns: the denominator of rat
libraries: (rnrs base), (rnrs)

If rat is an integer, including zero, the denominator is one.

(denominator 9)  1
(denominator 9.0)  1.0
(denominator 0)  1
(denominator 0.0)  1.0
(denominator 2/3)  3
(denominator -9/4)  4
(denominator -2.25)  4.0

procedure: (real-part num)
returns: the real component of num
libraries: (rnrs base), (rnrs)

If num is real, real-part returns num.

(real-part 3+4i)  3
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(real-part -2.3+0.7i)  -2.3
(real-part -i)  0
(real-part 17.2)  17.2
(real-part -17/100)  -17/100

procedure: (imag-part num)
returns: the imaginary component of num
libraries: (rnrs base), (rnrs)

If num is real, imag-part returns exact zero.

(imag-part 3+4i)  4
(imag-part -2.3+0.7i)  0.7
(imag-part -i)  -1
(imag-part -2.5)  0
(imag-part -17/100)  0

procedure: (make-rectangular real1 real2)
returns: a complex number with real component real1 and imaginary component real2
libraries: (rnrs base), (rnrs)

(make-rectangular -2 7)  -2+7i
(make-rectangular 2/3 -1/2)  2/3-1/2i
(make-rectangular 3.2 5.3)  3.2+5.3i

procedure: (make-polar real1 real2)
returns: a complex number with magnitude real1 and angle real2
libraries: (rnrs base), (rnrs)

(make-polar 2 0)  2
(make-polar 2.0 0.0)  2.0+0.0i
(make-polar 1.0 (asin -1.0))  0.0-1.0i
(eqv? (make-polar 7.2 -0.588) 7.2@-0.588)  #t

procedure: (angle num)
returns: the angle part of the polar representation of num
libraries: (rnrs base), (rnrs)

The range of the result is  (exclusive) to  (inclusive).

(angle 7.3@1.5708)  1.5708
(angle 5.2)  0.0

procedure: (magnitude num)
returns: the magnitude of num
libraries: (rnrs base), (rnrs)

magnitude and abs (see page 178) are identical for real arguments. The magnitude of a complex number x
+ yi is .

(magnitude 1)  1
(magnitude -3/4)  3/4
(magnitude 1.83)  1.83
(magnitude -0.093)  0.093
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(magnitude 3+4i)  5
(magnitude 7.25@1.5708)  7.25

procedure: (sqrt num)
returns: the principal square root of num
libraries: (rnrs base), (rnrs)

Implementations are encouraged, but not required, to return exact results for exact inputs to sqrt whenever
feasible.

(sqrt 16)  4
(sqrt 1/4)  1/2
(sqrt 4.84)  2.2
(sqrt -4.84)  0.0+2.2i
(sqrt 3+4i)  2+1i
(sqrt -3.0-4.0i)  1.0-2.0i

procedure: (exact-integer-sqrt n)
returns: see below
libraries: (rnrs base), (rnrs)

This procedure returns two nonnegative exact integers s and r where n = s2 + r and n < (s + 1)2.

(exact-integer-sqrt 0)  0
 0

(exact-integer-sqrt 9)  3
 0

(exact-integer-sqrt 19)  4
 3

procedure: (exp num)
returns: e to the num power
libraries: (rnrs base), (rnrs)

(exp 0.0)  1.0
(exp 1.0)  2.7182818284590455
(exp -.5)  0.6065306597126334

procedure: (log num)
returns: the natural logarithm of num
procedure: (log num1 num2)
returns: the base-num2 logarithm of num1
libraries: (rnrs base), (rnrs)

(log 1.0)  0.0
(log (exp 1.0))  1.0
(/ (log 100) (log 10))  2.0
(log (make-polar (exp 2.0) 1.0))  2.0+1.0i

(log 100.0 10.0)  2.0
(log .125 2.0)  -3.0

procedure: (sin num)
procedure: (cos num)
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procedure: (tan num)
returns: the sine, cosine, or tangent of num
libraries: (rnrs base), (rnrs)

The argument is specified in radians.

(sin 0.0)  0.0
(cos 0.0)  1.0
(tan 0.0)  0.0

procedure: (asin num)
procedure: (acos num)
returns: the arc sine or the arc cosine of num
libraries: (rnrs base), (rnrs)

The result is in radians. The arc sine and arc cosine of a complex number z are defined as follows.

(define pi (* (asin 1) 2))
(= (* (acos 0) 2) pi)  #t

procedure: (atan num)
procedure: (atan real1 real2)
returns: see below
libraries: (rnrs base), (rnrs)

When passed a single complex argument num (the first form), atan returns the arc tangent of num. The arc
tangent of a complex number z is defined as follows.

When passed two real arguments (the second form), atan is equivalent to
(lambda (y x) (angle (make-rectangular x y))).

(define pi (* (atan 1) 4))
(= (* (atan 1.0 0.0) 2) pi)  #t

procedure: (bitwise-not exint)
returns: the bitwise not of exint
procedure: (bitwise-and exint ...)
returns: the bitwise and of exint ...
procedure: (bitwise-ior exint ...)
returns: the bitwise inclusive or of exint ...
procedure: (bitwise-xor exint ...)
returns: the bitwise exclusive or of exint ...
libraries: (rnrs arithmetic bitwise), (rnrs)

The inputs are treated as if represented in two's complement, even if they are not represented that way
internally.

(bitwise-not 0)  -1
(bitwise-not 3)  -4
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(bitwise-and #b01101 #b00111)  #b00101
(bitwise-ior #b01101 #b00111)  #b01111
(bitwise-xor #b01101 #b00111)  #b01010

procedure: (bitwise-if exint1 exint2 exint3)
returns: the bitwise "if" of its arguments
libraries: (rnrs arithmetic bitwise), (rnrs)

The inputs are treated as if represented in two's complement, even if they are not represented that way
internally.

For each bit set in exint1, the corresponding bit of the result is taken from exint2, and for each bit not set
in exint1, the corresponding bit of the result is taken from x3.

(bitwise-if #b101010 #b111000 #b001100)  #b101100

bitwise-if might be defined as follows:

(define bitwise-if
  (lambda (exint1 exint2 exint3)
    (bitwise-ior
      (bitwise-and exint1 exint2)
      (bitwise-and (bitwise-not exint1) exint3))))

procedure: (bitwise-bit-count exint)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

For nonnegative inputs, bitwise-bit-count returns the number of bits set in the two's complement
representation of exint. For negative inputs, it returns a negative number whose magnitude is one greater
than the number of bits not set in the two's complement representation of exint, which is equivalent to
(bitwise-not (bitwise-bit-count (bitwise-not exint))).

(bitwise-bit-count #b00000)  0
(bitwise-bit-count #b00001)  1
(bitwise-bit-count #b00100)  1
(bitwise-bit-count #b10101)  3

(bitwise-bit-count -1)  -1
(bitwise-bit-count -2)  -2
(bitwise-bit-count -4)  -3

procedure: (bitwise-length exint)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

This procedure returns the number of bits of the smallest two's complement representation of exint, not
including the sign bit for negative numbers. For 0 bitwise-length returns 0.

(bitwise-length #b00000)  0
(bitwise-length #b00001)  1
(bitwise-length #b00100)  3
(bitwise-length #b00110)  3
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(bitwise-length -1)  0
(bitwise-length -6)  3
(bitwise-length -9)  4

procedure: (bitwise-first-bit-set exint)
returns: the index of the least significant bit set in exint
libraries: (rnrs arithmetic bitwise), (rnrs)

The input is treated as if represented in two's complement, even if it is not represented that way internally.

If exint is 0, bitwise-first-bit-set returns -1.

(bitwise-first-bit-set #b00000)  -1
(bitwise-first-bit-set #b00001)  0
(bitwise-first-bit-set #b01100)  2

(bitwise-first-bit-set -1)  0
(bitwise-first-bit-set -2)  1
(bitwise-first-bit-set -3)  0

procedure: (bitwise-bit-set? exint1 exint2)
returns: #t if bit exint2 of exint1 is set, #f otherwise
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 is taken as a zero-based index for the bits in the two's complement representation of exint1. The
two's complement representation of a nonnegative number conceptually extends to the left (toward more
significant bits) with an infinite number of zero bits, and the two's complement representation of a negative
number conceptually extends to the left with an infinite number of one bits. Thus, exact integers can be used
to represent arbitrarily large sets, where 0 is the empty set, -1 is the universe, and bitwise-bit-set? is
used to test for membership.

(bitwise-bit-set? #b01011 0)  #t
(bitwise-bit-set? #b01011 2)  #f

(bitwise-bit-set? -1 0)  #t
(bitwise-bit-set? -1 20)  #t
(bitwise-bit-set? -3 1)  #f

(bitwise-bit-set? 0 5000)  #f
(bitwise-bit-set? -1 5000)  #t

procedure: (bitwise-copy-bit exint1 exint2 exint3)
returns: exint1 with bit exint2 replaced by exint3
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 is taken as a zero-based index for the bits in the two's complement representation of exint1.
exint3 must be 0 or 1. This procedure effectively clears or sets the specified bit depending on the value of
exint3. exint1 is treated as if represented in two's complement, even if it is not represented that way
internally.

(bitwise-copy-bit #b01110 0 1)  #b01111
(bitwise-copy-bit #b01110 2 0)  #b01010
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procedure: (bitwise-bit-field exint1 exint2 exint3)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 and exint3 must be nonnegative, and exint2 must not be greater than exint3. This procedure
returns the number represented by extracting from exint1 the sequence of bits from exint2 (inclusive) to
exint3 (exclusive). exint1 is treated as if represented in two's complement, even if it is not represented
that way internally.

(bitwise-bit-field #b10110 0 3)  #b00110
(bitwise-bit-field #b10110 1 3)  #b00011
(bitwise-bit-field #b10110 2 3)  #b00001
(bitwise-bit-field #b10110 3 3)  #b00000

procedure: (bitwise-copy-bit-field exint1 exint2 exint3 exint4)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 and exint3 must be nonnegative, and exint2 must not be greater than exint3. This procedure
returns exint1 with the n bits from exint2 (inclusive) to exint3 (exclusive) replaced by the low-order n
bits of exint4. exint1 and exint4 are treated as if represented in two's complement, even if they are not
represented that way internally.

(bitwise-copy-bit-field #b10000 0 3 #b10101)  #b10101
(bitwise-copy-bit-field #b10000 1 3 #b10101)  #b10010
(bitwise-copy-bit-field #b10000 2 3 #b10101)  #b10100
(bitwise-copy-bit-field #b10000 3 3 #b10101)  #b10000

procedure: (bitwise-arithmetic-shift-right exint1 exint2)
returns: exint1 arithmetically shifted right by exint2 bits
procedure: (bitwise-arithmetic-shift-left exint1 exint2)
returns: exint1 shifted left by exint2 bits
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 must be nonnegative. exint1 is treated as if represented in two's complement, even if it is not
represented that way internally.

(bitwise-arithmetic-shift-right #b10000 3)  #b00010
(bitwise-arithmetic-shift-right -1 1)  -1
(bitwise-arithmetic-shift-right -64 3)  -8

(bitwise-arithmetic-shift-left #b00010 2)  #b01000
(bitwise-arithmetic-shift-left -1 2)  -4

procedure: (bitwise-arithmetic-shift exint1 exint2)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

If exint2 is negative, bitwise-arithmetic-shift returns the result of arithmetically shifting
exint1 right by exint2 bits. Otherwise, bitwise-arithmetic-shift returns the result of shifting
exint1 left by exint2 bits. exint1 is treated as if represented in two's complement, even if it is not
represented that way internally.

(bitwise-arithmetic-shift #b10000 -3)  #b00010
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(bitwise-arithmetic-shift -1 -1)  -1
(bitwise-arithmetic-shift -64 -3)  -8
(bitwise-arithmetic-shift #b00010 2)  #b01000
(bitwise-arithmetic-shift -1 2)  -4

Thus, bitwise-arithmetic-shift behaves as if defined as follows.

(define bitwise-arithmetic-shift
  (lambda (exint1 exint2)
    (if (< exint2 0)
        (bitwise-arithmetic-shift-right exint1 (- exint2))
        (bitwise-arithmetic-shift-left exint1 exint2))))

procedure: (bitwise-rotate-bit-field exint1 exint2 exint3 exint4)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2, exint3, and exint4 must be nonnegative, and exint2 must not be greater than exint3. This
procedure returns the result of shifting the bits of exint1 from bit exint2 (inclusive) through bit exint3
(exclusive) left by (mod exint4 (- exint3 exint2)) bits, with the bits shifted out of the range
inserted at the bottom end of the range. exint1 is treated as if represented in two's complement, even if it is
not represented that way internally.

(bitwise-rotate-bit-field #b00011010 0 5 3)  #b00010110
(bitwise-rotate-bit-field #b01101011 2 7 3)  #b01011011

procedure: (bitwise-reverse-bit-field exint1 exint2 exint3)
returns: see below
libraries: (rnrs arithmetic bitwise), (rnrs)

exint2 and exint3 must be nonnegative, and exint2 must not be greater than exint3. This procedure
returns the result of reversing the bits of exint1 from bit exint2 (inclusive) through bit exint3
(exclusive). exint1 is treated as if represented in two's complement, even if it is not represented that way
internally.

(bitwise-reverse-bit-field #b00011010 0 5)  #b00001011
(bitwise-reverse-bit-field #b01101011 2 7)  #b00101111

procedure: (string->number string)
procedure: (string->number string radix)
returns: the number represented by string, or #f
libraries: (rnrs base), (rnrs)

If string is a valid representation of a number, that number is returned, otherwise #f is returned. The
number is interpreted in radix radix, which must be an exact integer in the set {2,8,10,16}. If not specified,
radix defaults to 10. Any radix specifier within string, e.g., #x, overrides the radix argument.

(string->number "0")  0
(string->number "3.4e3")  3400.0
(string->number "#x#e-2e2")  -738
(string->number "#e-2e2" 16)  -738
(string->number "#i15/16")  0.9375
(string->number "10" 16)  16
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procedure: (number->string num)
procedure: (number->string num radix)
procedure: (number->string num radix precision)
returns: an external representation of num as a string
libraries: (rnrs base), (rnrs)

The num is expressed in radix radix, which must be an exact integer in the set {2,8,10,16}. If not specified,
radix defaults to 10. In any case, no radix specifier appears in the resulting string.

The external representation is such that, when converted back into a number using string->number, the
resulting numeric value is equivalent to num. That is, for all inputs:

(eqv? (string->number
        (number->string num radix)

radix)
num)

returns #t. An exception with condition type &implementation-restriction is raised if this is not
possible.

If precision is provided, it must be an exact positive integer, num must be inexact, and radix must be
10. In this case, the real part and, if present, the imaginary part of the number are each printed with an explicit
mantissa width m, where m is the least possible value greater than or equal to precision that makes the
expression above true.

If radix is 10, inexact values of num are expressed using the fewest number of significant digits possible [5]
without violating the above restriction.

(number->string 3.4)  "3.4"
(number->string 1e2)  "100.0"
(number->string 1e-23)  "1e-23"
(number->string -7/2)  "-7/2"
(number->string 220/9 16)  "DC/9"

Section 6.5. Fixnums

Fixnums represent exact integers in the fixnum range, which is required to be a closed range [-2w-1,2w-2 - 1],
where w (the fixnum width) is at least 24. The implementation-specific value of w may be determined via the
procedure fixnum-width, and the endpoints of the range may be determined via the procedures
least-fixnum and greatest-fixnum.

The names of arithmetic procedures that operate only on fixnums begin with the prefix "fx" to set them apart
from their generic counterparts.

Procedure arguments required to be fixnums are named fx, possibly with a suffix, e.g., fx2.

Unless otherwise specified, the numeric values of fixnum-specific procedures are fixnums. If the value of a
fixnum operation should be a fixnum, but the mathematical result would be outside the fixnum range, an
exception with condition type &implementation-restriction is raised.

Bit and shift operations on fixnums assume that fixnums are represented in two's complement, even if they are
not represented that way internally.

The Scheme Programming Language, 4th Edition

152 Section 6.5. Fixnums



procedure: (fixnum? obj)
returns: #t if obj is a fixnum, #f otherwise
libraries: (rnrs arithmetic fixnums), (rnrs)

(fixnum? 0)  #t
(fixnum? -1)  #t
(fixnum? (- (expt 2 23)))  #t
(fixnum? (- (expt 2 23) 1))  #t

procedure: (least-fixnum)
returns: the least (most negative) fixnum supported by the implementation
procedure: (greatest-fixnum)
returns: the greatest (most positive) fixnum supported by the implementation
libraries: (rnrs arithmetic fixnums), (rnrs)

(fixnum? (- (least-fixnum) 1))  #f
(fixnum? (least-fixnum))  #t
(fixnum? (greatest-fixnum))  #t
(fixnum? (+ (greatest-fixnum) 1))  #f

procedure: (fixnum-width)
returns: the implementation-dependent fixnum width
libraries: (rnrs arithmetic fixnums), (rnrs)

As described in the lead-in to this section, the fixnum width determines the size of the fixnum range and must
be at least 24.

(define w (fixnum-width))
(= (least-fixnum) (- (expt 2 (- w 1))))  #t
(= (greatest-fixnum) (- (expt 2 (- w 1)) 1))  #t
(>= w 24)  #t

procedure: (fx=? fx1 fx2 fx3 ...)
procedure: (fx<? fx1 fx2 fx3 ...)
procedure: (fx>? fx1 fx2 fx3 ...)
procedure: (fx<=? fx1 fx2 fx3 ...)
procedure: (fx>=? fx1 fx2 fx3 ...)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs arithmetic fixnums), (rnrs)

The predicate fx=? returns #t if its arguments are equal. The predicate fx<? returns #t if its arguments are
monotonically increasing, i.e., each argument is greater than the preceding ones, while fx>? returns #t if its
arguments are monotonically decreasing. The predicate fx<=? returns #t if its arguments are monotonically
nondecreasing, i.e., each argument is not less than the preceding ones, while fx>=? returns #t if its
arguments are monotonically nonincreasing.

(fx=? 0 0)  #t
(fx=? -1 1)  #f
(fx<? (least-fixnum) 0 (greatest-fixnum))  #t
(let ([x 3]) (fx<=? 0 x 9))  #t
(fx>? 5 4 3 2 1)  #t
(fx<=? 1 3 2)  #f
(fx>=? 0 0 (least-fixnum))  #t
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procedure: (fxzero? fx)
returns: #t if fx is zero, #f otherwise
procedure: (fxpositive? fx)
returns: #t if fx is greater than zero, #f otherwise
procedure: (fxnegative? fx)
returns: #t if fx is less than zero, #f otherwise
libraries: (rnrs arithmetic fixnums), (rnrs)

fxzero? is equivalent to (lambda (x) (fx=? x 0)), fxpositive? is equivalent to
(lambda (x) (fx>? x 0)), and fxnegative? to (lambda (x) (fx<? x 0)).

(fxzero? 0)  #t
(fxzero? 1)  #f

(fxpositive? 128)  #t
(fxpositive? 0)  #f
(fxpositive? -1)  #f

(fxnegative? -65)  #t
(fxnegative? 0)  #f
(fxnegative? 1)  #f

procedure: (fxeven? fx)
returns: #t if fx is even, #f otherwise
procedure: (fxodd? fx)
returns: #t if fx is odd, #f otherwise
libraries: (rnrs arithmetic fixnums), (rnrs)

(fxeven? 0)  #t
(fxeven? 1)  #f
(fxeven? -1)  #f
(fxeven? -10)  #t

(fxodd? 0)  #f
(fxodd? 1)  #t
(fxodd? -1)  #t
(fxodd? -10)  #f

procedure: (fxmin fx1 fx2 ...)
returns: the minimum of fx1 fx2 ...
procedure: (fxmax fx1 fx2 ...)
returns: the maximum of fx1 fx2 ...
libraries: (rnrs arithmetic fixnums), (rnrs)

(fxmin 4 -7 2 0 -6)  -7

(let ([ls '(7 3 5 2 9 8)])
  (apply fxmin ls))  2

(fxmax 4 -7 2 0 -6)  4

(let ([ls '(7 3 5 2 9 8)])
  (apply fxmax ls))  9
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procedure: (fx+ fx1 fx2)
returns: the sum of fx1 and fx2
libraries: (rnrs arithmetic fixnums), (rnrs)

(fx+ -3 4)  1

procedure: (fx- fx)
returns: the additive inverse of fx
procedure: (fx- fx1 fx2)
returns: the difference between fx1 and fx2
libraries: (rnrs arithmetic fixnums), (rnrs)

(fx- 3)  -3
(fx- -3 4)  -7

procedure: (fx* fx1 fx2)
returns: the product of fx1 and fx2
libraries: (rnrs arithmetic fixnums), (rnrs)

(fx* -3 4)  -12

procedure: (fxdiv fx1 fx2)
procedure: (fxmod fx1 fx2)
procedure: (fxdiv-and-mod fx1 fx2)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 must not be zero. These are fixnum-specific versions of the generic div, mod, and div-and-mod.

(fxdiv 17 3)  5
(fxmod 17 3)  2
(fxdiv -17 3)  -6
(fxmod -17 3)  1
(fxdiv 17 -3)  -5
(fxmod 17 -3)  2
(fxdiv -17 -3)  6
(fxmod -17 -3)  1

(fxdiv-and-mod 17 3)  5
 2

procedure: (fxdiv0 fx1 fx2)
procedure: (fxmod0 fx1 fx2)
procedure: (fxdiv0-and-mod0 fx1 fx2)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 must not be zero. These are fixnum-specific versions of the generic div0, mod0, and
div0-and-mod0.

(fxdiv0 17 3)  6
(fxmod0 17 3)  -1
(fxdiv0 -17 3)  -6
(fxmod0 -17 3)  1
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(fxdiv0 17 -3)  -6
(fxmod0 17 -3)  -1
(fxdiv0 -17 -3)  6
(fxmod0 -17 -3)  1

(fxdiv0-and-mod0 17 3)  6
 -1

procedure: (fx+/carry fx1 fx2 fx3)
procedure: (fx-/carry fx1 fx2 fx3)
procedure: (fx*/carry fx1 fx2 fx3)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

When an ordinary fixnum addition, subtraction, or multiplication operation overflows, an exception is raised.
These alternative procedures instead return a carry and also allow the carry to be propagated to the next
operation. They can be used to implement portable code for multiple-precision arithmetic.

These procedures return the two fixnum values of the following computations. For fx+/carry:

(let* ([s (+ fx1 fx2 fx3)]
       [s0 (mod0 s (expt 2 (fixnum-width)))]
       [s1 (div0 s (expt 2 (fixnum-width)))])
  (values s0 s1))

for fx-/carry:

(let* ([d (- fx1 fx2 fx3)]
       [d0 (mod0 d (expt 2 (fixnum-width)))]
       [d1 (div0 d (expt 2 (fixnum-width)))])
  (values d0 d1))

and for fx*/carry:

(let* ([s (+ (* fx1 fx2) fx3)]
       [s0 (mod0 s (expt 2 (fixnum-width)))]
       [s1 (div0 s (expt 2 (fixnum-width)))])
  (values s0 s1))

procedure: (fxnot fx)
returns: the bitwise not of fx
procedure: (fxand fx ...)
returns: the bitwise and of fx ...
procedure: (fxior fx ...)
returns: the bitwise inclusive or of fx ...
procedure: (fxxor fx ...)
returns: the bitwise exclusive or of fx ...
libraries: (rnrs arithmetic fixnums), (rnrs)

(fxnot 0)  -1
(fxnot 3)  -4

(fxand #b01101 #b00111)  #b00101
(fxior #b01101 #b00111)  #b01111
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(fxxor #b01101 #b00111)  #b01010

procedure: (fxif fx1 fx2 fx3)
returns: the bitwise "if" of its arguments
libraries: (rnrs arithmetic fixnums), (rnrs)

For each bit set in fx1, the corresponding bit of the result is taken from fx2, and for each bit not set in fx1,
the corresponding bit of the result is taken from x3.

(fxif #b101010 #b111000 #b001100)  #b101100

fxif might be defined as follows:

(define fxif
  (lambda (fx1 fx2 fx3)
    (fxior (fxand fx1 fx2)
           (fxand (fxnot fx1) fx3))))

procedure: (fxbit-count fx)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

For nonnegative inputs, fxbit-count returns the number of bits set in the two's complement representation
of fx. For negative inputs, it returns a negative number whose magnitude is one greater than the number of
bits not set in fx, which is equivalent to (fxnot (fxbit-count (fxnot fx))).

(fxbit-count #b00000)  0
(fxbit-count #b00001)  1
(fxbit-count #b00100)  1
(fxbit-count #b10101)  3

(fxbit-count -1)  -1
(fxbit-count -2)  -2
(fxbit-count -4)  -3

procedure: (fxlength fx)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

This procedure returns the number of bits of the smallest two's complement representation of fx, not
including the sign bit for negative numbers. For 0 fxlength returns 0.

(fxlength #b00000)  0
(fxlength #b00001)  1
(fxlength #b00100)  3
(fxlength #b00110)  3

(fxlength -1)  0
(fxlength -6)  3
(fxlength -9)  4

procedure: (fxfirst-bit-set fx)
returns: the index of the least significant bit set in fx
libraries: (rnrs arithmetic fixnums), (rnrs)
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If fx is 0, fxfirst-bit-set returns -1.

(fxfirst-bit-set #b00000)  -1
(fxfirst-bit-set #b00001)  0
(fxfirst-bit-set #b01100)  2

(fxfirst-bit-set -1)  0
(fxfirst-bit-set -2)  1
(fxfirst-bit-set -3)  0

procedure: (fxbit-set? fx1 fx2)
returns: #t if bit fx2 of fx1 is set, #f otherwise
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 must be nonnegative. It is taken as a zero-based index for the bits in the two's complement representation
of fx1, with the sign bit virtually replicated an infinite number of positions to the left.

(fxbit-set? #b01011 0)  #t
(fxbit-set? #b01011 2)  #f

(fxbit-set? -1 0)  #t
(fxbit-set? -1 20)  #t
(fxbit-set? -3 1)  #f
(fxbit-set? 0 (- (fixnum-width) 1))  #f
(fxbit-set? -1 (- (fixnum-width) 1))  #t

procedure: (fxcopy-bit fx1 fx2 fx3)
returns: fx1 with bit fx2 replaced by fx3
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 must be nonnegative and less than the value of (- (fixnum-width) 1). fx3 must be 0 or 1. This
procedure effectively clears or sets the specified bit depending on the value of fx3.

(fxcopy-bit #b01110 0 1)  #b01111
(fxcopy-bit #b01110 2 0)  #b01010

procedure: (fxbit-field fx1 fx2 fx3)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 and fx3 must be nonnegative and less than the value of (fixnum-width), and fx2 must not be
greater than fx3. This procedure returns the number represented by extracting from fx1 the sequence of bits
from fx2 (inclusive) to fx3 (exclusive).

(fxbit-field #b10110 0 3)  #b00110
(fxbit-field #b10110 1 3)  #b00011
(fxbit-field #b10110 2 3)  #b00001
(fxbit-field #b10110 3 3)  #b00000

procedure: (fxcopy-bit-field fx1 fx2 fx3 fx4)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 and fx3 must be nonnegative and less than the value of (fixnum-width), and fx2 must not be
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greater than fx3. This procedure returns fx1 with n bits from fx2 (inclusive) to fx3 (exclusive) replaced by
the low-order n bits of x4.

(fxcopy-bit-field #b10000 0 3 #b10101)  #b10101
(fxcopy-bit-field #b10000 1 3 #b10101)  #b10010
(fxcopy-bit-field #b10000 2 3 #b10101)  #b10100
(fxcopy-bit-field #b10000 3 3 #b10101)  #b10000

procedure: (fxarithmetic-shift-right fx1 fx2)
returns: fx1 arithmetically shifted right by fx2 bits
procedure: (fxarithmetic-shift-left fx1 fx2)
returns: fx1 shifted left by fx2 bits
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 must be nonnegative and less than the value of (fixnum-width).

(fxarithmetic-shift-right #b10000 3)  #b00010
(fxarithmetic-shift-right -1 1)  -1
(fxarithmetic-shift-right -64 3)  -8

(fxarithmetic-shift-left #b00010 2)  #b01000
(fxarithmetic-shift-left -1 2)  -4

procedure: (fxarithmetic-shift fx1 fx2)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

The absolute value of fx2 must be less than the value of (fixnum-width). If fx2 is negative,
fxarithmetic-shift returns the result of arithmetically shifting fx1 right by fx2 bits. Otherwise,
fxarithmetic-shift returns the result of shifting fx1 left by fx2 bits.

(fxarithmetic-shift #b10000 -3)  #b00010
(fxarithmetic-shift -1 -1)  -1
(fxarithmetic-shift -64 -3)  -8
(fxarithmetic-shift #b00010 2)  #b01000
(fxarithmetic-shift -1 2)  -4

Thus, fxarithmetic-shift behaves as if defined as follows.

(define fxarithmetic-shift
  (lambda (fx1 fx2)
    (if (fx<? fx2 0)
        (fxarithmetic-shift-right fx1 (fx- fx2))
        (fxarithmetic-shift-left fx1 fx2))))

procedure: (fxrotate-bit-field fx1 fx2 fx3 fx4)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2, fx3, and fx4 must be nonnegative and less than the value of (fixnum-width), fx2 must not be
greater than fx3, and fx4 must not be greater than the difference between fx3 and fx2.

This procedure returns the result of shifting the bits of fx1 from bit fx2 (inclusive) through bit fx3
(exclusive) left by fx4 bits, with the bits shifted out of the range inserted at the bottom end of the range.
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(fxrotate-bit-field #b00011010 0 5 3)  #b00010110
(fxrotate-bit-field #b01101011 2 7 3)  #b01011011

procedure: (fxreverse-bit-field fx1 fx2 fx3)
returns: see below
libraries: (rnrs arithmetic fixnums), (rnrs)

fx2 and fx3 must be nonnegative and less than the value of (fixnum-width), and fx2 must not be
greater than fx3. This procedure returns the result of reversing the bits of fx1 from bit fx2 (inclusive)
through bit fx3 (exclusive).

(fxreverse-bit-field #b00011010 0 5)  #b00001011
(fxreverse-bit-field #b01101011 2 7)  #b00101111

Section 6.6. Flonums

Flonums represent inexact real numbers. Implementations are required to represent as a flonum any inexact
real number whose lexical syntax contains no vertical bar and no exponent marker other than e, but are not
required to represent any other inexact real number as a flonum.

Implementations typically use the IEEE double-precision floating-point representation for flonums, but
implementations are not required to do so or even to use a floating-point representation of any sort, despite the
name "flonum."

This section describes operations on flonums. Flonum-specific procedure names begin with the prefix "fl" to
set them apart from their generic counterparts.

Procedure arguments required to be flonums are named fl, possibly with suffix, e.g., fl2. Unless otherwise
specified, the numeric values of flonum-specific procedures are flonums.

procedure: (flonum? obj)
returns: #t if obj is a flonum, otherwise #f
libraries: (rnrs arithmetic flonums), (rnrs)

(flonum? 0)  #f
(flonum? 3/4)  #f
(flonum? 3.5)  #t
(flonum? .02)  #t
(flonum? 1e10)  #t
(flonum? 3.0+0.0i)  #f

procedure: (fl=? fl1 fl2 fl3 ...)
procedure: (fl<? fl1 fl2 fl3 ...)
procedure: (fl>? fl1 fl2 fl3 ...)
procedure: (fl<=? fl1 fl2 fl3 ...)
procedure: (fl>=? fl1 fl2 fl3 ...)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

The predicate fl=? returns #t if its arguments are equal. The predicate fl<? returns #t if its arguments are
monotonically increasing, i.e., each argument is greater than the preceding ones, while fl>? returns #t if its
arguments are monotonically decreasing. The predicate fl<=? returns #t if its arguments are monotonically
nondecreasing, i.e., each argument is not less than the preceding ones, while fl>=? returns #t if its
arguments are monotonically nonincreasing. When passed only one argument, each of these predicates returns
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#t.

Comparisons involving NaNs always return #f.

(fl=? 0.0 0.0)  #t
(fl<? -1.0 0.0 1.0)  #t
(fl>? -1.0 0.0 1.0)  #f
(fl<=? 0.0 3.0 3.0)  #t
(fl>=? 4.0 3.0 3.0)  #t
(fl<? 7.0 +inf.0)  #t
(fl=? +nan.0 0.0)  #f
(fl=? +nan.0 +nan.0)  #f
(fl<? +nan.0 +nan.0)  #f
(fl<=? +nan.0 +inf.0)  #f
(fl>=? +nan.0 +inf.0)  #f

procedure: (flzero? fl)
returns: #t if fl is zero, #f otherwise
procedure: (flpositive? fl)
returns: #t if fl is greater than zero, #f otherwise
procedure: (flnegative? fl)
returns: #t if fl is less than zero, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

flzero? is equivalent to (lambda (x) (fl=? x 0.0)), flpositive? is equivalent to
(lambda (x) (fl>? x 0.0)), and flnegative? to (lambda (x) (fl<? x 0.0)).

Even if the flonum representation distinguishes -0.0 from +0.0, -0.0 is considered both zero and nonnegative.

(flzero? 0.0)  #t
(flzero? 1.0)  #f

(flpositive? 128.0)  #t
(flpositive? 0.0)  #f
(flpositive? -1.0)  #f

(flnegative? -65.0)  #t
(flnegative? 0.0)  #f
(flnegative? 1.0)  #f

(flzero? -0.0)  #t
(flnegative? -0.0)  #f

(flnegative? +nan.0)  #f
(flzero? +nan.0)  #f
(flpositive? +nan.0)  #f

(flnegative? +inf.0)  #f
(flnegative? -inf.0)  #t

procedure: (flinteger? fl)
returns: #t if fl is integer, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)
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(flinteger? 0.0)  #t
(flinteger? -17.0)  #t
(flinteger? +nan.0)  #f
(flinteger? +inf.0)  #f

procedure: (flfinite? fl)
returns: #t if fl is finite, #f otherwise
procedure: (flinfinite? fl)
returns: #t if fl is infinite, #f otherwise
procedure: (flnan? fl)
returns: #t if fl is a NaN, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

(flfinite? 3.1415)  #t
(flinfinite? 3.1415)  #f
(flnan? 3.1415)  #f

(flfinite? +inf.0)  #f
(flinfinite? -inf.0)  #t
(flnan? -inf.0)  #f

(flfinite? +nan.0)  #f
(flinfinite? +nan.0)  #f
(flnan? +nan.0)  #t

procedure: (fleven? fl-int)
returns: #t if fl-int is even, #f otherwise
procedure: (flodd? fl-int)
returns: #t if fl-int is odd, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

fl-int must be an integer-valued flonum.

(fleven? 0.0)  #t
(fleven? 1.0)  #f
(fleven? -1.0)  #f
(fleven? -10.0)  #t

(flodd? 0.0)  #f
(flodd? 1.0)  #t
(flodd? -1.0)  #t
(flodd? -10.0)  #f

procedure: (flmin fl1 fl2 ...)
returns: the minimum of fl1 fl2 ...
procedure: (flmax fl1 fl2 ...)
returns: the maximum of fl1 fl2 ...
libraries: (rnrs arithmetic flonums), (rnrs)

(flmin 4.2 -7.5 2.0 0.0 -6.4)  -7.5

(let ([ls '(7.1 3.5 5.0 2.6 2.6 8.0)])
  (apply flmin ls))  2.6
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(flmax 4.2 -7.5 2.0 0.0 -6.4)  4.2

(let ([ls '(7.1 3.5 5.0 2.6 2.6 8.0)])
  (apply flmax ls))  8.0

procedure: (fl+ fl ...)
returns: the sum of the arguments fl ...
libraries: (rnrs arithmetic flonums), (rnrs)

When called with no arguments, fl+ returns 0.0.

(fl+)  0.0
(fl+ 1.0 2.5)  3.25
(fl+ 3.0 4.25 5.0)  12.25
(apply fl+ '(1.0 2.0 3.0 4.0 5.0))  15.0

procedure: (fl- fl)
returns: the additive inverse of fl
procedure: (fl- fl1 fl2 fl3 ...)
returns: the difference between fl1 and the sum of fl2 fl3 ...
libraries: (rnrs arithmetic flonums), (rnrs)

With an IEEE floating-point representation of flonums, the single-argument fl- is equivalent to

(lambda (x) (fl* -1.0 x))

or

(lambda (x) (fl- -0.0 x))

but not

(lambda (x) (fl- 0.0 x))

since the latter returns 0.0 rather than -0.0 for 0.0.

(fl- 0.0)  -0.0
(fl- 3.0)  -3.0
(fl- 4.0 3.0)  1.0
(fl- 4.0 3.0 2.0 1.0)  -2.0

procedure: (fl* fl ...)
returns: the product of the arguments fl ...
libraries: (rnrs arithmetic flonums), (rnrs)

When called with no arguments, fl* returns 1.0.

(fl*)  1.0
(fl* 1.5 2.5)  3.75
(fl* 3.0 -4.0 5.0)  -60.0
(apply fl* '(1.0 -2.0 3.0 -4.0 5.0))  120.0

procedure: (fl/ fl)
returns: the multiplicative inverse of fl
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procedure: (fl/ fl1 fl2 fl3 ...)
returns: the result of dividing fl1 by the product of fl2 fl3 ...
libraries: (rnrs arithmetic flonums), (rnrs)

(fl/ -4.0)  -0.25
(fl/ 8.0 -2.0)  -4.0
(fl/ -9.0 2.0)  -4.5
(fl/ 60.0 5.0 3.0 2.0)  2.0

procedure: (fldiv fl1 fl2)
procedure: (flmod fl1 fl2)
procedure: (fldiv-and-mod fl1 fl2)
returns: see below
libraries: (rnrs arithmetic flonums), (rnrs)

These are flonum-specific versions of the generic div, mod, and div-and-mod.

(fldiv 17.0 3.0)  5.0
(flmod 17.0 3.0)  2.0
(fldiv -17.0 3.0)  -6.0
(flmod -17.0 3.0)  1.0
(fldiv 17.0 -3.0)  -5.0
(flmod 17.0 -3.0)  2.0
(fldiv -17.0 -3.0)  6.0
(flmod -17.0 -3.0)  1.0

(fldiv-and-mod 17.5 3.75)  4.0
 2.5

procedure: (fldiv0 fl1 fl2)
procedure: (flmod0 fl1 fl2)
procedure: (fldiv0-and-mod0 fl1 fl2)
returns: see below
libraries: (rnrs arithmetic flonums), (rnrs)

These are flonum-specific versions of the generic div0, mod0, and div0-and-mod0.

(fldiv0 17.0 3.0)  6.0
(flmod0 17.0 3.0)  -1.0
(fldiv0 -17.0 3.0)  -6.0
(flmod0 -17.0 3.0)  1.0
(fldiv0 17.0 -3.0)  -6.0
(flmod0 17.0 -3.0)  -1.0
(fldiv0 -17.0 -3.0)  6.0
(flmod0 -17.0 -3.0)  1.0

(fldiv0-and-mod0 17.5 3.75)  5.0
 -1.25

procedure: (flround fl)
returns: the integer closest to fl
procedure: (fltruncate fl)
returns: the integer closest to fl toward zero
procedure: (flfloor fl)
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returns: the integer closest to fl toward 
procedure: (flceiling fl)
returns: the integer closest to fl toward 
libraries: (rnrs arithmetic flonums), (rnrs)

If fl is an integer, NaN, or infinity, each of these procedures returns fl. If fl is exactly between two
integers, flround returns the closest even integer.

(flround 17.3)  17.0
(flround -17.3)  -17.0
(flround 2.5)  2.0
(flround 3.5)  4.0

(fltruncate 17.3)  17.0
(fltruncate -17.3)  -17.0

(flfloor 17.3)  17.0
(flfloor -17.3)  -18.0

(flceiling 17.3)  18.0
(flceiling -17.3)  -17.0

procedure: (flnumerator fl)
returns: the numerator of fl
procedure: (fldenominator fl)
returns: the denominator of fl
libraries: (rnrs arithmetic flonums), (rnrs)

If fl is an integer, including 0.0, or infinity, the numerator is fl and the denominator is 1.0.

(flnumerator -9.0)  -9.0
(fldenominator -9.0)  1.0
(flnumerator 0.0)  0.0
(fldenominator 0.0)  1.0
(flnumerator -inf.0)  -inf.0
(fldenominator -inf.0)  1.0

The following hold for IEEE floats, but not necessarily other flonum representations.

(flnumerator 3.5)  7.0
(fldenominator 3.5)  2.0

procedure: (flabs fl)
returns: absolute value of fl
libraries: (rnrs arithmetic flonums), (rnrs)

(flabs 3.2)  3.2
(flabs -2e-20)  2e-20

procedure: (flexp fl)
returns: e to the fl power
procedure: (fllog fl)
returns: the natural logarithm of fl
procedure: (fllog fl1 fl2)
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returns: the base-fl2 logarithm of fl1
libraries: (rnrs arithmetic flonums), (rnrs)

(flexp 0.0)  1.0
(flexp 1.0)  2.7182818284590455

(fllog 1.0)  0.0
(fllog (exp 1.0))  1.0
(fl/ (fllog 100.0) (fllog 10.0))  2.0

(fllog 100.0 10.0)  2.0
(fllog .125 2.0)  -3.0

procedure: (flsin fl)
returns: the sine of fl
procedure: (flcos fl)
returns: the cosine of fl
procedure: (fltan fl)
returns: the tangent of fl
libraries: (rnrs arithmetic flonums), (rnrs)

procedure: (flasin fl)
returns: the arc sine of fl
procedure: (flacos fl)
returns: the arc cosine of fl
procedure: (flatan fl)
returns: the arc tangent of fl
procedure: (flatan fl1 fl2)
returns: the arc tangent of fl1/fl2
libraries: (rnrs arithmetic flonums), (rnrs)

procedure: (flsqrt fl)
returns: the principal square root of fl
libraries: (rnrs arithmetic flonums), (rnrs)

Returns the principal square root of fl. The square root of -0.0 should be -0.0. The result for other negative
numbers may be a NaN or some other unspecified flonum.

(flsqrt 4.0)  2.0
(flsqrt 0.0)  0.0
(flsqrt -0.0)  -0.0

procedure: (flexpt fl1 fl2)
returns: fl1 raised to the fl2 power
libraries: (rnrs arithmetic flonums), (rnrs)

If fl1 is negative and fl2 is not an integer, the result may be a NaN or some other unspecified flonum. If
fl1 and fl2 are both zero, the result is 1.0. If fl1 is zero and fl2 is positive, the result is zero. In other cases
where fl1 is zero, the result may be a NaN or some other unspecified flonum.

(flexpt 3.0 2.0)  9.0
(flexpt 0.0 +inf.0)  0.0

procedure: (fixnum->flonum fx)
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returns: the flonum representation closest to fx
procedure: (real->flonum real)
returns: the flonum representation closest to real
libraries: (rnrs arithmetic flonums), (rnrs)

fixnum->flonum is a restricted variant of inexact. real->flonum is a restricted variant of
inexact when the input is an exact real; when it is an inexact non-flonum real, it coverts the inexact
non-flonum real into the closest flonum.

(fixnum->flonum 0)  0.0
(fixnum->flonum 13)  13.0

(real->flonum -1/2)  -0.5
(real->flonum 1s3)  1000.0

Section 6.7. Characters

Characters are atomic objects representing letters, digits, special symbols such as $ or -, and certain
nongraphic control characters such as space and newline. Characters are written with a #\ prefix. For most
characters, the prefix is followed by the character itself. The written character representation of the letter A,
for example, is #\A. The characters newline, space, and tab may be written in this manner as well, but they
can be written more clearly as #\newline, #\space, and #\tab. Other character names are supported as
well, as defined by the grammar for character objects on page 457. Any Unicode character may be written
with the syntax #\xn, where n consists of one or more hexadecimal digits and represents a valid Unicode
scalar value.

This section describes the operations that deal primarily with characters. See also the following section on
strings and Chapter 7 on input and output for other operations relating to characters.

procedure: (char=? char1 char2 char3 ...)
procedure: (char<? char1 char2 char3 ...)
procedure: (char>? char1 char2 char3 ...)
procedure: (char<=? char1 char2 char3 ...)
procedure: (char>=? char1 char2 char3 ...)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs base), (rnrs)

These predicates behave in a similar manner to the numeric predicates =, <, >, <=, and >=. For example,
char=? returns #t when its arguments are equivalent characters, and char<? returns #t when its
arguments are monotonically increasing character (Unicode scalar) values.

(char>? #\a #\b)  #f
(char<? #\a #\b)  #t
(char<? #\a #\b #\c)  #t
(let ([c #\r])
  (char<=? #\a c #\z))  #t
(char<=? #\Z #\W)  #f
(char=? #\+ #\+)  #t

procedure: (char-ci=? char1 char2 char3 ...)
procedure: (char-ci<? char1 char2 char3 ...)
procedure: (char-ci>? char1 char2 char3 ...)
procedure: (char-ci<=? char1 char2 char3 ...)
procedure: (char-ci>=? char1 char2 char3 ...)
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returns: #t if the relation holds, #f otherwise
libraries: (rnrs unicode), (rnrs)

These predicates are identical to the predicates char=?, char<?, char>?, char<=?, and char>=?
except that they are case-insensitive, i.e., compare the case-folded versions of their arguments. For example,
char=? considers #\a and #\A to be distinct values; char-ci=? does not.

(char-ci<? #\a #\B)  #t
(char-ci=? #\W #\w)  #t
(char-ci=? #\= #\+)  #f
(let ([c #\R])
  (list (char<=? #\a c #\z)
        (char-ci<=? #\a c #\z)))  (#f #t)

procedure: (char-alphabetic? char)
returns: #t if char is a letter, #f otherwise
procedure: (char-numeric? char)
returns: #t if char is a digit, #f otherwise
procedure: (char-whitespace? char)
returns: #t if char is whitespace, #f otherwise
libraries: (rnrs unicode), (rnrs)

A character is alphabetic if it has the Unicode "Alphabetic" property, numeric if it has the Unicode "Numeric"
property, and whitespace if has the Unicode "White_Space" property.

(char-alphabetic? #\a)  #t
(char-alphabetic? #\T)  #t
(char-alphabetic? #\8)  #f
(char-alphabetic? #\$)  #f

(char-numeric? #\7)  #t
(char-numeric? #\2)  #t
(char-numeric? #\X)  #f
(char-numeric? #\space)  #f

(char-whitespace? #\space)  #t
(char-whitespace? #\newline)  #t
(char-whitespace? #\Z)  #f

procedure: (char-lower-case? char)
returns: #t if char is lower case, #f otherwise
procedure: (char-upper-case? char)
returns: #t if char is upper case, #f otherwise
procedure: (char-title-case? char)
returns: #t if char is title case, #f otherwise
libraries: (rnrs unicode), (rnrs)

A character is upper-case if it has the Unicode "Uppercase" property, lower-case if it has the "Lowercase"
property, and title-case if it is in the Lt general category.

(char-lower-case? #\r)  #t
(char-lower-case? #\R)  #f

(char-upper-case? #\r)  #f
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(char-upper-case? #\R)  #t

(char-title-case? #\I)  #f
(char-title-case? #\x01C5)  #t

procedure: (char-general-category char)
returns: a symbol representing the Unicode general category of char
libraries: (rnrs unicode), (rnrs)

The return value is one of the symbols Lu, Ll, Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Ps, Pe, Pi, Pf, Pd, Pc,
Po, Sc, Sm, Sk, So, Zs, Zp, Zl, Cc, Cf, Cs, Co, or Cn.

(char-general-category #\a)  Ll
(char-general-category #\space)  Zs
(char-general-category #\x10FFFF)  Cn  

procedure: (char-upcase char)
returns: the upper-case character counterpart of char
libraries: (rnrs unicode), (rnrs)

If char is a lower- or title-case character and has a single upper-case counterpart, char-upcase returns the
upper-case counterpart. Otherwise char-upcase returns char.

(char-upcase #\g)  #\G
(char-upcase #\G)  #\G
(char-upcase #\7)  #\7
(char-upcase #\ )  #\

procedure: (char-downcase char)
returns: the lower-case character equivalent of char
libraries: (rnrs unicode), (rnrs)

If char is an upper- or title-case character and has a single lower-case counterpart, char-downcase
returns the lower-case counterpart. Otherwise char-downcase returns char.

(char-downcase #\g)  #\g
(char-downcase #\G)  #\g
(char-downcase #\7)  #\7
(char-downcase #\ )  #\

procedure: (char-titlecase char)
returns: the title-case character equivalent of char
libraries: (rnrs unicode), (rnrs)

If char is an upper- or lower-case character and has a single title-case counterpart, char-titlecase
returns the title-case counterpart. Otherwise, if it is not a title-case character, has no single title-case
counterpart, but does have a single upper-case counterpart, char-titlecase returns the upper-case
counterpart. Otherwise char-titlecase returns char.

(char-titlecase #\g)  #\G
(char-titlecase #\G)  #\G
(char-titlecase #\7)  #\7
(char-titlecase #\ )  #\
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procedure: (char-foldcase char)
returns: the case-folded character equivalent of char
libraries: (rnrs unicode), (rnrs)

If char has a case-folded counterpart, char-foldcase returns the case-folded counterpart. Otherwise,
char-foldcase returns char. For most characters, (char-foldcase char) is equivalent to
(char-downcase (char-upcase char)), but for Turkic İ and ı, char-foldcase acts as the
identity.

(char-foldcase #\g)  #\g
(char-foldcase #\G)  #\g
(char-foldcase #\7)  #\7
(char-foldcase #\ )  #\

procedure: (char->integer char)
returns: the Unicode scalar value of char as an exact integer
libraries: (rnrs base), (rnrs)

(char->integer #\newline)  10
(char->integer #\space)  32
(- (char->integer #\Z) (char->integer #\A))  25

procedure: (integer->char n)
returns: the character corresponding to the Unicode scalar value n
libraries: (rnrs base), (rnrs)

n must be an exact integer and a valid Unicode scalar value, i.e.,  or .

(integer->char 48)  #\0
(integer->char #x3BB)  #\

Section 6.8. Strings

Strings are sequences of characters and are often used as messages, character buffers, or containers for blocks
of text. Scheme provides operations for creating strings, extracting characters from strings, obtaining
substrings, concatenating strings, and altering the contents of strings.

A string is written as a sequence of characters enclosed in double quotes, e.g., "hi there". A double quote
may be introduced into a string by preceding it by a backward slash, e.g., "two \"quotes\" within".
A backward slash may also be included by preceding it with a backward slash, e.g., "a \\slash". Various
special characters can be inserted with other two-character sequences, e.g., \n for newline, \r for carriage
return, and \t for tab. Any Unicode character may be inserted with the syntax #\xn;, where n consists of
one or more hexadecimal digits and represents a valid Unicode scalar value. A grammar defining the precise
syntax of strings is given on page 458.

Strings are indexed by exact nonnegative integers, and the index of the first element of any string is 0. The
highest valid index for a given string is one less than its length.

procedure: (string=? string1 string2 string3 ...)
procedure: (string<? string1 string2 string3 ...)
procedure: (string>? string1 string2 string3 ...)
procedure: (string<=? string1 string2 string3 ...)
procedure: (string>=? string1 string2 string3 ...)
returns: #t if the relation holds, #f otherwise

The Scheme Programming Language, 4th Edition

170 Section 6.8. Strings



libraries: (rnrs base), (rnrs)

As with =, <, >, <=, and >=, these predicates express relationships among all of the arguments. For example,
string>? determines if the lexicographic ordering of its arguments is monotonically decreasing.

The comparisons are based on the character predicates char=? and char<?. Two strings are
lexicographically equivalent if they are the same length and consist of the same sequence of characters
according to char=?. If two strings differ only in length, the shorter string is considered to be
lexicographically less than the longer string. Otherwise, the first character position at which the strings differ
(by char=?) determines which string is lexicographically less than the other, according to char<?.

Two-argument string=? may be defined without error checks as follows.

(define string=?
  (lambda (s1 s2)
    (let ([n (string-length s1)])
      (and (= (string-length s2) n)
           (let loop ([i 0])
             (or (= i n)
                 (and (char=? (string-ref s1 i) (string-ref s2 i))
                      (loop (+ i 1)))))))))

Two-argument string<? may be defined without error checks as follows.

(define string<?
  (lambda (s1 s2)
    (let ([n1 (string-length s1)] [n2 (string-length s2)])
      (let loop ([i 0])
        (and (not (= i n2))
             (or (= i n1)
                 (let ([c1 (string-ref s1 i)] [c2 (string-ref s2 i)])
                   (or (char<? c1 c2)
                       (and (char=? c1 c2)
                            (loop (+ i 1)))))))))))

These definitions may be extended straightforwardly to support three or more arguments. string<=?,
string>?, and string>=? may be defined similarly.

(string=? "mom" "mom")  #t
(string<? "mom" "mommy")  #t
(string>? "Dad" "Dad")  #f
(string=? "Mom and Dad" "mom and dad")  #f
(string<? "a" "b" "c")  #t

procedure: (string-ci=? string1 string2 string3 ...)
procedure: (string-ci<? string1 string2 string3 ...)
procedure: (string-ci>? string1 string2 string3 ...)
procedure: (string-ci<=? string1 string2 string3 ...)
procedure: (string-ci>=? string1 string2 string3 ...)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs unicode), (rnrs)

These predicates are identical to string=?, string<?, string>?, string<=?, and string>=?
except that they are case-sensitive, i.e., compare the case-folded versions of their arguments.
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(string-ci=? "Mom and Dad" "mom and dad")  #t
(string-ci<=? "say what" "Say What!?")  #t
(string-ci>? "N" "m" "L" "k")  #t
(string-ci=? "Stra\sse" "Strasse")  #t

procedure: (string char ...)
returns: a string containing the characters char ...
libraries: (rnrs base), (rnrs)

(string)  ""
(string #\a #\b #\c)  "abc"
(string #\H #\E #\Y #\!)  "HEY!"

procedure: (make-string n)
procedure: (make-string n char)
returns: a string of length n
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer. If char is supplied, the string is filled with n occurrences of char,
otherwise the characters contained in the string are unspecified.

(make-string 0)  ""
(make-string 0 #\x)  ""
(make-string 5 #\x)  "xxxxx"

procedure: (string-length string)
returns: the number of characters in string
libraries: (rnrs base), (rnrs)

The length of a string is always an exact nonnegative integer.

(string-length "abc")  3
(string-length "")  0
(string-length "hi there")  8
(string-length (make-string 1000000))  1000000

procedure: (string-ref string n)
returns: the nth character (zero-based) of string
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer less than the length of string.

(string-ref "hi there" 0)  #\h
(string-ref "hi there" 5)  #\e

procedure: (string-set! string n char)
returns: unspecified
libraries: (rnrs mutable-strings)

n must be an exact nonnegative integer less than the length of string. string-set! changes the nth
element of string to char.

(let ([str (string-copy "hi three")])
  (string-set! str 5 #\e)
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  (string-set! str 6 #\r)
  str)  "hi there"

procedure: (string-copy string)
returns: a new copy of string
libraries: (rnrs base), (rnrs)

This procedure creates a new string with the same length and contents as string.

(string-copy "abc")  "abc"

(let ([str "abc"])
  (eq? str (string-copy str)))  #f

procedure: (string-append string ...)
returns: a new string formed by concatenating the strings string ...
libraries: (rnrs base), (rnrs)

(string-append)  ""
(string-append "abc" "def")  "abcdef"
(string-append "Hey " "you " "there!")  "Hey you there!"

The following implementation of string-append recurs down the list of strings to compute the total
length, then allocates the new string, then fills it up as it unwinds the recursion.

(define string-append
  (lambda args
    (let f ([ls args] [n 0])
      (if (null? ls)
          (make-string n)
          (let* ([s1 (car ls)]
                 [m (string-length s1)]
                 [s2 (f (cdr ls) (+ n m))])
            (do ([i 0 (+ i 1)] [j n (+ j 1)])
                ((= i m) s2)
              (string-set! s2 j (string-ref s1 i))))))))

procedure: (substring string start end)
returns: a copy of string from start (inclusive) to end (exclusive)
libraries: (rnrs base), (rnrs)

start and end must be exact nonnegative integers; start must be less than the length of string, while
end may be less than or equal to the length of string. If end ≤ start, a string of length zero is returned.
substring may be defined without error checks as follows.

(define substring
  (lambda (s1 m n)
    (let ([s2 (make-string (- n m))])
      (do ([j 0 (+ j 1)] [i m (+ i 1)])
          ((= i n) s2)
        (string-set! s2 j (string-ref s1 i))))))

(substring "hi there" 0 1)  "h"
(substring "hi there" 3 6)  "the"
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(substring "hi there" 5 5)  ""

(let ([str "hi there"])
  (let ([end (string-length str)])
    (substring str 0 end)))  "hi there"

procedure: (string-fill! string char)
returns: unspecified
libraries: (rnrs mutable-strings)

string-fill! sets every character in string to char.

(let ([str (string-copy "sleepy")])
  (string-fill! str #\Z)
  str)  "ZZZZZZ"

string-fill! might be defined as follows:

(define string-fill!
  (lambda (s c)
    (let ([n (string-length s)])
      (do ([i 0 (+ i 1)])
          ((= i n))
          (string-set! s i c)))))

An alternative definition is given on page 276.

procedure: (string-upcase string)
returns: the upper-case equivalent of string
procedure: (string-downcase string)
returns: the lower-case equivalent of string
procedure: (string-foldcase string)
returns: the case-folded equivalent of string
procedure: (string-titlecase string)
returns: the title-case equivalent of string
libraries: (rnrs unicode), (rnrs)

These procedures implement Unicode's locale-independent case mappings from scalar-value sequences to
scalar-value sequences. These mappings do not always map single characters to single characters, so the
length of the result string may differ from the length of string. If the result string is the same as string
(by string=?), string or a copy of string may be returned. Otherwise, the result string is newly
allocated. string-foldcase does not use the special mappings for Turkic languages.

string-titlecase converts the first cased character of each word in string to its title-case counterpart
and converts each other character to its lower-case counterpart. Word breaks are recognized as specified in
Unicode Standard Annex #29 [8].

(string-upcase "Hi")  "HI"
(string-downcase "Hi")  "hi"
(string-foldcase "Hi")  "hi"

(string-upcase "Straße")  "STRASSE"
(string-downcase "Straße")  "straße"
(string-foldcase "Straße")  "strasse"
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(string-downcase "STRASSE")   "strasse"

(string-downcase " ")  " "

(string-titlecase "kNock KNoCK")  "Knock Knock"
(string-titlecase "who's there?")  "Who's There?"
(string-titlecase "r6rs")  "R6rs"
(string-titlecase "R6RS")  "R6rs"

procedure: (string-normalize-nfd string)
returns: the Unicode normalized form D of string
procedure: (string-normalize-nfkd string)
returns: the Unicode normalized form KD of string
procedure: (string-normalize-nfc string)
returns: the Unicode normalized form C of string
procedure: (string-normalize-nfkc string)
returns: the Unicode normalized form KC of string
libraries: (rnrs unicode), (rnrs)

If the result string is the same as string (by string=?), string or a copy of string may be returned.
Otherwise, the result string is newly allocated.

(string-normalize-nfd "\xE9;")  "e\x301;"
(string-normalize-nfc "\xE9;")  "\xE9;"
(string-normalize-nfd "\x65;\x301;")  "e\x301;"
(string-normalize-nfc "\x65;\x301;")  "\xE9;"

procedure: (string->list string)
returns: a list of the characters in string
libraries: (rnrs base), (rnrs)

string->list allows a string to be converted into a list, so that Scheme's list-processing operations may
be applied to the processing of strings. string->list may be defined without error checks as follows.

(define string->list
  (lambda (s)
    (do ([i (- (string-length s) 1) (- i 1)]
         [ls '() (cons (string-ref s i) ls)])
        ((< i 0) ls))))

(string->list "")  ()
(string->list "abc")  (#\a #\b #\c)
(apply char<? (string->list "abc"))  #t
(map char-upcase (string->list "abc"))  (#\A #\B #\C)

procedure: (list->string list)
returns: a string of the characters in list
libraries: (rnrs base), (rnrs)

list must consist entirely of characters.

list->string is the functional inverse of string->list. A program might use both procedures
together, first converting a string into a list, then operating on this list to produce a new list, and finally
converting the new list back into a string.
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list->string may be defined without error checks as follows.

(define list->string
  (lambda (ls)
    (let ([s (make-string (length ls))])
      (do ([ls ls (cdr ls)] [i 0 (+ i 1)])
          ((null? ls) s)
        (string-set! s i (car ls))))))

(list->string '())  ""
(list->string '(#\a #\b #\c))  "abc"
(list->string
  (map char-upcase
       (string->list "abc")))  "ABC"

Section 6.9. Vectors

Vectors are more convenient and efficient than lists for some applications. Whereas accessing an arbitrary
element in a list requires a linear traversal of the list up to the selected element, arbitrary vector elements are
accessed in constant time. The length of a vector is the number of elements it contains. Vectors are indexed by
exact nonnegative integers, and the index of the first element of any vector is 0. The highest valid index for a
given vector is one less than its length.

As with lists, the elements of a vector can be of any type, and a single vector can hold more than one type of
object.

A vector is written as a sequence of objects separated by whitespace, preceded by the prefix #( and followed
by ). For example, a vector consisting of the elements a, b, and c would be written #(a b c).

procedure: (vector obj ...)
returns: a vector of the objects obj ...
libraries: (rnrs base), (rnrs)

(vector)  #()
(vector 'a 'b 'c)  #(a b c)

procedure: (make-vector n)
procedure: (make-vector n obj)
returns: a vector of length n
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer. If obj is supplied, each element of the vector is filled with obj;
otherwise, the elements are unspecified.

(make-vector 0)  #()
(make-vector 0 '#(a))  #()
(make-vector 5 '#(a))  #(#(a) #(a) #(a) #(a) #(a))

procedure: (vector-length vector)
returns: the number of elements in vector
libraries: (rnrs base), (rnrs)

The length of a vector is always an exact nonnegative integer.
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(vector-length '#())  0
(vector-length '#(a b c))  3
(vector-length (vector 1 '(2) 3 '#(4 5)))  4
(vector-length (make-vector 300))  300

procedure: (vector-ref vector n)
returns: the nth element (zero-based) of vector
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer less than the length of vector.

(vector-ref '#(a b c) 0)  a
(vector-ref '#(a b c) 1)  b
(vector-ref '#(x y z w) 3)  w

procedure: (vector-set! vector n obj)
returns: unspecified
libraries: (rnrs base), (rnrs)

n must be an exact nonnegative integer less than the length of vector. vector-set! changes the nth
element of vector to obj.

(let ([v (vector 'a 'b 'c 'd 'e)])
  (vector-set! v 2 'x)
  v)  #(a b x d e)

procedure: (vector-fill! vector obj)
returns: unspecified
libraries: (rnrs base), (rnrs)

vector-fill! replaces each element of vector with obj. It may be defined without error checks as
follows.

(define vector-fill!
  (lambda (v x)
    (let ([n (vector-length v)])
      (do ([i 0 (+ i 1)])
          ((= i n))
        (vector-set! v i x)))))

(let ([v (vector 1 2 3)])
  (vector-fill! v 0)
  v)  #(0 0 0)

procedure: (vector->list vector)
returns: a list of the elements of vector
libraries: (rnrs base), (rnrs)

vector->list provides a convenient method for applying list-processing operations to vectors. It may be
defined without error checks as follows.

(define vector->list
  (lambda (s)
    (do ([i (- (vector-length s) 1) (- i 1)]
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         [ls '() (cons (vector-ref s i) ls)])
        ((< i 0) ls))))

(vector->list (vector))  ()
(vector->list '#(a b c))  (a b c)

(let ((v '#(1 2 3 4 5)))
  (apply * (vector->list v)))  120

procedure: (list->vector list)
returns: a vector of the elements of list
libraries: (rnrs base), (rnrs)

list->vector is the functional inverse of vector->list. The two procedures are often used in
combination to take advantage of a list-processing operation. A vector may be converted to a list with
vector->list, this list processed in some manner to produce a new list, and the new list converted back
into a vector with list->vector.

list->vector may be defined without error checks as follows.

(define list->vector
  (lambda (ls)
    (let ([s (make-vector (length ls))])
      (do ([ls ls (cdr ls)] [i 0 (+ i 1)])
          ((null? ls) s)
        (vector-set! s i (car ls))))))

(list->vector '())  #()
(list->vector '(a b c))  #(a b c)

(let ([v '#(1 2 3 4 5)])
  (let ([ls (vector->list v)])
    (list->vector (map * ls ls))))  #(1 4 9 16 25)

procedure: (vector-sort predicate vector)
returns: a vector containing the elements of vector, sorted according to predicate
procedure: (vector-sort! predicate vector)
returns: unspecified
libraries: (rnrs sorting), (rnrs)

predicate should be a procedure that expects two arguments and returns #t if its first argument must
precede its second in the sorted vector. That is, if predicate is applied to two elements x and y, where x
appears after y in the input vector, the predicate should return true only if x should appear before y in the
output vector. If this constraint is met, vector-sort performs a stable sort, i.e., two elements are reordered
only when necessary according to predicate. vector-sort! performs the sort destructively and does
not necessarily perform a stable sort. Duplicate elements are not removed. predicate should not have any
side effects.

vector-sort may call predicate up to nlogn times, where n is the length of vector, while
vector-sort! may call the predicate up to n2 times. The looser bound for vector-sort! allows an
implementation to use a quicksort algorithm, which may be faster in some cases than algorithms that have the
tighter nlogn bound.

(vector-sort < '#(3 4 2 1 2 5))  #(1 2 2 3 4 5)
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(vector-sort > '#(0.5 1/2))  #(0.5 1/2)
(vector-sort > '#(1/2 0.5))  #(1/2 0.5)

(let ([v (vector 3 4 2 1 2 5)])
  (vector-sort! < v)
  v)  #(1 2 2 3 4 5)

Section 6.10. Bytevectors

Bytevectors are vectors of raw binary data. Although nominally organized as a sequence of exact unsigned
8-bit integers, a bytevector can be interpreted as a sequence of exact signed 8-bit integers, exact signed or
unsigned 16-bit, 32-bit, 64-bit, or arbitrary-precision integers, IEEE single or double floating-point numbers,
or arbitrary combinations of the above.

The length of a bytevector is the number of 8-bit bytes it stores, and indices into a bytevector are always given
as byte offsets. Any data element may be aligned at any byte offset, regardless of the underlying hardware's
alignment requirements, and may be represented using a specified endianness (see below) that differs from
that prescribed by the hardware. Special, typically more efficient operators are provided for 16-, 32-, and
64-bit integers and single and double floats that are in their native format, i.e,. with the endianness of the
underlying hardware and stored at an index that is a multiple of the size in bytes of the integer or float.

The endianness of a multi-byte data value determines how it is laid out in memory. In big-endian format, the
value is laid out with the more significant bytes at lower indices, while in little-endian format, the value is laid
out with the more significant bytes at higher indices. When a bytevector procedure accepts an endianness
argument, the argument may be the symbol big, representing the big-endian format, or the symbol little,
representing the little-endian format. Implementations may extend these procedures to accept other endianness
symbols. The native endianness of the implementation may be obtained via the procedure
native-endianness.

Bytevectors are written with the #vu8( prefix in place of the #( prefix for vectors, e.g., #vu8(1 2 3).
The elements of a bytevector specified in this manner are always given as 8-bit unsigned exact integers, i.e.,
integers from 0 to 255 inclusive, written using any valid syntax for such numbers. Like strings, bytevectors
are self-evaluating, so they need not be quoted.

'#vu8(1 2 3)  #vu8(1 2 3)
#vu8(1 2 3)  #vu8(1 2 3)
#vu8(#x3f #x7f #xbf #xff)  #vu8(63 127 191 255)

syntax: (endianness symbol)
returns: symbol
libraries: (rnrs bytevectors), (rnrs)

symbol must be the symbol little, the symbol big, or some other symbol recognized by the
implementation as an endianness symbol. It is a syntax violation if symbol is not a symbol or if it is not
recognized by the implementation as an endianness symbol.

(endianness little)  little
(endianness big)  big
(endianness "spam") exception

procedure: (native-endianness)
returns: a symbol naming the implementation's native endianness
libraries: (rnrs bytevectors), (rnrs)
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The return value is the symbol little, the symbol big, or some other endianness symbol recognized by the
implementation. It typically reflects the endianness of the underlying hardware.

(symbol? (native-endianness))  #t

procedure: (make-bytevector n)
procedure: (make-bytevector n fill)
returns: a new bytevector of length n
libraries: (rnrs bytevectors), (rnrs)

If fill is supplied, each element of the bytevector is initialized to fill; otherwise, the elements are
unspecified. The fill value must be a signed or unsigned 8-bit value, i.e., a value in the range -128 to 255
inclusive. A negative fill value is treated as its two's complement equivalent.

(make-bytevector 0)  #vu8()
(make-bytevector 0 7)  #vu8()
(make-bytevector 5 7)  #vu8(7 7 7 7 7)
(make-bytevector 5 -7)  #vu8(249 249 249 249 249)

procedure: (bytevector-length bytevector)
returns: the length of bytevector in 8-bit bytes
libraries: (rnrs bytevectors), (rnrs)

(bytevector-length #vu8())  0
(bytevector-length #vu8(1 2 3))  3
(bytevector-length (make-bytevector 300))  300

procedure: (bytevector=? bytevector1 bytevector2)
returns: #t if the relation holds, #f otherwise
libraries: (rnrs bytevectors), (rnrs)

Two bytevectors are equal by bytevector=? if and only if they have the same length and same contents.

(bytevector=? #vu8() #vu8())  #t
(bytevector=? (make-bytevector 3 0) #vu8(0 0 0))  #t
(bytevector=? (make-bytevector 5 0) #vu8(0 0 0))  #f
(bytevector=? #vu8(1 127 128 255) #vu8(255 128 127 1))  #f

procedure: (bytevector-fill! bytevector fill)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

The fill value must be a signed or unsigned 8-bit value, i.e., a value in the range -128 to 255 inclusive. A
negative fill value is treated as its two's complement equivalent.

bytevector-fill! replaces each element of bytevector with fill.

(let ([v (make-bytevector 6)])
  (bytevector-fill! v 255)
  v)  #vu8(255 255 255 255 255 255)

(let ([v (make-bytevector 6)])
  (bytevector-fill! v -128)
  v)  #vu8(128 128 128 128 128 128)
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procedure: (bytevector-copy bytevector)
returns: a new bytevector that is a copy of bytevector
libraries: (rnrs bytevectors), (rnrs)

bytevector-copy creates a new bytevector with the same length and contents as bytevector.

(bytevector-copy #vu8(1 127 128 255))  #vu8(1 127 128 255)

(let ([v #vu8(1 127 128 255)])
  (eq? v (bytevector-copy v)))  #f

procedure: (bytevector-copy! src src-start dst dst-start n)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

src and dst must be bytevectors. src-start, dst-start, and n must be exact nonnegative integers.
The sum of src-start and n must not exceed the length of src, and the sum of dst-start and n must
not exceed the length of dst.

bytevector-copy! overwrites the n bytes of dst starting at dst-start with the n bytes of dst
starting at src-start. This works even if dst is the same bytevector as src and the source and
destination locations overlap. That is, the destination is filled with the bytes that appeared at the source before
the operation began.

(define v1 #vu8(31 63 95 127 159 191 223 255))
(define v2 (make-bytevector 10 0))

(bytevector-copy! v1 2 v2 1 4)
v2  #vu8(0 95 127 159 191 0 0 0 0 0)

(bytevector-copy! v1 5 v2 7 3)
v2  #vu8(0 95 127 159 191 0 0 191 223 255)

(bytevector-copy! v2 3 v2 0 6)
v2  #vu8(159 191 0 0 191 223 0 191 223 255)

(bytevector-copy! v2 0 v2 1 9)
v2  #vu8(159 159 191 0 0 191 223 0 191 223)

procedure: (bytevector-u8-ref bytevector n)
returns: the 8-bit unsigned byte at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer less than the length of bytevector.

The value is returned as an exact 8-bit unsigned integer, i.e., a value in the range 0 to 255 inclusive.

(bytevector-u8-ref #vu8(1 127 128 255) 0)  1
(bytevector-u8-ref #vu8(1 127 128 255) 2)  128
(bytevector-u8-ref #vu8(1 127 128 255) 3)  255

procedure: (bytevector-s8-ref bytevector n)
returns: the 8-bit signed byte at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)
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n must be an exact nonnegative integer less than the length of bytevector.

The value returned is an exact 8-bit signed integer, i.e., a value in the range -128 to 127 inclusive, and is the
equivalent of the stored value treated as a two's complement value.

(bytevector-s8-ref #vu8(1 127 128 255) 0)  1
(bytevector-s8-ref #vu8(1 127 128 255) 1)  127
(bytevector-s8-ref #vu8(1 127 128 255) 2)  -128
(bytevector-s8-ref #vu8(1 127 128 255) 3)  -1

procedure: (bytevector-u8-set! bytevector n u8)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer less than the length of bytevector. u8 must be an 8-bit unsigned
value, i.e., a value in the range 0 to 255 inclusive.

bytevector-u8-set! changes the 8-bit value at index n (zero-based) of bytevector to u8.

(let ([v (make-bytevector 5 -1)])
  (bytevector-u8-set! v 2 128)
  v)  #vu8(255 255 128 255 255)

procedure: (bytevector-s8-set! bytevector n s8)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer less than the length of bytevector. s8 must be an 8-bit signed
value, i.e., a value in the range -128 to 127 inclusive.

bytevector-s8-set! changes the 8-bit value at index n (zero-based) of bytevector to the two's
complement equivalent of s8.

(let ([v (make-bytevector 4 0)])
  (bytevector-s8-set! v 1 100)
  (bytevector-s8-set! v 2 -100)
  v)  #vu8(0 100 156 0)

procedure: (bytevector->u8-list bytevector)
returns: a list of the 8-bit unsigned elements of bytevector
libraries: (rnrs bytevectors), (rnrs)

(bytevector->u8-list (make-bytevector 0))  ()
(bytevector->u8-list #vu8(1 127 128 255))  (1 127 128 255)

(let ([v #vu8(1 2 3 255)])
  (apply * (bytevector->u8-list v)))  1530

procedure: (u8-list->bytevector list)
returns: a new bytevector of the elements of list
libraries: (rnrs bytevectors), (rnrs)

list must consist entirely of exact 8-bit unsigned integers, i.e., values in the range 0 to 255 inclusive.
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(u8-list->bytevector '())  #vu8()
(u8-list->bytevector '(1 127 128 255))  #vu8(1 127 128 255)

(let ([v #vu8(1 2 3 4 5)])
  (let ([ls (bytevector->u8-list v)])
    (u8-list->bytevector (map * ls ls))))  #vu8(1 4 9 16 25)

procedure: (bytevector-u16-native-ref bytevector n)
returns: the 16-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s16-native-ref bytevector n)
returns: the 16-bit signed integer at index n (zero-based) of bytevector
procedure: (bytevector-u32-native-ref bytevector n)
returns: the 32-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s32-native-ref bytevector n)
returns: the 32-bit signed integer at index n (zero-based) of bytevector
procedure: (bytevector-u64-native-ref bytevector n)
returns: the 64-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s64-native-ref bytevector n)
returns: the 64-bit signed integer at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer. It indexes the starting byte of the value and must be a multiple of the
number of bytes occupied by the value: 2 for 16-bit values, 4 for 32-bit values, and 8 for 64-bit values. The
sum of n and the number of bytes occupied by the value must not exceed the length of bytevector. The
native endianness is assumed.

The return value is an exact integer in the appropriate range for the number of bytes occupied by the value.
Signed values are the equivalent of the stored value treated as a two's complement value.

(define v #vu8(#x12 #x34 #xfe #x56 #xdc #xba #x78 #x98))

If native endianness is big:

(bytevector-u16-native-ref v 2)  #xfe56
(bytevector-s16-native-ref v 2)  #x-1aa
(bytevector-s16-native-ref v 6)  #x7898

(bytevector-u32-native-ref v 0)  #x1234fe56
(bytevector-s32-native-ref v 0)  #x1234fe56
(bytevector-s32-native-ref v 4)  #x-23458768

(bytevector-u64-native-ref v 0)  #x1234fe56dcba7898
(bytevector-s64-native-ref v 0)  #x1234fe56dcba7898

If native endianness is little:

(bytevector-u16-native-ref v 2)  #x56fe
(bytevector-s16-native-ref v 2)  #x56fe
(bytevector-s16-native-ref v 6)  #x-6788

(bytevector-u32-native-ref v 0)  #x56fe3412
(bytevector-s32-native-ref v 0)  #x56fe3412
(bytevector-s32-native-ref v 4)  #x-67874524
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(bytevector-u64-native-ref v 0)  #x9878badc56fe3412
(bytevector-s64-native-ref v 0)  #x-67874523a901cbee

procedure: (bytevector-u16-native-set! bytevector n u16)
procedure: (bytevector-s16-native-set! bytevector n s16)
procedure: (bytevector-u32-native-set! bytevector n u32)
procedure: (bytevector-s32-native-set! bytevector n s32)
procedure: (bytevector-u64-native-set! bytevector n u64)
procedure: (bytevector-s64-native-set! bytevector n s64)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer. It indexes the starting byte of the value and must be a multiple of the
number of bytes occupied by the value: 2 for 16-bit values, 4 for 32-bit values, and 8 for 64-bit values. The
sum of n and the number of bytes occupied by the value must not exceed the length bytevector. u16 must
be a 16-bit unsigned value, i.e., a value in the range 0 to 216 - 1 inclusive; s16 must be a 16-bit signed value,
i.e., a value in the range -215 to 215 - 1 inclusive; u32 must be a 32-bit unsigned value, i.e., a value in the
range 0 to 232 - 1 inclusive; s32 must be a 32-bit signed value, i.e., a value in the range -231 to 231 - 1
inclusive; u64 must be a 64-bit unsigned value, i.e., a value in the range 0 to 264 - 1 inclusive; and s64 must
be a 64-bit signed value, i.e., a value in the range -263 to 263 - 1 inclusive. The native endianness is assumed.

These procedures store the given value in the 2, 4, or 8 bytes starting at index n (zero-based) of
bytevector. Negative values are stored as their two's complement equivalent.

(define v (make-bytevector 8 0))
(bytevector-u16-native-set! v 0 #xfe56)
(bytevector-s16-native-set! v 2 #x-1aa)
(bytevector-s16-native-set! v 4 #x7898)

If native endianness is big:

v  #vu8(#xfe #x56 #xfe #x56 #x78 #x98 #x00 #x00)

If native endianness is little:

v  #vu8(#x56 #xfe #x56 #xfe #x98 #x78 #x00 #x00)

(define v (make-bytevector 16 0))
(bytevector-u32-native-set! v 0 #x1234fe56)
(bytevector-s32-native-set! v 4 #x1234fe56)
(bytevector-s32-native-set! v 8 #x-23458768)

If native endianness is big:

v  #vu8(#x12 #x34 #xfe #x56 #x12 #x34 #xfe #x56
      #xdc #xba #x78 #x98 #x00 #x00 #x00 #x00)

If native endianness is little:

v  #vu8(#x56 #xfe #x34 #x12 #x56 #xfe #x34 #x12
      #x98 #x78 #xba #xdc #x00 #x00 #x00 #x00)

(define v (make-bytevector 24 0))
(bytevector-u64-native-set! v 0 #x1234fe56dcba7898)
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(bytevector-s64-native-set! v 8 #x1234fe56dcba7898)
(bytevector-s64-native-set! v 16 #x-67874523a901cbee)

If native endianness is big:

v  #vu8(#x12 #x34 #xfe #x56 #xdc #xba #x78 #x98
      #x12 #x34 #xfe #x56 #xdc #xba #x78 #x98
      #x98 #x78 #xba #xdc #x56 #xfe #x34 #x12)

If native endianness is little:

v  #vu8(#x98 #x78 #xba #xdc #x56 #xfe #x34 #x12
      #x98 #x78 #xba #xdc #x56 #xfe #x34 #x12
      #x12 #x34 #xfe #x56 #xdc #xba #x78 #x98)

procedure: (bytevector-u16-ref bytevector n eness)
returns: the 16-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s16-ref bytevector n eness)
returns: the 16-bit signed integer at index n (zero-based) of bytevector
procedure: (bytevector-u32-ref bytevector n eness)
returns: the 32-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s32-ref bytevector n eness)
returns: the 32-bit signed integer at index n (zero-based) of bytevector
procedure: (bytevector-u64-ref bytevector n eness)
returns: the 64-bit unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-s64-ref bytevector n eness)
returns: the 64-bit signed integer at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer and indexes the starting byte of the value. The sum of n and the
number of bytes occupied by the value (2 for 16-bit values, 4 for 32-bit values, and 8 for 32-bit values) must
not exceed the length of bytevector. n need not be a multiple of the number of bytes occupied by the
value. eness must be a valid endianness symbol naming the endianness.

The return value is an exact integer in the appropriate range for the number of bytes occupied by the value.
Signed values are the equivalent of the stored value treated as a two's complement value.

(define v #vu8(#x12 #x34 #xfe #x56 #xdc #xba #x78 #x98 #x9a #x76))
(bytevector-u16-ref v 0 (endianness big))  #x1234
(bytevector-s16-ref v 1 (endianness big))  #x34fe
(bytevector-s16-ref v 5 (endianness big))  #x-4588

(bytevector-u32-ref v 2 'big)  #xfe56dcba
(bytevector-s32-ref v 3 'big)  #x56dcba78
(bytevector-s32-ref v 4 'big)  #x-23458768

(bytevector-u64-ref v 0 'big)  #x1234fe56dcba7898
(bytevector-s64-ref v 1 'big)  #x34fe56dcba78989a

(bytevector-u16-ref v 0 (endianness little))  #x3412
(bytevector-s16-ref v 1 (endianness little))  #x-1cc
(bytevector-s16-ref v 5 (endianness little))  #x78ba

(bytevector-u32-ref v 2 'little)  #xbadc56fe
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(bytevector-s32-ref v 3 'little)  #x78badc56
(bytevector-s32-ref v 4 'little)  #x-67874524

(bytevector-u64-ref v 0 'little)  #x9878badc56fe3412
(bytevector-s64-ref v 1 'little)  #x-6567874523a901cc

procedure: (bytevector-u16-set! bytevector n u16 eness)
procedure: (bytevector-s16-set! bytevector n s16 eness)
procedure: (bytevector-u32-set! bytevector n u32 eness)
procedure: (bytevector-s32-set! bytevector n s32 eness)
procedure: (bytevector-u64-set! bytevector n u64 eness)
procedure: (bytevector-s64-set! bytevector n s64 eness)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer and indexes the starting byte of the value. The sum of n and the
number of bytes occupied by the value must not exceed the length of bytevector. n need not be a multiple
of the number of bytes occupied by the value. u16 must be a 16-bit unsigned value, i.e., a value in the range 0
to 216 - 1 inclusive; s16 must be a 16-bit signed value, i.e., a value in the range -215 to 215 - 1 inclusive; u32
must be a 32-bit unsigned value, i.e., a value in the range 0 to 232 - 1 inclusive; s32 must be a 32-bit signed
value, i.e., a value in the range -231 to 231 - 1 inclusive; u64 must be a 64-bit unsigned value, i.e., a value in
the range 0 to 264 - 1 inclusive; and s64 must be a 64-bit signed value, i.e., a value in the range -263 to 263 - 1
inclusive. eness must be a valid endianness symbol naming the endianness.

These procedures store the given value in the 2, 4, or 8 bytes starting at index n (zero-based) of
bytevector. Negative values are stored as their two's complement equivalent.

(define v (make-bytevector 8 0))
(bytevector-u16-set! v 0 #xfe56 (endianness big))
(bytevector-s16-set! v 3 #x-1aa (endianness little))
(bytevector-s16-set! v 5 #x7898 (endianness big))
v  #vu8(#xfe #x56 #x0 #x56 #xfe #x78 #x98 #x0)

(define v (make-bytevector 16 0))
(bytevector-u32-set! v 0 #x1234fe56 'little)
(bytevector-s32-set! v 6 #x1234fe56 'big)
(bytevector-s32-set! v 11 #x-23458768 'little)
v  #vu8(#x56 #xfe #x34 #x12 #x0 #x0

      #x12 #x34 #xfe #x56 #x0
      #x98 #x78 #xba #xdc #x0)

(define v (make-bytevector 28 0))
(bytevector-u64-set! v 0 #x1234fe56dcba7898 'little)
(bytevector-s64-set! v 10 #x1234fe56dcba7898 'big)
(bytevector-s64-set! v 19 #x-67874523a901cbee 'big)
v  #vu8(#x98 #x78 #xba #xdc #x56 #xfe #x34 #x12 #x0 #x0

      #x12 #x34 #xfe #x56 #xdc #xba #x78 #x98 #x0
      #x98 #x78 #xba #xdc #x56 #xfe #x34 #x12 #x0)

procedure: (bytevector-uint-ref bytevector n eness size)
returns: the size-byte unsigned integer at index n (zero-based) of bytevector
procedure: (bytevector-sint-ref bytevector n eness size)
returns: the size-byte signed integer at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)
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n must be an exact nonnegative integer and indexes the starting byte of the value. size must be an exact
positive integer and specifies the number of bytes occupied by the value. The sum of n and size must not
exceed the length of bytevector. n need not be a multiple of the number of bytes occupied by the value.
eness must be a valid endianness symbol naming the endianness.

The return value is an exact integer in the appropriate range for the number of bytes occupied by the value.
Signed values are the equivalent of the stored value treated as a two's complement value.

(define v #vu8(#x12 #x34 #xfe #x56 #xdc #xba #x78 #x98 #x9a #x76))

(bytevector-uint-ref v 0 'big 1)  #x12
(bytevector-uint-ref v 0 'little 1)  #x12
(bytevector-uint-ref v 1 'big 3)  #x34fe56
(bytevector-uint-ref v 2 'little 7)  #x9a9878badc56fe

(bytevector-sint-ref v 2 'big 1)  #x-02
(bytevector-sint-ref v 1 'little 6)  #x78badc56fe34
(bytevector-sint-ref v 2 'little 7)  #x-6567874523a902

(bytevector-sint-ref (make-bytevector 1000 -1) 0 'big 1000)  -1

procedure: (bytevector-uint-set! bytevector n uint eness size)
procedure: (bytevector-sint-set! bytevector n sint eness size)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer and indexes the starting byte of the value. size must be an exact
positive integer and specifies the number of bytes occupied by the value. The sum of n and size must not
exceed the length of bytevector. n need not be a multiple of the number of bytes occupied by the value.
uint must be an exact integer in the range 0 to 2size·8 - 1 inclusive. sint must be an exact integer in the
range -2size·8-1 to 2size·8-1 - 1 inclusive. eness must be a valid endianness symbol naming the endianness.

These procedures store the given value in the size bytes starting at index n (zero-based) of bytevector.
Negative values are stored as their two's complement equivalent.

(define v (make-bytevector 5 0))
(bytevector-uint-set! v 1 #x123456 (endianness big) 3)
v  #vu8(0 #x12 #x34 #x56 0)

(define v (make-bytevector 7 -1))
(bytevector-sint-set! v 1 #x-8000000000 (endianness little) 5)
v  #vu8(#xff 0 0 0 0 #x80 #xff)

procedure: (bytevector->uint-list bytevector eness size)
returns: a new list of the size-bit unsigned elements of bytevector
procedure: (bytevector->sint-list bytevector eness size)
returns: a new list of the size-bit signed elements of bytevector
libraries: (rnrs bytevectors), (rnrs)

eness must be a valid endianness symbol naming the endianness. size must be an exact positive integer
and specifies the number of bytes occupied by the value. It must be a value that evenly divides the length of
bytevector.

(bytevector->uint-list (make-bytevector 0) 'little 3)  ()
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(let ([v #vu8(1 2 3 4 5 6)])
  (bytevector->uint-list v 'big 3))  (#x010203 #x040506)

(let ([v (make-bytevector 80 -1)])
  (bytevector->sint-list v 'big 20))  (-1 -1 -1 -1)

procedure: (uint-list->bytevector list eness size)
procedure: (sint-list->bytevector list eness size)
returns: a new bytevector of the elements of list
libraries: (rnrs bytevectors), (rnrs)

eness must be a valid endianness symbol naming the endianness. size must be an exact positive integer
and specifies the number of bytes occupied by the value. For uint-list->bytevector, list must
consist entirely of size-byte exact unsigned integers, i.e., values in the range 0 to 2size·8 - 1 inclusive. For
sint-list->bytevector, list must consist entirely of size-byte exact signed integers, i.e., values in
the range -2size·8-1 to 2size·8-1 - 1 inclusive. Each value occupies size bytes in the resulting bytevector, whose
length is thus size times the length of list.

(uint-list->bytevector '() 'big 25)  #vu8()
(sint-list->bytevector '(0 -1) 'big 3)  #vu8(0 0 0 #xff #xff #xff)

(define (f size)
  (let ([ls (list (- (expt 2 (- (* 8 size) 1)))
                  (- (expt 2 (- (* 8 size) 1)) 1))])
    (sint-list->bytevector ls 'little size)))
(f 6)  #vu8(#x00 #x00 #x00 #x00 #x00 #x80

      #xff #xff #xff #xff #xff #x7f)

procedure: (bytevector-ieee-single-native-ref bytevector n)
returns: the single floating-point value at index n (zero-based) of bytevector
procedure: (bytevector-ieee-double-native-ref bytevector n)
returns: the double floating-point value at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer. It indexes the starting byte of the value and must be a multiple of the
number of bytes occupied by the value: 4 for single floats, 8 for double. The sum of n and the number of bytes
occupied by the value must not exceed the length of bytevector. The native endianness is assumed.

The return value is an inexact real number. Examples appear after the mutation operators below.

procedure: (bytevector-ieee-single-native-set! bytevector n x)
procedure: (bytevector-ieee-double-native-set! bytevector n x)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer. It indexes the starting byte of the value and must be a multiple of the
number of bytes occupied by the value: 4 for single floats, 8 for double. The sum of n and the number of bytes
occupied by the value must not exceed the length of bytevector. The native endianness is assumed.

These procedures store the given value as an IEEE-754 single or double floating-point value at index n
(zero-based) of bytevector.

(define v (make-bytevector 8 0))
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(bytevector-ieee-single-native-set! v 0 .125)
(bytevector-ieee-single-native-set! v 4 -3/2)
(list
  (bytevector-ieee-single-native-ref v 0)
  (bytevector-ieee-single-native-ref v 4))  (0.125 -1.5)

(bytevector-ieee-double-native-set! v 0 1e23)
(bytevector-ieee-double-native-ref v 0)  1e23

procedure: (bytevector-ieee-single-ref bytevector n eness)
returns: the single floating-point value at index n (zero-based) of bytevector
procedure: (bytevector-ieee-double-ref bytevector n eness)
returns: the double floating-point value at index n (zero-based) of bytevector
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer and indexes the starting byte of the value. The sum of n and the
number of bytes occupied by the value (4 for a single float, 8 for a double) must not exceed the length of
bytevector. n need not be a multiple of the number of bytes occupied by the value. eness must be a
valid endianness symbol naming the endianness.

The return value is an inexact real number. Examples appear after the mutation operators below.

procedure: (bytevector-ieee-single-set! bytevector n x eness)
procedure: (bytevector-ieee-double-set! bytevector n x eness)
returns: unspecified
libraries: (rnrs bytevectors), (rnrs)

n must be an exact nonnegative integer and indexes the starting byte of the value. The sum of n and the
number of bytes occupied by the value (4 for a single float, 8 for a double) must not exceed the length of
bytevector. n need not be a multiple of the number of bytes occupied by the value. eness must be a
valid endianness symbol naming the endianness.

These procedures store the given value as an IEEE-754 single or double floating-point value at index n
(zero-based) of bytevector.

(define v (make-bytevector 10 #xc7))
(bytevector-ieee-single-set! v 1 .125 'little)
(bytevector-ieee-single-set! v 6 -3/2 'big)
(list
  (bytevector-ieee-single-ref v 1 'little)
  (bytevector-ieee-single-ref v 6 'big))  (0.125 -1.5)
v  #vu8(#xc7 #x0 #x0 #x0 #x3e #xc7 #xbf #xc0 #x0 #x0)

(bytevector-ieee-double-set! v 1 1e23 'big)
(bytevector-ieee-double-ref v 1 'big)  1e23

Section 6.11. Symbols

Symbols are used for a variety of purposes as symbolic names in Scheme programs. Strings could be used for
most of the same purposes, but an important characteristic of symbols makes comparisons between symbols
much more efficient. This characteristic is that two symbols with the same name are identical in the sense of
eq?. The reason is that the Scheme reader (invoked by get-datum and read) and the procedure
string->symbol catalog symbols in an internal symbol table and always return the same symbol
whenever the same name is encountered. Thus, no character-by-character comparison is needed, as would be
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needed to compare two strings.

The property that two symbols may be compared quickly for equivalence makes them ideally suited for use as
identifiers in the representation of programs, allowing fast comparison of identifiers. This property also makes
symbols useful for a variety of other purposes. For example, symbols might be used as messages passed
between procedures, labels for list-structured records, or names for objects stored in an association list (see
assq in Section 6.3).

Symbols are written without double quotes or other bracketing characters. Parentheses, double quotes, spaces,
and most other characters with a special meaning to the Scheme reader are not allowed within the printed
representation of a symbol. These and any other Unicode character may appear anywhere within the printed
representation of a symbol with the syntax #\xn;, where n consists of one or more hexadecimal digits and
represents a valid Unicode scalar value.

The grammar for symbols on page 458 gives a precise definition of the syntax of symbols.

procedure: (symbol=? symbol1 symbol2)
returns: #t if the two symbols are the same, #f otherwise
libraries: (rnrs base), (rnrs)

Symbols can also be compared with eq?, which is typically more efficient than symbol=?.

(symbol=? 'a 'a)  #t
(symbol=? 'a (string->symbol "a"))  #t
(symbol=? 'a 'b)  #f

procedure: (string->symbol string)
returns: a symbol whose name is string
libraries: (rnrs base), (rnrs)

string->symbol records all symbols it creates in an internal table that it shares with the system reader. If
a symbol whose name is equivalent to string (according to the predicate string=?) already exists in the
table, this symbol is returned. Otherwise, a new symbol is created with string as its name; this symbol is
entered into the table and returned.

The effect of modifying a string after it is used as an argument to string->symbol is unspecified.

(string->symbol "x")  x

(eq? (string->symbol "x") 'x)  #t
(eq? (string->symbol "X") 'x)  #f

(eq? (string->symbol "x")
     (string->symbol "x"))  #t

(string->symbol "()")  \x28;\x29;

procedure: (symbol->string symbol)
returns: a string, the name of symbol
libraries: (rnrs base), (rnrs)

The string returned by symbol->string should be treated as immutable. Unpredictable behavior can
result if a string passed to string->symbol is altered with string-set! or by any other means.
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(symbol->string 'xyz)  "xyz"
(symbol->string 'Hi)  "Hi"
(symbol->string (string->symbol "()"))  "()"

Section 6.12. Booleans

While every Scheme object has a truth value when used in a conditional context, with every object but #f
counting as true, Scheme provides the dedicated true value #t for use when a value of an expression should
convey nothing more than that it is true.

procedure: (boolean=? boolean1 boolean2)
returns: #t if the two booleans are the same, #f otherwise
libraries: (rnrs base), (rnrs)

The boolean values #t and #f may also be compared with eq?, which is typically more efficient than
boolean=?.

(boolean=? #t #t)  #t
(boolean=? #t #f)  #f
(boolean=? #t (< 3 4))  #t

Section 6.13. Hashtables

Hashtables represent sets of associations between arbitrary Scheme values. They serve essentially the same
purpose as association lists (see page  165) but are typically much faster when large numbers of associations
are involved.

procedure: (make-eq-hashtable)
procedure: (make-eq-hashtable size)
returns: a new mutable eq hashtable
libraries: (rnrs hashtables), (rnrs)

If size is provided, it must be a nonnegative exact integer indicating approximately how many elements the
hashtable should initially hold. Hashtables grow as needed, but when the hashtable grows it generally must
rehash all of the existing elements. Providing a nonzero size can help limit the amount of rehashing that
must be done as the table is initially populated.

An eq hashtable compares keys using the eq? (pointer equality) procedure and typically employs a hash
function based on object addresses. Its hash and equivalence functions are suitable for any Scheme object.

(define ht1 (make-eq-hashtable))
(define ht2 (make-eq-hashtable 32))

procedure: (make-eqv-hashtable)
procedure: (make-eqv-hashtable size)
returns: a new mutable eqv hashtable
libraries: (rnrs hashtables), (rnrs)

If size is provided, it must be a nonnegative exact integer indicating approximately how many elements the
hashtable should initially hold. Hashtables grow as needed, but when the hashtable grows it generally must
rehash all of the existing elements. Providing a nonzero size can help limit the amount of rehashing that
must be done as the table is initially populated.
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An eqv hashtable compares keys using the eqv? procedure and typically employs a hash function based on
object addresses for objects that are identifiable with eq?. Its hash and equivalence functions are suitable for
any Scheme object.

procedure: (make-hashtable hash equiv?)
procedure: (make-hashtable hash equiv? size)
returns: a new mutable hashtable
libraries: (rnrs hashtables), (rnrs)

hash and equiv? must be procedures. If size is provided, it must be a nonnegative exact integer
indicating approximately how many elements the hashtable should initially hold. Hashtables grow as needed,
but when the hashtable grows it generally must rehash all of the existing elements. Providing a nonzero size
can help limit the amount of rehashing that must be done as the table is initially populated.

The new hashtable computes hash values using hash and compares keys using equiv?, neither of which
should modify the hashtable. equiv? should compare two keys and return false only if the two keys should
be distinguished. hash should accept a key as an argument and return a nonnegative exact integer value that
is the same each time it is called with arguments that equiv? does not distinguish. The hash and equiv?
procedures need not accept arbitrary inputs as long as the hashtable is used only for keys that they do accept,
and both procedures may assume that the keys are immutable as long as the keys are not modified while they
have associations stored in the table. The hashtable operation may call hash and equiv? once, not at all, or
multiple times for each hashtable operation.

(define ht (make-hashtable string-hash string=?))

procedure: (hashtable-mutable? hashtable)
returns: #t if hashtable is mutable, #f otherwise
libraries: (rnrs hashtables), (rnrs)

Hashtables returned by one of the hashtable creation procedures above are mutable, but those created by
hashtable-copy may be immutable. Immutable hashtables cannot be altered by any of the procedures
hashtable-set!, hashtable-update!, hashtable-delete!, or hashtable-clear!.

(hashtable-mutable? (make-eq-hashtable))  #t
(hashtable-mutable? (hashtable-copy (make-eq-hashtable)))  #f

procedure: (hashtable-hash-function hashtable)
returns: the hash function associated with hashtable
procedure: (hashtable-equivalence-function hashtable)
returns: the equivalence function associated with hashtable
libraries: (rnrs hashtables), (rnrs)

hashtable-hash-function returns #f for eq and eqv hashtables.

(define ht (make-eq-hashtable))
(hashtable-hash-function ht)  #f
(eq? (hashtable-equivalence-function ht) eq?)  #t

(define ht (make-hashtable string-hash string=?))
(eq? (hashtable-hash-function ht) string-hash)  #t
(eq? (hashtable-equivalence-function ht) string=?)  #t

procedure: (equal-hash obj)
procedure: (string-hash string)
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procedure: (string-ci-hash string)
procedure: (symbol-hash symbol)
returns: an exact nonnegative integer hash value
libraries: (rnrs hashtables), (rnrs)

These procedures are hash functions suitable for use with the appropriate Scheme predicate: equal? for
equal-hash, string=? for string-hash, string-ci=? for string-ci-hash, and symbol=?
(or eq?) for symbol-hash. The hash values returned by equal-hash, string-hash, and
string-ci-hash are typically dependent on the current structure and contents of the input values and are
thus unsuitable if keys are modified while they have associations in a hashtable.

procedure: (hashtable-set! hashtable key obj)
returns: unspecified
libraries: (rnrs hashtables), (rnrs)

hashtable must be a mutable hashtable. key should be an appropriate key for the hashtable's hash and
equivalence functions. obj may be any Scheme object.

hashtable-set! associates key with obj in hashtable, replacing the existing association, if any.

(define ht (make-eq-hashtable))
(hashtable-set! ht 'a 73)

procedure: (hashtable-ref hashtable key default)
returns: see below
libraries: (rnrs hashtables), (rnrs)

key should be an appropriate key for the hashtable's hash and equivalence functions. default may be any
Scheme object.

hashtable-ref returns the value associated with key in hashtable. If no value is associated with key
in hashtable, hashtable-ref returns default.

(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))

(define eqht (make-eq-hashtable))
(hashtable-set! eqht p1 73)
(hashtable-ref eqht p1 55)  73
(hashtable-ref eqht p2 55)  55

(define equalht (make-hashtable equal-hash equal?))
(hashtable-set! equalht p1 73)
(hashtable-ref equalht p1 55)  73
(hashtable-ref equalht p2 55)  73

procedure: (hashtable-contains? hashtable key)
returns: #t if an association for key exists in hashtable, #f otherwise
libraries: (rnrs hashtables), (rnrs)

key should be an appropriate key for the hashtable's hash and equivalence functions.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
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(define p2 (cons 'a 'b))
(hashtable-set! ht p1 73)
(hashtable-contains? ht p1)  #t
(hashtable-contains? ht p2)  #f

procedure: (hashtable-update! hashtable key procedure default)
returns: unspecified
libraries: (rnrs hashtables), (rnrs)

hashtable must be a mutable hashtable. key should be an appropriate key for the hashtable's hash and
equivalence functions. default may be any Scheme object. procedure should accept one argument,
should return one value, and should not modify hashtable.

hashtable-update! applies procedure to the value associated with key in hashtable, or to
default if no value is associated with key in hashtable. If procedure returns,
hashtable-update! associates key with the value returned by procedure, replacing the old
association, if any.

A version of hashtable-update! that does not verify that it receives arguments of the proper type might
be defined as follows.

(define hashtable-update!
  (lambda (ht key proc value)
    (hashtable-set! ht key
      (proc (hashtable-ref ht key value)))))

An implementation may, however, be able to implement hashtable-update! more efficiently by
avoiding multiple hash computations and hashtable lookups.

(define ht (make-eq-hashtable))
(hashtable-update! ht 'a
  (lambda (x) (* x 2))
  55)
(hashtable-ref ht 'a 0)  110
(hashtable-update! ht 'a
  (lambda (x) (* x 2))
  0)
(hashtable-ref ht 'a 0)  220

procedure: (hashtable-delete! hashtable key)
returns: unspecified
libraries: (rnrs hashtables), (rnrs)

hashtable must be a mutable hashtable. key should be an appropriate key for the hashtable's hash and
equivalence functions.

hashtable-delete! drops any association for key from hashtable.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))
(hashtable-set! ht p1 73)
(hashtable-contains? ht p1)  #t
(hashtable-delete! ht p1)
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(hashtable-contains? ht p1)  #f
(hashtable-contains? ht p2)  #f
(hashtable-delete! ht p2)

procedure: (hashtable-size hashtable)
returns: number of entries in hashtable
libraries: (rnrs hashtables), (rnrs)

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))
(hashtable-size ht)  0
(hashtable-set! ht p1 73)
(hashtable-size ht)  1
(hashtable-delete! ht p1)
(hashtable-size ht)  0

procedure: (hashtable-copy hashtable)
procedure: (hashtable-copy hashtable mutable?)
returns: a new hashtable containing the same entries as hashtable
libraries: (rnrs hashtables), (rnrs)

If mutable? is present and not false, the copy is mutable; otherwise, the copy is immutable.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(hashtable-set! ht p1 "c")
(define ht-copy (hashtable-copy ht))
(hashtable-mutable? ht-copy)  #f
(hashtable-delete! ht p1)
(hashtable-ref ht p1 #f)  #f
(hashtable-delete! ht-copy p1) exception: not mutable
(hashtable-ref ht-copy p1 #f)  "c"

procedure: (hashtable-clear! hashtable)
procedure: (hashtable-clear! hashtable size)
returns: unspecified
libraries: (rnrs hashtables), (rnrs)

hashtable must be a mutable hashtable. If size is provided, it must be a nonnegative exact integer.

hashtable-clear! removes all entries from hashtable. If size is provided, the hashtable is reset to the
given size, as if newly created by one of the hashtable creation operations with size argument size.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))
(hashtable-set! ht p1 "first")
(hashtable-set! ht p2 "second")
(hashtable-size ht)  2
(hashtable-clear! ht)
(hashtable-size ht)  0
(hashtable-ref ht p1 #f)  #f
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procedure: (hashtable-keys hashtable)
returns: a vector containing the keys in hashtable
libraries: (rnrs hashtables), (rnrs)

The keys may appear in any order in the returned vector.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))
(hashtable-set! ht p1 "one")
(hashtable-set! ht p2 "two")
(hashtable-set! ht 'q "three")
(hashtable-keys ht)  #((a . b) q (a . b))

procedure: (hashtable-entries hashtable)
returns: two vectors: one of keys and a second of values
libraries: (rnrs hashtables), (rnrs)

hashtable-entries returns two values. The first is a vector containing the keys in hashtable, and the
second is a vector containing the corresponding values. The keys and values may appear in any order, but the
order is the same for the keys and for the corresponding values.

(define ht (make-eq-hashtable))
(define p1 (cons 'a 'b))
(define p2 (cons 'a 'b))
(hashtable-set! ht p1 "one")
(hashtable-set! ht p2 "two")
(hashtable-set! ht 'q "three")
(hashtable-entries ht)  #((a . b) q (a . b))

 #("two" "three" "one")

Section 6.14. Enumerations

Enumerations are ordered sets of symbols, typically used to name and manipulate options, as with the buffer
modes and file options that may be specified when files are created.

syntax: (define-enumeration name (symbol ...) constructor)
libraries: (rnrs enums), (rnrs)

A define-enumeration form is a definition and can appear anywhere any other definition can appear.

The define-enumeration syntax creates a new enumeration set with the specified symbols in the
specified order forming the enumeration's universe. It defines a new syntactic form named by name that may
be used to verify that a symbol is in the universe. If x is in the universe, (name x) evaluates to x. It is a
syntax violation if x is not in the universe.

define-enumeration also defines a new syntactic form named by constructor that may be used to
create subsets of the enumeration type. If x ... are each in the universe, (constructor x ...)
evaluates to an enumeration set containing x .... Otherwise, it is a syntax violation. The same symbol may
appear more than once in x ..., but the resulting set contains only one occurrence of the symbol.

(define-enumeration weather-element
  (hot warm cold sunny rainy snowy windy)
  weather)
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(weather-element hot)  hot
(weather-element fun) syntax violation
(weather hot sunny windy)  #<enum-set>
(enum-set->list (weather rainy cold rainy))  (cold rainy)

procedure: (make-enumeration symbol-list)
returns: an enumeration set
libraries: (rnrs enums), (rnrs)

This procedure creates a new enumeration type whose universe comprises the elements of symbol-list,
which must be a list of symbols, in the order of their first appearance in the list. It returns the universe of the
new enumeration type as an enumeration set.

(define positions (make-enumeration '(top bottom above top beside)))
(enum-set->list positions)  (top bottom above beside)

procedure: (enum-set-constructor enum-set)
returns: an enumeration-set construction procedure
libraries: (rnrs enums), (rnrs)

This procedure returns a procedure p that may be used to create subsets of the universe of enum-set. p must
be passed a list of symbols, and each element of the list must be an element of the universe of enum-set.
The enumeration set returned by p contains all and only the symbols in the list it is passed. The value returned
by p may contain elements not in enum-set if the universe of enum-set contains those elements.

(define e1 (make-enumeration '(one two three four)))
(define p1 (enum-set-constructor e1))
(define e2 (p1 '(one three)))
(enum-set->list e2)  (one three)
(define p2 (enum-set-constructor e2))
(define e3 (p2 '(one two four)))
(enum-set->list e3)  (one two four)

procedure: (enum-set-universe enum-set)
returns: the universe of enum-set, as an enumeration set
libraries: (rnrs enums), (rnrs)

(define e1 (make-enumeration '(a b c a b c d)))
(enum-set->list (enum-set-universe e1))  (a b c d)
(define e2 ((enum-set-constructor e1) '(c)))
(enum-set->list (enum-set-universe e2))  (a b c d)

procedure: (enum-set->list enum-set)
returns: a list of the elements of enum-set
libraries: (rnrs enums), (rnrs)

The symbols in the resulting list appear in the order given to them when the enumeration type of enum-set
was created.

(define e1 (make-enumeration '(a b c a b c d)))
(enum-set->list e1)  (a b c d)
(define e2 ((enum-set-constructor e1) '(d c a b)))
(enum-set->list e2)  (a b c d)
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procedure: (enum-set-subset? enum-set1 enum-set2)
returns: #t if enum-set1 is a subset of enum-set2, #f otherwise
libraries: (rnrs enums), (rnrs)

An enumeration set enum-set1 is a subset of an enumeration set enum-set2 if and only if the universe of
enum-set1 is a subset of the universe of enum-set2 and each element of enum-set1 is an element of
enum-set2.

(define e1 (make-enumeration '(a b c)))
(define e2 (make-enumeration '(a b c d e)))
(enum-set-subset? e1 e2)  #t
(enum-set-subset? e2 e1)  #f
(define e3 ((enum-set-constructor e2) '(a c)))
(enum-set-subset? e3 e1)  #f
(enum-set-subset? e3 e2)  #t

procedure: (enum-set=? enum-set1 enum-set2)
returns: #t if enum-set1 and enum-set2 are equivalent, #f otherwise
libraries: (rnrs enums), (rnrs)

Two enumeration sets enum-set1 and enum-set2 are equivalent if each is a subset of the other.

(define e1 (make-enumeration '(a b c d)))
(define e2 (make-enumeration '(b d c a)))
(enum-set=? e1 e2)  #t
(define e3 ((enum-set-constructor e1) '(a c)))
(define e4 ((enum-set-constructor e2) '(a c)))
(enum-set=? e3 e4)  #t
(enum-set=? e3 e2)  #f

enum-set=? could be defined in terms of enum-set-subset? as follows.

(define enum-set=?
  (lambda (e1 e2)
    (and (enum-set-subset? e1 e2) (enum-set-subset? e2 e1))))

procedure: (enum-set-member? symbol enum-set)
returns: #t if symbol is an element of enum-set, #f otherwise
libraries: (rnrs enums), (rnrs)

(define e1 (make-enumeration '(a b c d e)))
(define e2 ((enum-set-constructor e1) '(d b)))
(enum-set-member? 'c e1)  #t
(enum-set-member? 'c e2)  #f

procedure: (enum-set-union enum-set1 enum-set2)
returns: the union of enum-set1 and enum-set2
procedure: (enum-set-intersection enum-set1 enum-set2)
returns: the intersection of enum-set1 and enum-set2
procedure: (enum-set-difference enum-set1 enum-set2)
returns: the difference of enum-set1 and enum-set2
libraries: (rnrs enums), (rnrs)

enum-set1 and enum-set2 must have the same enumeration type. Each procedure returns a new
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enumeration set representing the union, intersection, or difference of the two sets.

(define e1 (make-enumeration '(a b c d)))
(define e2 ((enum-set-constructor e1) '(a c)))
(define e3 ((enum-set-constructor e1) '(b c)))
(enum-set->list (enum-set-union e2 e3))  (a b c)
(enum-set->list (enum-set-intersection e2 e3))  (c)
(enum-set->list (enum-set-difference e2 e3))  (a)
(enum-set->list (enum-set-difference e3 e2))  (b)
(define e4 (make-enumeration '(b d c a)))
(enum-set-union e1 e4) exception: different enumeration types

procedure: (enum-set-complement enum-set)
returns: the complement of enum-set relative to its universe
libraries: (rnrs enums), (rnrs)

(define e1 (make-enumeration '(a b c d)))
(enum-set->list (enum-set-complement e1))  ()
(define e2 ((enum-set-constructor e1) '(a c)))
(enum-set->list (enum-set-complement e2))  (b d)

procedure: (enum-set-projection enum-set1 enum-set2)
returns: the projection of enum-set1 into the universe of enum-set2
libraries: (rnrs enums), (rnrs)

Any elements of enum-set1 not in the universe of enum-set2 are dropped. The result is of the same
enumeration type as enum-set2.

(define e1 (make-enumeration '(a b c d)))
(define e2 (make-enumeration '(a b c d e f g)))
(define e3 ((enum-set-constructor e1) '(a d)))
(define e4 ((enum-set-constructor e2) '(a c e g)))
(enum-set->list (enum-set-projection e4 e3))  (a c)
(enum-set->list
  (enum-set-union e3
    (enum-set-projection e4 e3)))  (a c d)

procedure: (enum-set-indexer enum-set)
returns: a procedure that returns the index of a symbol in the universe of enum-set
libraries: (rnrs enums), (rnrs)

enum-set-indexer returns a procedure p that, when applied to a symbol in the universe of enum-set,
returns the index of the symbol (zero-based) in the ordered set of symbols that form the universe. If applied to
a symbol not in the universe, p returns #f.

(define e1 (make-enumeration '(a b c d)))
(define e2 ((enum-set-constructor e1) '(a d)))
(define p (enum-set-indexer e2))
(list (p 'a) (p 'c) (p 'e))  (0 2 #f)
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Chapter 7. Input and Output
All input and output operations are performed through ports. A port is a pointer into a (possibly infinite)
stream of data (often a file), an opening through which programs may draw bytes or characters from the
stream or place bytes or characters into the stream. A port may be an input port, an output port, or both
simultaneously.

Ports are first-class objects, like any other object in Scheme. Like procedures, ports do not have a printed
representation the way strings and numbers do. There are initially three ports: the current input port, current
output port, and current error port, which are textual ports connected to the process's standard input, standard
output, and standard error streams. Several ways to open new ports are provided.

An input port often points to a finite stream, e.g., an input file stored on disk. If one of the input operations,
e.g., get-u8, get-char, or get-datum, is asked to read from a port that has reached the end of a finite
stream, it returns a special eof (end of file) object. The predicate eof-object? may be used to determine if
the value returned from the input operation is the eof object.

Ports are either binary or textual. A binary port allows a program to read or write 8-bit unsigned bytes, or
"octets," from or to the underlying stream. A textual port allows a program to read or write characters.

In many cases, the underlying stream is organized as a sequence of bytes, but these bytes should be treated as
encodings for characters. In this case, a textual port may be created with a transcoder to decode bytes to
characters (for input) or encode characters to bytes (for output). A transcoder encapsulates a codec that
determines how characters are represented as bytes. Three standard codecs are provided: a latin-1 codec, a
Unicode utf-8 codec, and a Unicode utf-16 codec. For the latin-1 encoding, each character is represented by
exactly one byte. For utf-8, each character is represented by from one to four bytes, and for utf-16, each
character is represented by two or four bytes.

A transcoder also encapsulates an eol style that determines whether and how line endings are recognized. If
the eol style is none, no line endings are recognized. The six other standard eol styles are the following:

lf: line-feed character
cr: carriage-return character
nel: Unicode next-line character
ls: Unicode line-separator character
crlf: carriage return followed by line feed, and
crnel: carriage return followed by next line
The eol style affects input and output operations differently. For input, any eol style except none causes each
of the line-ending characters or two-character sequences to be converted into a single line-feed character. For
output, any eol style except none causes line-feed characters to be converted into the specific one- or
two-character sequence associated with the eol style. In the input direction, all eol styles except none are
equivalent, while in the output direction, the eol styles none and lf are equivalent.

In addition to the codec and eol style, a transcoder encapsulates just one other piece of information: an
error-handling mode that determines what happens if a decoding or encoding error occurs, i.e., if a sequence
of bytes cannot be converted to a character with the encapsulated codec in the input direction or a character
cannot be converted to a sequence of bytes with the encapsulated codec in the output direction. The
error-handling mode is ignore, raise, or replace. If the error-handling mode is ignore, the offending
sequence of bytes or the character is ignored. If the error-handling mode is raise, an exception with
condition type i/o-decoding or i/o-encoding is raised; in the input direction, the port is positioned
beyond the sequence of bytes. If the error-handling mode is replace, a replacement character or character
encoding is produced: in the input direction, the replacement character is U+FFFD, while in the output
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direction, the replacement is either the encoding of U+FFFD for utf-8 and utf-16 codecs or the encoding
of the question-mark character ( ? ) for the latin-1 codec.

A port may be buffered for efficiency, to eliminate the overhead of a call into the operating system for each
byte or character. Three standard buffer modes are supported: block, line, and none. With block buffering,
input is drawn from a stream and output is sent to the stream in chunks of some implementation-dependent
size. With line buffering, buffering is performed on a line-by-line basis or on some other
implementation-dependent basis. Line buffering is typically distinguished from block buffering only for
textual output ports; there are no line divisions in binary ports, and input is likely to be drawn from a stream
as it becomes available. With buffer-mode none, no buffering is performed, so output is sent immediately to
the stream and input is drawn only as needed.

The remainder of this chapter covers operations on transcoders, file ports, standard ports, string and
bytevector ports, custom ports, general port operations, input operations, output operations, convenience I/O,
filesystem operations, and conversions between bytevectors and strings.

Section 7.1. Transcoders

As described above, transcoders encapsulate three values: a codec, an eol style, and an error-handling mode.
This section describes the procedures that create or operate on transcoders and the values that transcoders
encapsulate.

procedure: (make-transcoder codec)
procedure: (make-transcoder codec eol-style)
procedure: (make-transcoder codec eol-style error-handling-mode)
returns: a transcoder encapsulating codec, eol-style, and error-handling-mode
libraries: (rnrs io ports), (rnrs)

eol-style must be a valid eol-style symbol (lf, cr, nel, ls, crlf, crnel, or none); it defaults to the
native eol-style for the platform. error-handling-mode must be a valid error-handling-mode symbol
(ignore, raise, or replace) and defaults to replace.

procedure: (transcoder-codec transcoder)
returns: the codec encapsulated in transcoder
procedure: (transcoder-eol-style transcoder)
returns: the eol-style symbol encapsulated in transcoder
procedure: (transcoder-error-handling-mode transcoder)
returns: the error-handling-mode symbol encapsulated in transcoder
libraries: (rnrs io ports), (rnrs)

procedure: (native-transcoder)
returns: the native transcoder
libraries: (rnrs io ports), (rnrs)

The native transcoder is implementation-dependent and may vary by platform or locale.

procedure: (latin-1-codec)
returns: a codec for ISO 8859-1 (Latin 1) character encodings
procedure: (utf-8-codec)
returns: a codec for Unicode UTF-8 character encodings
procedure: (utf-16-codec)
returns: a codec for Unicode UTF-16 character encodings
libraries: (rnrs io ports), (rnrs)
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syntax: (eol-style symbol)
returns: symbol
libraries: (rnrs io ports), (rnrs)

symbol must be one of the symbols lf, cr, nel, ls, crlf, crnel, or none. The expression
(eol-style symbol) is equivalent to the expression (quote symbol) except the former checks at
expansion time that symbol is one of the eol-style symbols. The eol-style syntax provides useful
documentation as well.

(eol-style crlf)  crlf
(eol-style lfcr) syntax violation

procedure: (native-eol-style)
returns: the native eol style
libraries: (rnrs io ports), (rnrs)

The native eol style is implementation-dependent and may vary by platform or locale.

syntax: (error-handling-mode symbol)
returns: symbol
libraries: (rnrs io ports), (rnrs)

symbol must be one of the symbols ignore, raise, or replace. The expression
(error-handling-mode symbol) is equivalent to the expression (quote symbol) except that the
former checks at expansion time that symbol is one of the error-handling-mode symbols. The
error-handling-mode syntax provides useful documentation as well.

(error-handling-mode replace)  replace
(error-handling-mode relpace) syntax violation

Section 7.2. Opening Files

The procedures in this section are used for opening file ports. Procedures for opening other kinds of ports,
e.g., string ports or custom ports, are described in subsequent sections.

Each of the file-open operations accepts a path argument that names the file to be opened. It must be a string
or some other implementation-dependent value that names a file.

Some of the file-open procedures accept optional options, b-mode, and ?transcoder arguments.
options must be an enumeration set over the symbols constituting valid file options described in the
file-options entry below, and it defaults to the value of (file-options). b-mode must be a valid
buffer mode described in the buffer-mode entry below, and it defaults to block. ?transcoder must
be a transcoder or #f; if it is a transcoder, the open operation returns a transcoded port for the underlying
binary file, while if it is #f (the default), the open operation returns a binary port.

Binary ports created by the procedures in this section support the port-position and
set-port-position! operations. Whether textual ports created by the procedures in this section support
these operations is implementation-dependent.

syntax: (file-options symbol ...)
returns: a file-options enumeration set
libraries: (rnrs io ports), (rnrs)
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File-options enumeration sets may be passed to file-open operations to control aspects of the open operation.
There are three standard file options: no-create, no-fail, and no-truncate, which affect only
file-open operations that create output (including input/output) ports.

With the default file options, i.e., the value of (file-options), when a program attempts to open a file
for output, an exception is raised with condition type i/o-file-already-exists if the file already
exists, and the file is created if it does not already exist. If the no-fail option is included, no exception is
raised if the file already exists; instead, the file is opened and truncated to zero length. If the no-create
option is included, the file is not created if it does not exist; instead, an exception is raised with condition type
i/o-file-does-not-exist. The no-create option implies the no-fail option. The
no-truncate option is relevant only if the no-fail option is included or implied, in which case if an
existing file is opened, it is not truncated, but the port's position is still set to the beginning of the file.

It is perhaps easier to imagine that the default file options are the imaginary option symbols create,
fail-if-exists, and truncate; no-create removes create, no-fail removes
fail-if-exists, and no-truncate removes truncate.

Implementations may support additional file option symbols. Chez Scheme, for example, supports options
that control whether the file is or should be compressed, whether it is locked for exclusive access, and what
permissions are given to the file if it is created [9].

syntax: (buffer-mode symbol)
returns: symbol
libraries: (rnrs io ports), (rnrs)

symbol must be one of the symbols block, line, or none. The expression (buffer-mode symbol)
is equivalent to the expression (quote symbol) except that the former checks at expansion time that
symbol is one of the buffer-mode symbols. The buffer-mode syntax provides useful documentation as
well.

(buffer-mode block)  block
(buffer-mode cushion) syntax violation

syntax: (buffer-mode? obj)
returns: #t if obj is a valid buffer mode, #f otherwise
libraries: (rnrs io ports), (rnrs)

(buffer-mode? 'block)  #t
(buffer-mode? 'line)  #t
(buffer-mode? 'none)  #t
(buffer-mode? 'something-else)  #f

procedure: (open-file-input-port path)
procedure: (open-file-input-port path options)
procedure: (open-file-input-port path options b-mode)
procedure: (open-file-input-port path options b-mode ?transcoder)
returns: a new input port for the named file
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a textual input
port whose transcoder is ?transcoder. Otherwise, this procedure returns a binary input port. See the
lead-in to this section for a description of the constraints on and effects of the other arguments.

procedure: (open-file-output-port path)
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procedure: (open-file-output-port path options)
procedure: (open-file-output-port path options b-mode)
procedure: (open-file-output-port path options b-mode ?transcoder)
returns: a new output port for the named file
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a textual output
port whose transcoder is ?transcoder. Otherwise, this procedure returns a binary output port. See the
lead-in to this section for a description of the constraints on and effects of the other arguments.

procedure: (open-file-input/output-port path)
procedure: (open-file-input/output-port path options)
procedure: (open-file-input/output-port path options b-mode)
procedure: (open-file-input/output-port path options b-mode ?transcoder)
returns: a new input/output port for the named file
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a textual
input/output port whose transcoder is ?transcoder. Otherwise, this procedure returns a binary input/output
port. See the lead-in to this section for a description of the constraints on and effects of the other arguments.

Section 7.3. Standard Ports

The procedures described in this section return ports that are attached to a process's standard input, standard
output, and standard error streams. The first set returns "ready-made" textual ports with
implementation-dependent transcoders (if any) and buffer modes. The second set creates fresh binary ports
and can be used either for binary input/output or, with the help of transcoded-port, for textual
input/output with program-supplied transcoders and buffer modes.

procedure: (current-input-port)
returns: the current input port
procedure: (current-output-port)
returns: the current output port
procedure: (current-error-port)
returns: the current error port
libraries: (rnrs io ports), (rnrs io simple), (rnrs)

The current-input, current-output, and current-error ports return pre-built textual ports that are initially
associated with a process's standard input, standard output, and standard error streams.

The values returned by current-input-port and current-output-port can be altered
temporarily by the convenience I/O procedures with-input-from-file and
with-output-to-file (Section 7.9).

procedure: (standard-input-port)
returns: a fresh binary input port connected to the standard input stream
procedure: (standard-output-port)
returns: a fresh binary output port connected to the standard output stream
procedure: (standard-error-port)
returns: a fresh binary output port connected to the standard error stream
libraries: (rnrs io ports), (rnrs)

Because ports may be buffered, confusion can result if operations on more than one port attached to one of a
process's standard streams are interleaved. Thus, these procedures are typically appropriate only when a
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program no longer needs to use any existing ports attached to the standard streams.

Section 7.4. String and Bytevector Ports

The procedures in this section allow bytevectors and strings to be used as input or output streams.

Binary ports created by the procedures in this section support the port-position and
set-port-position! operations. Whether textual ports created by the procedures in this section support
these operations is implementation-dependent.

procedure: (open-bytevector-input-port bytevector)
procedure: (open-bytevector-input-port bytevector ?transcoder)
returns: a new input port that draws input from bytevector
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and this procedure returns a textual input
port whose transcoder is ?transcoder. Otherwise, this procedure returns a binary input port.

The effect of modifying bytevector after this procedure is called is unspecified.

(let ([ip (open-bytevector-input-port #vu8(1 2))])
  (let* ([x1 (get-u8 ip)] [x2 (get-u8 ip)] [x3 (get-u8 ip)])
    (list x1 x2 (eof-object? x3))))  (1 2 #t)

There is no need to close a bytevector port; it's storage will be reclaimed automatically when it is no longer
needed, as with any other object, and an open bytevector port does not tie up any operating system resources.

procedure: (open-string-input-port string)
returns: a new textual input port that draws input from string
libraries: (rnrs io ports), (rnrs)

The effect of modifying string after this procedure is called is unspecified. The new port may or may not
have a transcoder, and if it does, the transcoder is implementation-dependent. While not required,
implementations are encouraged to support port-position and set-port-position! for string
ports.

(get-line (open-string-input-port "hi.\nwhat's up?\n"))  "hi."

There is no need to close a string port; it's storage will be reclaimed automatically when it is no longer needed,
as with any other object, and an open string port does not tie up any operating system resources.

procedure: (open-bytevector-output-port)
procedure: (open-bytevector-output-port ?transcoder)
returns: two values, a new output port and an extraction procedure
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and the port value is a textual output port
whose transcoder is ?transcoder. Otherwise, the port value is a binary output port.

The extraction procedure is a procedure that, when called without arguments, creates a bytevector containing
the accumulated bytes in the port, clears the port of its accumulated bytes, resets its position to zero, and
returns the bytevector. The accumulated bytes include any bytes written beyond the end of the current
position, if the position has been set back from its maximum extent.
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(let-values ([(op g) (open-bytevector-output-port)])
  (put-u8 op 15)
  (put-u8 op 73)
  (put-u8 op 115)
  (set-port-position! op 2)
  (let ([bv1 (g)])
    (put-u8 op 27)
    (list bv1 (g))))  (#vu8(15 73 115) #vu8(27))

There is no need to close a bytevector port; it's storage will be reclaimed automatically when it is no longer
needed, as with any other object, and an open bytevector port does not tie up any operating system resources.

procedure: (open-string-output-port)
returns: two values, a new textual output port and an extraction procedure
libraries: (rnrs io ports), (rnrs)

The extraction procedure is a procedure that, when called without arguments, creates a string containing the
accumulated characters in the port, clears the port of its accumulated characters, resets its position to zero, and
returns the string. The accumulated characters include any characters written beyond the end of the current
position, if the position has been set back from its maximum extent. While not required, implementations are
encouraged to support port-position and set-port-position! for string ports.

(let-values ([(op g) (open-string-output-port)])
  (put-string op "some data")
  (let ([str1 (g)])
    (put-string op "new stuff")
    (list str1 (g))))  ("some data" "new stuff")

There is no need to close a string port; it's storage will be reclaimed automatically when it is no longer needed,
as with any other object, and an open string port does not tie up any operating system resources.

procedure: (call-with-bytevector-output-port procedure)
procedure: (call-with-bytevector-output-port procedure ?transcoder)
returns: a bytevector containing the accumulated bytes
libraries: (rnrs io ports), (rnrs)

If ?transcoder is present and not #f, it must be a transcoder, and procedure is called with a textual
bytevector output port whose transcoder is ?transcoder. Otherwise, procedure is called with a binary
bytevector output port. If procedure returns, a bytevector containing the bytes accumulated in the port is
created, the accumulated bytes are cleared from the port, the port's position is reset to zero, and the bytevector
is returned from call-with-bytevector-output-port. These actions occur each time procedure
returns, if it returns multiple times due to the invocation of a continuation created while procedure is
active.

(let ([tx (make-transcoder (latin-1-codec) (eol-style lf)
            (error-handling-mode replace))])
  (call-with-bytevector-output-port
    (lambda (p) (put-string p "abc"))
    tx))  #vu8(97 98 99)

procedure: (call-with-string-output-port procedure)
returns: a string containing the accumulated characters
libraries: (rnrs io ports), (rnrs)
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procedure is called with one argument, a string output port. If procedure returns, a string containing the
characters accumulated in the port is created, the accumulated characters are cleared from the port, the port's
position is reset to zero, and the string is returned from call-with-string-output-port. These
actions occur each time procedure returns, if it returns multiple times due to the invocation of a
continuation created while procedure is active.

call-with-string-output-port can be used along with put-datum to define a procedure,
object->string, that returns a string containing the printed representation of an object.

(define (object->string x)
  (call-with-string-output-port
    (lambda (p) (put-datum p x))))

(object->string (cons 'a '(b c)))  "(a b c)"

Section 7.5. Opening Custom Ports

procedure: (make-custom-binary-input-port id r! gp sp! close)
returns: a new custom binary input port
procedure: (make-custom-binary-output-port id w! gp sp! close)
returns: a new custom binary output port
procedure: (make-custom-binary-input/output-port id r! w! gp sp! close)
returns: a new custom binary input/output port
libraries: (rnrs io ports), (rnrs)

These procedures allow programs to create ports from arbitrary byte streams. id must be a string naming the
new port; the name is used for informational purposes only, and an implementation may choose to include it
in the printed syntax, if any, of a custom port. r! and w! must be procedures, while gp, sp!, and close
must each be a procedure or #f. These arguments are described below.

r!
is called to draw input from the custom port, e.g., to support get-u8 or get-bytevector-n. It is
called with three arguments: bytevector, start, and n. start will be a nonnegative exact
integer, n will be a positive exact integer, and the sum of start and n will not exceed the length of
bytevector. If the byte stream is at end of file, r! should return exact 0. Otherwise, it should read
at least one and at most n bytes from the stream, store these bytes in consecutive locations of
bytevector starting at start, and return as an exact positive integer the number of bytes actually
read.

w!
is called to send output to the port, e.g., to support put-u8 or put-bytevector. It is called with
three arguments: bytevector, start, and n. start and n will be nonnegative exact integers,
and the sum of start and n will not exceed the length of bytevector. w! should write up to n
consecutive bytes from bytevector starting at start and return, as an exact nonnegative integer,
the number of bytes actually written.

gp
is called to query the port's position. If it is #f, the port will not support port-position. If it is
not #f, it will be passed zero arguments and should return the current position as a displacement in
bytes from the start of the byte stream as an exact nonnegative integer.

sp!
is called to set the port's position. If it is #f, the port will not support set-port-position!. If it
is not #f, it will be passed one argument, an exact nonnegative integer representing the new position
as a displacement in bytes from the start of the byte stream, and it should set the position to this value.

close
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is called to close the byte stream. If it is #f, no action will be taken to close the byte stream when the
new port is closed. If it is not #f, it will be passed zero arguments and should take whatever actions
are necessary to close the byte stream.

If the new port is an input/output port and does not provide either a gp or sp! procedure, it may not be
possible for the implementation to position the port properly if an output operation occurs after an input
operation, due to input buffering that must be done to support lookahead-u8 and is often done anyway for
efficiency. For the same reason, a call to port-position after an input operation may not return an
accurate position if the sp! procedure is not provided. Thus, programs that create custom binary input/output
ports should generally provide both gp and sp! procedures.

procedure: (make-custom-textual-input-port id r! gp sp! close)
returns: a new custom textual input port
procedure: (make-custom-textual-output-port id w! gp sp! close)
returns: a new custom textual output port
procedure: (make-custom-textual-input/output-port id r! w! gp sp! close)
returns: a new custom textual input/output port
libraries: (rnrs io ports), (rnrs)

These procedures allow programs to create ports from arbitrary character streams. id must be a string naming
the new port; the name is used for informational purposes only, and an implementation may choose to include
it in the printed syntax, if any, of a custom port. r! and w! must be procedures, while gp, sp!, and close
must each be a procedure or #f. These arguments are described below.

r!
is called to draw input from the port, e.g., to support get-char or get-string-n. It is called
with three arguments: string, start, and n. start will be a nonnegative exact integer, n will be
a positive exact integer, and the sum of start and n will not exceed the length of string. If the
character stream is at end of file, r! should return exact 0. Otherwise, it should read at least one and
at most n characters from the stream, store these characters in consecutive locations of string
starting at start, and return as an exact positive integer the number of characters actually read.

w!
is called to send output to the port, e.g., to support put-char or put-string. It is called with
three arguments: string, start, and n. start and n will be nonnegative exact integers, and the
sum of start and n will not exceed the length of string. w! should write up to n consecutive
characters from string starting at start and return, as an exact nonnegative integer, the number
of characters actually written.

gp
is called to query the port's position. If it is #f, the port will not support port-position. If it is
not #f, it will be passed zero arguments and should return the current position, which may be an
arbitrary value.

sp!
is called to set the port's position. If it is #f, the port will not support set-port-position!. If it
is not #f, it will be passed one argument, pos, a value representing the new position. If pos is the
result of a previous call to gp, sp! should set the position to pos.

close
is called to close the character stream. If it is #f, no action will be taken to close the character stream
when the new port is closed. If it is not #f, it will be passed zero arguments and should take whatever
actions are necessary to close the character stream.

If the new port is an input/output port, it may not be possible for the implementation to position the port
properly if an output operation occurs after an input operation, even if the gp and sp! procedures are
provided, due to input buffering that must be done to support lookahead-char and is often done anyway
for efficiency. Since the representations of port positions are not specified, it is not possible for the
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implementation to adjust the gp return value to account for the number of buffered characters. For the same
reason, a call to port-position after an input operation may not return an accurate position, even if the
sp! procedure is provided.

It should, however, be possible to perform output reliably after reading if the position is reset to the starting
position. Thus, programs that create custom textual input/output ports should generally provide both gp and
sp! procedures, and consumers of these ports should obtain the starting position via port-position
before any input operations and reset the position back to the starting position before doing any output
operations.

Section 7.6. Port Operations

This section describes a variety of operations on ports that do not directly involve either reading from or
writing to a port. The input and output operations are described in subsequent sections.

procedure: (port? obj)
returns: #t if obj is a port, #f otherwise
libraries: (rnrs io ports), (rnrs)

procedure: (input-port? obj)
returns: #t if obj is an input or input/output port, #f otherwise
procedure: (output-port? obj)
returns: #t if obj is an output or input/output port, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs)

procedure: (binary-port? obj)
returns: #t if obj is a binary port, #f otherwise
procedure: (textual-port? obj)
returns: #t if obj is a textual port, #f otherwise
libraries: (rnrs io ports), (rnrs)

procedure: (close-port port)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

If port is not already closed, close-port closes it, first flushing any buffered bytes or characters to the
underlying stream if the port is an output port. Once a port has been closed, no more input or output
operations may be performed on the port. Because the operating system may place limits on the number of file
ports open at one time or restrict access to an open file, it is good practice to close any file port that will no
longer be used for input or output. If the port is an output port, closing the port explicitly also ensures that
buffered data is written to the underlying stream. Some Scheme implementations close file ports automatically
after they become inaccessible to the program or when the Scheme program exits, but it is best to close file
ports explicitly whenever possible. Closing a port that has already been closed has no effect.

procedure: (transcoded-port binary-port transcoder)
returns: a new textual port with the same byte stream as binary-port
libraries: (rnrs io ports), (rnrs)

This procedure returns a new textual port with transcoder transcoder and the same underlying byte stream
as binary-port, positioned at the current position of binary-port.

As a side effect of creating the textual port, binary-port is closed to prevent read or write operations on
binary-port from interfering with read and write operations on the new textual port. The underlying byte
stream remains open, however, until the textual port is closed.
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procedure: (port-transcoder port)
returns: the transcoder associated with port if any, #f otherwise
libraries: (rnrs io ports), (rnrs)

This procedure always returns #f for binary ports and may return #f for some textual ports.

procedure: (port-position port)
returns: the port's current position
procedure: (port-has-port-position? port)
returns: #t if the port supports port-position, #f otherwise
libraries: (rnrs io ports), (rnrs)

A port may allow queries to determine its current position in the underlying stream of bytes or characters. If
so, the procedure port-has-port-position? returns #t and port-position returns the current
position. For binary ports, the position is always an exact nonnegative integer byte displacement from the start
of the byte stream. For textual ports, the representation of a position is unspecified; it may not be an exact
nonnegative integer and, even if it is, it may not represent either a byte or character displacement in the
underlying stream. The position may be used at some later time to reset the position if the port supports
set-port-position!. If port-position is called on a port that does not support it, an exception
with condition type &assertion is raised.

procedure: (set-port-position! port pos)
returns: unspecified
procedure: (port-has-set-port-position!? port)
returns: #t if the port supports set-port-position!, #f otherwise
libraries: (rnrs io ports), (rnrs)

A port may allow its current position to be moved directly to a different position in the underlying stream of
bytes or characters. If so, the procedure port-has-set-port-position!? returns #t and
set-port-position! changes the current position. For binary ports, the position pos must be an exact
nonnegative integer byte displacement from the start of the byte stream. For textual ports, the representation
of a position is unspecified, as described in the entry for port-position above, but pos must be an
appropriate position for the textual port, which is usually guaranteed to be the case only if it was obtained
from a call to port-position on the same port. If set-port-position! is called on a port that does
not support it, an exception with condition type &assertion is raised.

If port is a binary output port and the position is set beyond the current end of the data in the underlying
stream, the stream is not extended until new data is written at that position. If new data is written at that
position, the contents of each intervening position is unspecified. Binary ports created with
open-file-output-port and open-file-input/output-port can always be extended in this
manner within the limits of the underlying operating system. In other cases, attempts to set the port beyond
the current end of data in the underlying object may result in an exception with condition type
&i/o-invalid-position.

procedure: (call-with-port port procedure)
returns: the values returned by procedure
libraries: (rnrs io ports), (rnrs)

call-with-port calls procedure with port as the only argument. If procedure returns,
call-with-port closes the port and returns the values returned by procedure.

call-with-port does not automatically close the port if a continuation created outside of procedure is
invoked, since it is possible that another continuation created inside of procedure will be invoked at a later
time, returning control to procedure. If procedure does not return, an implementation is free to close the
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port only if it can prove that the output port is no longer accessible.

The example below copies the contents of infile to outfile, overwriting outfile if it exists. Unless an error
occurs, the ports are closed after the copy has been completed.

(call-with-port (open-file-input-port "infile" (file-options)
                  (buffer-mode block) (native-transcoder))
  (lambda (ip)
    (call-with-port (open-file-output-port "outfile"
                      (file-options no-fail)
                      (buffer-mode block)
                      (native-transcoder)) 
      (lambda (op)
        (do ([c (get-char ip) (get-char ip)])
            ((eof-object? c))
          (put-char op c))))))

A definition of call-with-port is given on page 135.

procedure: (output-port-buffer-mode port)
returns: the symbol representing the buffer mode of port
libraries: (rnrs io ports), (rnrs)

Section 7.7. Input Operations

Procedures whose primary purpose is to read data from an input port are described in this section, along with
related procedures for recognizing or creating end-of-file (eof) objects.

procedure: (eof-object? obj)
returns: #t if obj is an eof object, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs)

The end-of-file object is returned by input operations, e.g., get-datum, when an input port has reached the
end of input.

procedure: (eof-object)
returns: the eof object
libraries: (rnrs io ports), (rnrs io simple), (rnrs)

(eof-object? (eof-object))  #t

procedure: (get-u8 binary-input-port)
returns: the next byte from binary-input-port, or the eof object
libraries: (rnrs io ports), (rnrs)

If binary-input-port is at end of file, the eof object is returned. Otherwise, the next available byte is
returned as an unsigned 8-bit quantity, i.e., an exact unsigned integer less than or equal to 255, and the port's
position is advanced one byte.

procedure: (lookahead-u8 binary-input-port)
returns: the next byte from binary-input-port, or the eof object
libraries: (rnrs io ports), (rnrs)
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If binary-input-port is at end of file, the eof object is returned. Otherwise, the next available byte is
returned as an unsigned 8-bit quantity, i.e., an exact unsigned integer less than or equal to 255. In contrast to
get-u8, lookahead-u8 does not consume the byte it reads from the port, so if the next operation on the
port is a call to lookahead-u8 or get-u8, the same byte is returned.

procedure: (get-bytevector-n binary-input-port n)
returns: a nonempty bytevector containing up to n bytes, or the eof object
libraries: (rnrs io ports), (rnrs)

n must be an exact nonnegative integer. If binary-input-port is at end of file, the eof object is returned.
Otherwise, get-bytevector-n reads (as if with get-u8) as many bytes, up to n, as are available before
the port is at end of file, and returns a new (nonempty) bytevector containing these bytes. The port's position
is advanced past the bytes read.

procedure: (get-bytevector-n! binary-input-port bytevector start n)
returns: the count of bytes read or the eof object
libraries: (rnrs io ports), (rnrs)

start and n must be exact nonnegative integers, and the sum of start and n must not exceed the length of
bytevector.

If binary-input-port is at end of file, the eof object is returned. Otherwise, get-bytevector-n!
reads (as if with get-u8) as many bytes, up to n, as are available before the port is at end of file, stores the
bytes in consecutive locations of bytevector starting at start, and returns the count of bytes read as an
exact positive integer. The port's position is advanced past the bytes read.

procedure: (get-bytevector-some binary-input-port)
returns: a nonempty bytevector or the eof object
libraries: (rnrs io ports), (rnrs)

If binary-input-port is at end of file, the eof object is returned. Otherwise,
get-bytevector-some reads (as if with get-u8) at least one byte and possibly more, and returns a
bytevector containing these bytes. The port's position is advanced past the bytes read. The maximum number
of bytes read by this operation is implementation-dependent.

procedure: (get-bytevector-all binary-input-port)
returns: a nonempty bytevector or the eof object
libraries: (rnrs io ports), (rnrs)

If binary-input-port is at end of file, the eof object is returned. Otherwise, get-bytevector-all
reads (as if with get-u8) all of the bytes available before the port is at end of file and returns a bytevector
containing these bytes. The port's position is advanced past the bytes read.

procedure: (get-char textual-input-port)
returns: the next character from textual-input-port, or the eof object
libraries: (rnrs io ports), (rnrs)

If textual-input-port is at end of file, the eof object is returned. Otherwise, the next available
character is returned and the port's position is advanced one character. If textual-input-port is a
transcoded port, the position in the underlying byte stream may advance by more than one byte.

procedure: (lookahead-char textual-input-port)
returns: the next character from textual-input-port, or the eof object
libraries: (rnrs io ports), (rnrs)
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If textual-input-port is at end of file, the eof object is returned. Otherwise, the next available
character is returned. In contrast to get-char, lookahead-char does not consume the character it reads
from the port, so if the next operation on the port is a call to lookahead-char or get-char, the same
character is returned.

lookahead-char is provided for applications requiring one character of lookahead. The procedure
get-word defined below returns the next word from a textual input port as a string, where a word is defined
to be a sequence of alphabetic characters. Since get-word does not know until it sees one character beyond
the word that it has read the entire word, it uses lookahead-char to determine the next character and
get-char to consume the character.

(define get-word
  (lambda (p)
    (list->string
      (let f ()
        (let ([c (lookahead-char p)])
          (cond
            [(eof-object? c) '()]
            [(char-alphabetic? c) (get-char p) (cons c (f))]
            [else '()]))))))

procedure: (get-string-n textual-input-port n)
returns: a nonempty string containing up to n characters, or the eof object
libraries: (rnrs io ports), (rnrs)

n must be an exact nonnegative integer. If textual-input-port is at end of file, the eof object is
returned. Otherwise, get-string-n reads (as if with get-char) as many characters, up to n, as are
available before the port is at end of file, and returns a new (nonempty) string containing these characters. The
port's position is advanced past the characters read.

procedure: (get-string-n! textual-input-port string start n)
returns: the count of characters read or the eof object
libraries: (rnrs io ports), (rnrs)

start and n must be exact nonnegative integers, and the sum of start and n must not exceed the length of
string.

If textual-input-port is at end of file, the eof object is returned. Otherwise, get-string-n! reads
(as if with get-char) as many characters, up to n, as are available before the port is at end of file, stores the
characters in consecutive locations of string starting at start, and returns the count of characters read as
an exact positive integer. The port's position is advanced past the characters read.

get-string-n! may be used to implement string-set! and string-fill!, as illustrated below,
although this is not its primary purpose.

(define string-set!
  (lambda (s i c)
    (let ([sip (open-string-input-port (string c))])
      (get-string-n! sip s i 1)
     ; return unspecified values:
      (if #f #f))))

(define string-fill!
  (lambda (s c)
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    (let ([n (string-length s)])
      (let ([sip (open-string-input-port (make-string n c))])
        (get-string-n! sip s 0 n)
       ; return unspecified values:
        (if #f #f)))))

(let ([x (make-string 3)])
  (string-fill! x #\-)
  (string-set! x 2 #\))
  (string-set! x 0 #\;)
  x)  ";-)"

procedure: (get-string-all textual-input-port)
returns: a nonempty string or the eof object
libraries: (rnrs io ports), (rnrs)

If textual-input-port is at end of file, the eof object is returned. Otherwise, get-string-all
reads (as if with get-char) all of the characters available before the port is at end of file and returns a string
containing these characters. The port's position is advanced past the characters read.

procedure: (get-line textual-input-port)
returns: a string or the eof object
libraries: (rnrs io ports), (rnrs)

If textual-input-port is at end of file, the eof object is returned. Otherwise, get-line reads (as if
with get-char) all of the characters available before the port is at end of file or a line-feed character has
been read and returns a string containing all but the line-feed character of the characters read. The port's
position is advanced past the characters read.

(let ([sip (open-string-input-port "one\ntwo\n")])
  (let* ([s1 (get-line sip)] [s2 (get-line sip)])
    (list s1 s2 (port-eof? sip))))  ("one" "two" #t)

(let ([sip (open-string-input-port "one\ntwo")])
  (let* ([s1 (get-line sip)] [s2 (get-line sip)])
    (list s1 s2 (port-eof? sip))))  ("one" "two" #t)

procedure: (get-datum textual-input-port)
returns: a Scheme datum object or the eof object
libraries: (rnrs io ports), (rnrs)

This procedure scans past whitespace and comments to find the start of the external representation of a datum.
If textual-input-port reaches end of file before the start of the external representation of a datum is
found, the eof object is returned.

Otherwise, get-datum reads as many characters as necessary, and no more, to parse a single datum, and
returns a newly allocated object whose structure is determined by the external representation. The port's
position is advanced past the characters read. If an end-of-file is reached before the external representation of
the datum is complete, or an unexpected character is read, an exception is raised with condition types
&lexical and i/o-read.

(let ([sip (open-string-input-port "; a\n\n one (two)\n")])
  (let* ([x1 (get-datum sip)]
         [c1 (lookahead-char sip)]
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         [x2 (get-datum sip)])
    (list x1 c1 x2 (port-eof? sip))))  (one #\space (two) #f)

procedure: (port-eof? input-port)
returns: #t if input-port is at end-of-file, #f otherwise
libraries: (rnrs io ports), (rnrs)

This procedure is similar to lookahead-u8 on a binary input port or lookahead-char on a textual
input port, except that instead of returning the next byte/character or eof object, it returns a boolean value to
indicate whether the value would be the eof object.

Section 7.8. Output Operations

Procedures whose primary purpose is to send data to an output port are described in this section.

procedure: (put-u8 binary-output-port octet)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

octet must be an exact nonnegative integer less than or equal to 255. This procedure writes octet to
binary-output-port, advancing the port's position by one byte.

procedure: (put-bytevector binary-output-port bytevector)
procedure: (put-bytevector binary-output-port bytevector start)
procedure: (put-bytevector binary-output-port bytevector start n)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

start and n must be nonnegative exact integers, and the sum of start and n must not exceed the length of
bytevector. If not supplied, start defaults to zero and n defaults to the difference between the length of
bytevector and start.

This procedure writes the n bytes of bytevector starting at start to the port and advances the its
position past the end of the bytes written.

procedure: (put-char textual-output-port char)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

This procedure writes char to textual-output-port, advancing the port's position by one character. If
textual-output-port is a transcoded port, the position in the underlying byte stream may advance by
more than one byte.

procedure: (put-string textual-output-port string)
procedure: (put-string textual-output-port string start)
procedure: (put-string textual-output-port string start n)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

start and n must be nonnegative exact integers, and the sum of start and n must not exceed the length of
string. If not supplied, start defaults to zero and n defaults to the difference between the length of
string and start.
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This procedure writes the n characters of string starting at start to the port and advances the its position
past the end of the characters written.

procedure: (put-datum textual-output-port obj)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

This procedure writes an external representation of obj to textual-output-port. If obj does not have
an external representation as a datum, the behavior is unspecified. The precise external representation is
implementation-dependent, but when obj does have an external representation as a datum, put-datum
should produce a sequence of characters that can later be read by get-datum as an object equivalent (in the
sense of equal?) to obj. See Section 12.5 for an implementation of put-datum, write, and display.

procedure: (flush-output-port output-port)
returns: unspecified
libraries: (rnrs io ports), (rnrs)

This procedure forces any bytes or characters in the buffer associated with output-port to be sent
immediately to the underlying stream.

Section 7.9. Convenience I/O

The procedures in this section are referred to as "convenience" I/O operators because they present a somewhat
simplified interface for creating and interacting with textual ports. They also provide backward compatibility
with the Revised5 Report, which did not support separate binary and textual I/O.

The convenience input/output procedures may be called with or without an explicit port argument. If called
without an explicit port argument, the current input or output port is used, as appropriate. For example,
(read-char) and (read-char (current-input-port)) both return the next character from the
current input port.

procedure: (open-input-file path)
returns: a new input port
libraries: (rnrs io simple), (rnrs)

path must be a string or some other implementation-dependent value that names a file.
open-input-file creates a new textual input port for the file named by path, as if by
open-file-input-port with default options, an implementation-dependent buffer mode, and an
implementation-dependent transcoder.

The following shows the use of open-input-file, read, and close-port in an expression that
gathers a list of objects from the file named by "myfile.ss."

(let ([p (open-input-file "myfile.ss")])
  (let f ([x (read p)])
    (if (eof-object? x)
        (begin
          (close-port p)
          '())
        (cons x (f (read p))))))

procedure: (open-output-file path)
returns: a new output port
libraries: (rnrs io simple), (rnrs)

The Scheme Programming Language, 4th Edition

Section 7.9. Convenience I/O 217



path must be a string or some other implementation-dependent value that names a file.
open-output-file creates a new output port for the file named by path, as if by
open-file-output-port with default options, an implementation-dependent buffer mode, and an
implementation-dependent transcoder.

The following shows the use of open-output-file to write a list of objects (the value of
list-to-be-printed), separated by newlines, to the file named by "myfile.ss."

(let ([p (open-output-file "myfile.ss")])
  (let f ([ls list-to-be-printed])
    (if (not (null? ls))
        (begin
          (write (car ls) p)
          (newline p)
          (f (cdr ls)))))
  (close-port p))

procedure: (call-with-input-file path procedure)
returns: the values returned by procedure
libraries: (rnrs io simple), (rnrs)

path must be a string or some other implementation-dependent value that names a file. procedure should
accept one argument.

call-with-input-file creates a new input port for the file named by path, as if with
open-input-file, and passes this port to procedure. If procedure returns,
call-with-input-file closes the input port and returns the values returned by procedure.

call-with-input-file does not automatically close the input port if a continuation created outside of
procedure is invoked, since it is possible that another continuation created inside of procedure will be
invoked at a later time, returning control to procedure. If procedure does not return, an implementation
is free to close the input port only if it can prove that the input port is no longer accessible. As shown in
Section 5.6, dynamic-wind may be used to ensure that the port is closed if a continuation created outside
of procedure is invoked.

The following example shows the use of call-with-input-file in an expression that gathers a list of
objects from the file named by "myfile.ss." It is functionally equivalent to the example given for
open-input-file above.

(call-with-input-file "myfile.ss"
  (lambda (p)
    (let f ([x (read p)])
      (if (eof-object? x)
          '()
          (cons x (f (read p)))))))

call-with-input-file might be defined without error checking as follows.

(define call-with-input-file
  (lambda (filename proc)
    (let ([p (open-input-file filename)])
      (let-values ([v* (proc p)])
        (close-port p)
        (apply values v*)))))
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procedure: (call-with-output-file path procedure)
returns: the values returned by procedure
libraries: (rnrs io simple), (rnrs)

path must be a string or some other implementation-dependent value that names a file. procedure should
accept one argument.

call-with-output-file creates a new output port for the file named by path, as if with
open-output-file, and passes this port to procedure. If procedure returns,
call-with-output-file closes the output port and returns the values returned by procedure.

call-with-output-file does not automatically close the output port if a continuation created outside
of procedure is invoked, since it is possible that another continuation created inside of procedure will
be invoked at a later time, returning control to procedure. If procedure does not return, an
implementation is free to close the output port only if it can prove that the output port is no longer accessible.
As shown in Section 5.6, dynamic-wind may be used to ensure that the port is closed if a continuation
created outside of procedure is invoked.

The following shows the use of call-with-output-file to write a list of objects (the value of
list-to-be-printed), separated by newlines, to the file named by "myfile.ss." It is functionally
equivalent to the example given for open-output-file above.

(call-with-output-file "myfile.ss"
  (lambda (p)
    (let f ([ls list-to-be-printed])
      (unless (null? ls)
        (write (car ls) p)
        (newline p)
        (f (cdr ls))))))

call-with-output-file might be defined without error checking as follows.

(define call-with-output-file
  (lambda (filename proc)
    (let ([p (open-output-file filename)])
      (let-values ([v* (proc p)])
        (close-port p)
        (apply values v*)))))

procedure: (with-input-from-file path thunk)
returns: the values returned by thunk
libraries: (rnrs io simple), (rnrs)

path must be a string or some other implementation-dependent value that names a file. thunk must be a
procedure and should accept zero arguments.

with-input-from-file temporarily changes the current input port to be the result of opening the file
named by path, as if with open-input-file, during the application of thunk. If thunk returns, the
port is closed and the current input port is restored to its old value.

The behavior of with-input-from-file is unspecified if a continuation created outside of thunk is
invoked before thunk returns. An implementation may close the port and restore the current input port to its
old value---but it may not.
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procedure: (with-output-to-file path thunk)
returns: the values returned by thunk
libraries: (rnrs io simple), (rnrs)

path must be a string or some other implementation-dependent value that names a file. thunk must be a
procedure and should accept zero arguments.

with-output-to-file temporarily rebinds the current output port to be the result of opening the file
named by path, as if with open-output-file, during the application of thunk. If thunk returns, the
port is closed and the current output port is restored to its old value.

The behavior of with-output-to-file is unspecified if a continuation created outside of thunk is
invoked before thunk returns. An implementation may close the port and restore the current output port to its
old value---but it may not.

procedure: (read)
procedure: (read textual-input-port)
returns: a Scheme datum object or the eof object
libraries: (rnrs io simple), (rnrs)

If textual-input-port is not supplied, it defaults to the current input port. This procedure is otherwise
equivalent to get-datum.

procedure: (read-char)
procedure: (read-char textual-input-port)
returns: the next character from textual-input-port
libraries: (rnrs io simple), (rnrs)

If textual-input-port is not supplied, it defaults to the current input port. This procedure is otherwise
equivalent to get-char.

procedure: (peek-char)
procedure: (peek-char textual-input-port)
returns: the next character from textual-input-port
libraries: (rnrs io simple), (rnrs)

If textual-input-port is not supplied, it defaults to the current input port. This procedure is otherwise
equivalent to lookahead-char.

procedure: (write obj)
procedure: (write obj textual-output-port)
returns: unspecified
libraries: (rnrs io simple), (rnrs)

If textual-output-port is not supplied, it defaults to the current output port. This procedure is
otherwise equivalent to put-datum, with the arguments reversed. See Section 12.5 for an implementation of
put-datum, write, and display.

procedure: (display obj)
procedure: (display obj textual-output-port)
returns: unspecified
libraries: (rnrs io simple), (rnrs)

If textual-output-port is not supplied, it defaults to the current output port.
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display is similar to write or put-datum but prints strings and characters found within obj directly.
Strings are printed without quotation marks or escapes for special characters, as if by put-string, and
characters are printed without the #\ notation, as if by put-char. With display, the three-element list
(a b c) and the two-element list ("a b" c) both print as (a b c). Because of this, display should
not be used to print objects that are intended to be read with read. display is useful primarily for printing
messages, with obj most often being a string. See Section 12.5 for an implementation of put-datum,
write, and display.

procedure: (write-char char)
procedure: (write-char char textual-output-port)
returns: unspecified
libraries: (rnrs io simple), (rnrs)

If textual-output-port is not supplied, it defaults to the current output port. This procedure is
otherwise equivalent to put-char, with the arguments reversed.

procedure: (newline)
procedure: (newline textual-output-port)
returns: unspecified
libraries: (rnrs io simple), (rnrs)

If textual-output-port is not supplied, it defaults to the current output port. newline sends a
line-feed character to the port.

procedure: (close-input-port input-port)
procedure: (close-output-port output-port)
returns: unspecified
libraries: (rnrs io simple), (rnrs)

close-input-port closes an input port, and close-output-port closes an output port. These
procedures are provided for backward compatibility with the Revised5 Report; they are not actually more
convenient to use than close-port.

Section 7.10. Filesystem Operations

Scheme has two standard operations, beyond file input/output, for interacting with the filesystem:
file-exists? and delete-file. Most implementations support additional operations.

procedure: (file-exists? path)
returns: #t if the file named by path exists, #f otherwise
libraries: (rnrs files), (rnrs)

path must be a string or some other implementation-dependent value that names a file. Whether
file-exists? follows symbolic links is unspecified.

procedure: (delete-file path)
returns: unspecified
libraries: (rnrs files), (rnrs)

path must be a string or some other implementation-dependent value that names a file. delete-file
removes the file named by path if it exists and can be deleted, otherwise it raises an exception with condition
type &i/o-filename. Whether delete-file follows symbolic links is unspecified.
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Section 7.11. Bytevector/String Conversions

The procedures described in this section encode or decode character sequences, converting from strings to
bytevectors or bytevectors to strings. They do not necessarily involve input/output, though they might be
implemented using bytevector input and output ports.

The first two procedures, bytevector->string and string->bytevector, take an explicit
transcoder argument that determines the character encodings, eol styles, and error-handling modes. The others
perform specific Unicode conversions with an implicit eol-style of none and error-handling mode of
replace.

procedure: (bytevector->string bytevector transcoder)
returns: a string containing the characters encoded in bytevector
libraries: (rnrs io ports), (rnrs)

This operation, at least in effect, creates a bytevector input port with the specified transcoder from which
all of the available characters are read, as if by get-string-all, and placed into the output string.

(let ([tx (make-transcoder (utf-8-codec) (eol-style lf)
            (error-handling-mode replace))])
  (bytevector->string #vu8(97 98 99) tx))  "abc"

procedure: (string->bytevector string transcoder)
returns: a bytevector containing the encodings of the characters in string
libraries: (rnrs io ports), (rnrs)

This operation, at least in effect, creates a bytevector output port with the specified transcoder to which
all of the characters of string are written, then extracts a bytevector containing the accumulated bytes.

(let ([tx (make-transcoder (utf-8-codec) (eol-style none)
            (error-handling-mode raise))])
  (string->bytevector "abc" tx))  #vu8(97 98 99)

procedure: (string->utf8 string)
returns: a bytevector containing the UTF-8 encoding of string
libraries: (rnrs bytevectors), (rnrs)

procedure: (string->utf16 string)
procedure: (string->utf16 string endianness)
procedure: (string->utf32 string)
procedure: (string->utf32 string endianness)
returns: a bytevector containing the specified encoding of string
libraries: (rnrs bytevectors), (rnrs)

endianness must be one of the symbols big or little. If endianness is not provided or is the
symbol big, string->utf16 returns the UTF-16BE encoding of string and string->utf32 returns
the UTF-32BE encoding of string. If endianness is the symbol little, string->utf16 returns
the UTF-16LE encoding of string and string->utf32 returns the UTF-32LE encoding of string.
No byte-order mark is included in the encoding.

procedure: (utf8->string bytevector)
returns: a string containing the UTF-8 decoding of bytevector
libraries: (rnrs bytevectors), (rnrs)
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procedure: (utf16->string bytevector endianness)
procedure: (utf16->string bytevector endianness endianness-mandatory?)
procedure: (utf32->string bytevector endianness)
procedure: (utf32->string bytevector endianness endianness-mandatory?)
returns: a string containing the specified decoding of bytevector
libraries: (rnrs bytevectors), (rnrs)

endianness must be one of the symbols big or little. These procedures return a UTF-16 or UTF-32
decoding of bytevector, with the endianness of the representation determined from the endianness
argument or byte-order mark (BOM). If endianness-mandatory? is not provided or is #f, the
endianness is determined by a BOM at the front of bytevector or, if no BOM is present, by
endianness. If endianness-mandatory? is #t, the endianness is determined by endianness, and,
if a BOM appears at the front of bytevector, it is treated as a regular character encoding.

The UTF-16 BOM is the two-byte sequence #xFE, #xFF specifying "big" or the two-byte sequence #xFF,
#xFE specifying "little." The UTF-32 BOM is the four-byte sequence #x00, #x00, #xFE, #xFF specifying
"big" or the four-byte sequence #xFF, #xFE, #x00, #x00 specifying "little."
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Chapter 8. Syntactic Extension
Syntactic extensions, or macros, are used to simplify and regularize repeated patterns in a program, to
introduce syntactic forms with new evaluation rules, and to perform transformations that help make programs
more efficient.

A syntactic extension most often takes the form (keyword subform ...), where keyword is the
identifier that names the syntactic extension. The syntax of each subform varies from one syntactic
extension to another. Syntactic extensions can also take the form of improper lists or even singleton
identifiers.

New syntactic extensions are defined by associating keywords with transformation procedures, or
transformers. Syntactic extensions are defined using define-syntax forms or using let-syntax or
letrec-syntax. Transformers may be created using syntax-rules, which allows simple pattern-based
transformations to be performed. They may also be ordinary procedures that accept one argument and perform
arbitrary computations. In this case, syntax-case is normally used to destructure the input and syntax is
normally used to construct the output. The identifier-syntax form and
make-variable-transformer procedure allow the creation of transformers that match singleton
identifiers and assignments to those identifiers, the former being restricted to simple patterns like
syntax-rules and the latter allowing arbitrary computations to be performed.

Syntactic extensions are expanded into core forms at the start of evaluation (before compilation or
interpretation) by a syntax expander. If the expander encounters a syntactic extension, it invokes the
associated transformer to expand the syntactic extension, then repeats the expansion process for the form
returned by the transformer. If the expander encounters a core syntactic form, it recursively processes the
subforms, if any, and reconstructs the form from the expanded subforms. Information about identifier
bindings is maintained during expansion to enforce lexical scoping for variables and keywords.

The syntactic extension mechanisms described in this chapter are part of the "syntax-case" system. A portable
implementation of the system that also supports libraries and top-level programs is available at
http://www.cs.indiana.edu/syntax-case/. A description of the motivations behind and implementation of the
system can be found in the article "Syntactic Abstraction in Scheme" [12]. Additional features that have not
yet been standardized, including modules, local import, and meta definitions, are described in the Chez
Scheme User's Guide [9].

Section 8.1. Keyword Bindings

This section describes forms that establish bindings between keywords and transformers. Keyword bindings
may be established within a top-level program or library body using define-syntax and in any local
scope using define-syntax, let-syntax, or letrec-syntax.

syntax: (define-syntax keyword expr)
libraries: (rnrs base), (rnrs)

expr must evaluate to a transformer.

The following example defines let* as a syntactic extension, specifying the transformer with
syntax-rules (see Section 8.2).

(define-syntax let*
  (syntax-rules ()
    [(_ () b1 b2 ...) (let () b1 b2 ...)]
    [(_ ((i1 e1) (i2 e2) ...) b1 b2 ...)
     (let ([i1 e1])
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       (let* ([i2 e2] ...) b1 b2 ...))]))

All bindings established by a set of internal definitions, whether keyword or variable definitions, are visible
everywhere within the immediately enclosing body, including within the definitions themselves. For example,
the expression

(let ()
  (define even?
    (lambda (x)
      (or (= x 0) (odd? (- x 1)))))
  (define-syntax odd?
    (syntax-rules ()
      [(_ x) (not (even? x))]))
  (even? 10))

is valid and should evaluate to #t.

The expander processes the initial forms in a library, lambda, or other body from left to right. If it
encounters a variable definition, it records the fact that the defined identifier is a variable but defers expansion
of the right-hand-side expression until after all of the definitions have been processed. If it encounters a
keyword definition, it expands and evaluates the right-hand-side expression and binds the keyword to the
resulting transformer. If it encounters an expression, it fully expands all deferred right-hand-side expressions
along with the current and remaining body expressions.

An implication of the left-to-right processing order is that one internal definition can affect whether a
subsequent form is also a definition. For example, the expression

(let ()
  (define-syntax bind-to-zero
    (syntax-rules ()
      [(_ id) (define id 0)]))
  (bind-to-zero x)
  x)

evaluates to 0, regardless of any binding for bind-to-zero that might appear outside of the let
expression.

syntax: (let-syntax ((keyword expr) ...) form1 form2 ...)
syntax: (letrec-syntax ((keyword expr) ...) form1 form2 ...)
returns: see below
libraries: (rnrs base), (rnrs)

Each expr must evaluate to a transformer. For let-syntax and letrec-syntax both, each keyword
is bound within the forms form1 form2 .... For letrec-syntax the binding scope also includes each
expr.

A let-syntax or letrec-syntax form may expand into one or more expressions anywhere expressions
are permitted, in which case the resulting expressions are treated as if enclosed in a begin expression. It may
also expand into zero or more definitions anywhere definitions are permitted, in which case the definitions are
treated as if they appeared in place of the let-syntax or letrec-syntax form.

The following example highlights how let-syntax and letrec-syntax differ.

(let ([f (lambda (x) (+ x 1))])
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  (let-syntax ([f (syntax-rules ()
                       [(_ x) x])]
               [g (syntax-rules ()
                       [(_ x) (f x)])])
    (list (f 1) (g 1))))  (1 2)

(let ([f (lambda (x) (+ x 1))])
  (letrec-syntax ([f (syntax-rules ()
                       [(_ x) x])]
                  [g (syntax-rules ()
                       [(_ x) (f x)])])
    (list (f 1) (g 1))))  (1 1)

The two expressions are identical except that the let-syntax form in the first expression is a
letrec-syntax form in the second. In the first expression, the f occurring in g refers to the let-bound
variable f, whereas in the second it refers to the keyword f whose binding is established by the
letrec-syntax form.

Section 8.2. Syntax-Rules Transformers

The syntax-rules form described in this section permits simple transformers to be specified in a
convenient manner. These transformers may be bound to keywords using the mechanisms described in
Section 8.1. While it is much less expressive than the mechanism described in Section 8.3, it is sufficient for
defining many common syntactic extensions.

syntax: (syntax-rules (literal ...) clause ...)
returns: a transformer
libraries: (rnrs base), (rnrs)

Each literal must be an identifier other than an underscore ( _ ) or ellipsis ( ... ). Each clause must take
the form below.

(pattern template)

Each pattern specifies one possible syntax that the input form might take, and the corresponding
template specifies how the output should appear.

Patterns consist of list structure, vector structure, identifiers, and constants. Each identifier within a pattern is
either a literal, a pattern variable, an underscore, or an ellipsis. The identifier _ is an underscore, and the
identifier ... is an ellipsis. Any identifier other than _ or ... is a literal if it appears in the list of literals
(literal ...); otherwise, it is a pattern variable. Literals serve as auxiliary keywords, such as else in
case and cond expressions. List and vector structure within a pattern specifies the basic structure required
of the input, the underscore and pattern variables specify arbitrary substructure, and literals and constants
specify atomic pieces that must match exactly. Ellipses specify repeated occurrences of the subpatterns they
follow.

An input form F matches a pattern P if and only if

P is an underscore or pattern variable,• 
P is a literal identifier and F is an identifier with the same binding as determined by the predicate
free-identifier=? (Section 8.3),

• 

P is of the form (P1 ... Pn) and F is a list of n elements that match P1 through Pn,• 
P is of the form (P1 ... Pn . Px) and F is a list or improper list of n or more elements whose
first n elements match P1 through Pn and whose nth cdr matches Px,

• 
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P is of the form (P1 ... Pk Pe ellipsis Pm+1 ... Pn), where ellipsis is the identifier
... and F is a proper list of n elements whose first k elements match P1 through Pk, whose next m - k
elements each match Pe, and whose remaining n - m elements match Pm+1 through Pn,

• 

P is of the form (P1 ... Pk Pe ellipsis Pm+1 ... Pn . Px), where ellipsis is the
identifier ... and F is a list or improper list of n elements whose first k elements match P1 through
Pk, whose next m - k elements each match Pe, whose next n - m elements match Pm+1 through Pn, and
whose nth and final cdr matches Px,

• 

P is of the form #(P1 ... Pn) and F is a vector of n elements that match P1 through Pn,• 
P is of the form #(P1 ... Pk Pe ellipsis Pm+1 ... Pn), where ellipsis is the
identifier ... and F is a vector of n or more elements whose first k elements match P1 through Pk,
whose next m - k elements each match Pe, and whose remaining n - m elements match Pm+1 through
Pn, or

• 

P is a pattern datum (any nonlist, nonvector, nonsymbol object) and F is equal to P in the sense of the
equal? procedure.

• 

The outermost structure of a syntax-rules pattern must actually be in one of the list-structured forms
above, although subpatterns of the pattern may be in any of the above forms. Furthermore, the first element of
the outermost pattern is ignored, since it is always assumed to be the keyword naming the syntactic form.
(These statements do not apply to syntax-case; see Section 8.3.)

If an input form passed to a syntax-rules transformer matches the pattern for a given clause, the clause is
accepted and the form is transformed as specified by the associated template. As this transformation takes
place, pattern variables appearing in the pattern are bound to the corresponding input subforms. Pattern
variables appearing within a subpattern followed by one or more ellipses may be bound to a sequence or
sequences of zero or more input subforms.

A template is a pattern variable, an identifier that is not a pattern variable, a pattern datum, a list of
subtemplates (S1 ... Sn), an improper list of subtemplates (S1 S2 ... Sn . T), or a vector of
subtemplates #(S1 ... Sn). Each subtemplate Si is a template followed by zero or more ellipses. The final
element T of an improper subtemplate list is a template.

Pattern variables appearing within a template are replaced in the output by the input subforms to which they
are bound. Pattern data and identifiers that are not pattern variables are inserted directly into the output. List
and vector structure within the template remains list and vector structure in the output. A subtemplate
followed by an ellipsis expands into zero or more occurrences of the subtemplate. The subtemplate must
contain at least one pattern variable from a subpattern followed by an ellipsis. (Otherwise, the expander could
not determine how many times the subform should be repeated in the output.) Pattern variables that occur in
subpatterns followed by one or more ellipses may occur only in subtemplates that are followed by (at least) as
many ellipses. These pattern variables are replaced in the output by the input subforms to which they are
bound, distributed as specified. If a pattern variable is followed by more ellipses in the template than in the
associated pattern, the input form is replicated as necessary.

A template of the form (... template) is identical to template, except that ellipses within the
template have no special meaning. That is, any ellipses contained within template are treated as ordinary
identifiers. In particular, the template (... ...) produces a single ellipsis, .... This allows syntactic
extensions to expand into forms containing ellipses, including syntax-rules or syntax-case patterns
and templates.

The definition of or below demonstrates the use of syntax-rules.

(define-syntax or
  (syntax-rules ()
    [(_) #f]
    [(_ e) e]
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    [(_ e1 e2 e3 ...)
     (let ([t e1]) (if t t (or e2 e3 ...)))]))

The input patterns specify that the input must consist of the keyword and zero or more subexpressions. An
underscore ( _ ), which is a special pattern symbol that matches any input, is often used for the keyword
position to remind the programmer and anyone reading the definition that the keyword position never fails to
contain the expected keyword and need not be matched. (In fact, as mentioned above, syntax-rules
ignores what appears in the keyword position.) If more than one subexpression is present (third clause), the
expanded code both tests the value of the first subexpression and returns the value if it is not false. To avoid
evaluating the expression twice, the transformer introduces a binding for the temporary variable t.

The expansion algorithm maintains lexical scoping automatically by renaming local identifiers as necessary.
Thus, the binding for t introduced by the transformer is visible only within code introduced by the
transformer and not within subforms of the input. Similarly, the references to the identifiers let and if are
unaffected by any bindings present in the context of the input.

(let ([if #f])
  (let ([t 'okay])
    (or if t)))  okay

This expression is transformed during expansion to the equivalent of the expression below.

((lambda (if1)
   ((lambda (t1)
      ((lambda (t2)
         (if t2 t2 t1))
       if1))
    'okay))
 #f)  okay

In this sample expansion, if1, t1, and t2 represent identifiers to which if and t in the original expression
and t in the expansion of or have been renamed.

The definition of a simplified version of cond below (simplified because it requires at least one output
expression per clause and does not support the auxiliary keyword =>) demonstrates how auxiliary keywords
such as else are recognized in the input to a transformer, via inclusion in the list of literals.

(define-syntax cond
  (syntax-rules (else)
    [(_ (else e1 e2 ...)) (begin e1 e2 ...)]
    [(_ (e0 e1 e2 ...)) (if e0 (begin e1 e2 ...))]
    [(_ (e0 e1 e2 ...) c1 c2 ...)
     (if e0 (begin e1 e2 ...) (cond c1 c2 ...))]))

syntax: _
syntax: ...
libraries: (rnrs base), (rnrs syntax-case), (rnrs)

These identifiers are auxiliary keywords for syntax-rules, identifier-syntax, and
syntax-case. The second ( ... ) is also an auxiliary keyword for syntax and quasisyntax. It is a
syntax violation to reference these identifiers except in contexts where they are recognized as auxiliary
keywords.

syntax: (identifier-syntax tmpl)
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syntax: (identifier-syntax (id1 tmpl1) ((set! id2 e2) tmpl2))
returns: a transformer
libraries: (rnrs base), (rnrs)

When a keyword is bound to a transformer produced by the first form of identifier-syntax, references
to the keyword within the scope of the binding are replaced by tmpl.

(let ()
  (define-syntax a (identifier-syntax car))
  (list (a '(1 2 3)) a))  (1 #<procedure>)

With the first form of identifier-syntax, an apparent assignment of the associated keyword with
set! is a syntax violation. The second, more general, form of identifier-syntax permits the
transformer to specify what happens when set! is used.

(let ([ls (list 0)])
  (define-syntax a
    (identifier-syntax
      [id (car ls)]
      [(set! id e) (set-car! ls e)]))
  (let ([before a])
    (set! a 1)
    (list before a ls)))  (0 1 (1))

A definition of identifier-syntax in terms of make-variable-transformer is shown on
page 307.

Section 8.3. Syntax-Case Transformers

This section describes a more expressive mechanism for creating transformers, based on syntax-case, a
generalized version of syntax-rules. This mechanism permits arbitrarily complex transformations to be
specified, including transformations that "bend" lexical scoping in a controlled manner, allowing a much
broader class of syntactic extensions to be defined. Any transformer that may be defined using
syntax-rules may be rewritten easily to use syntax-case instead; in fact, syntax-rules itself
may be defined as a syntactic extension in terms of syntax-case, as demonstrated within the description
of syntax below.

With this mechanism, transformers are procedures of one argument. The argument is a syntax object
representing the form to be processed. The return value is a syntax object representing the output form. A
syntax object may be any of the following.

a nonpair, nonvector, nonsymbol value,• 
a pair of syntax objects,• 
a vector of syntax objects, or• 
a wrapped object.• 

The wrap on a wrapped syntax object contains contextual information about a form in addition to its structure.
This contextual information is used by the expander to maintain lexical scoping. The wrap may also contain
information used by the implementation to correlate source and object code, e.g., track file, line, and character
information through the expansion and compilation process.

The contextual information must be present for all identifiers, which is why the definition of syntax object
above does not allow symbols unless they are wrapped. A syntax object representing an identifier is itself
referred to as an identifier; thus, the term identifier may refer either to the syntactic entity (symbol, variable,

The Scheme Programming Language, 4th Edition

230 Section 8.3. Syntax-Case Transformers



or keyword) or to the concrete representation of the syntactic entity as a syntax object.

Transformers normally destructure their input with syntax-case and rebuild their output with syntax.
These two forms alone are sufficient for defining many syntactic extensions, including any that can be defined
using syntax-rules. They are described below along with a set of additional forms and procedures that
provide added functionality.

syntax: (syntax-case expr (literal ...) clause ...)
returns: see below
libraries: (rnrs syntax-case), (rnrs)

Each literal must be an identifier. Each clause must take one of the following two forms.

(pattern output-expression)
(pattern fender output-expression)

syntax-case patterns may be in any of the forms described in Section 8.2.

syntax-case first evaluates expr, then attempts to match the resulting value against the pattern from the
first clause. This value may be any Scheme object. If the value matches the pattern and no fender is
present, output-expression is evaluated and its values returned as the values of the syntax-case
expression. If the value does not match the pattern, the value is compared against the next clause, and so on. It
is a syntax violation if the value does not match any of the patterns.

If the optional fender is present, it serves as an additional constraint on acceptance of a clause. If the value
of the syntax-case expr matches the pattern for a given clause, the corresponding fender is evaluated.
If fender evaluates to a true value, the clause is accepted; otherwise, the clause is rejected as if the input had
failed to match the pattern. Fenders are logically a part of the matching process, i.e., they specify additional
matching constraints beyond the basic structure of an expression.

Pattern variables contained within a clause's pattern are bound to the corresponding pieces of the input
value within the clause's fender (if present) and output-expression. Pattern variables occupy the
same namespace as program variables and keywords; pattern variable bindings created by syntax-case
can shadow (and be shadowed by) program variable and keyword bindings as well as other pattern variable
bindings. Pattern variables, however, can be referenced only within syntax expressions.

See the examples following the description of syntax.

syntax: (syntax template)
syntax: #'template
returns: see below
libraries: (rnrs syntax-case), (rnrs)

#'template is equivalent to (syntax template). The abbreviated form is converted into the longer
form when a program is read, prior to macro expansion.

A syntax expression is like a quote expression except that the values of pattern variables appearing within
template are inserted into template, and contextual information associated both with the input and with
the template is retained in the output to support lexical scoping. A syntax template is identical to a
syntax-rules template and is treated similarly.

List and vector structures within the template become true lists or vectors (suitable for direct application of list
or vector operations, like map or vector-ref) to the extent that the list or vector structures must be copied
to insert the values of pattern variables, and empty lists are never wrapped. For example, #'(x ...),
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#'(a b c), #'() are all lists if x, a, b, and c are pattern variables.

The definition of or below is equivalent to the one given in Section 8.2 except that it employs
syntax-case and syntax in place of syntax-rules.

(define-syntax or
  (lambda (x)
    (syntax-case x ()
      [(_) #'#f]
      [(_ e) #'e]
      [(_ e1 e2 e3 ...)
       #'(let ([t e1]) (if t t (or e2 e3 ...)))])))

In this version, the lambda expression that produces the transformer is explicit, as are the syntax forms in
the output part of each clause. Any syntax-rules form can be expressed with syntax-case by making
the lambda expression and syntax expressions explicit. This observation leads to the following definition
of syntax-rules in terms of syntax-case.

(define-syntax syntax-rules
  (lambda (x)
    (syntax-case x ()
      [(_ (i ...) ((keyword . pattern) template) ...)
       #'(lambda (x)
           (syntax-case x (i ...)
             [(_ . pattern) #'template] ...))])))

An underscore is used in place of each keyword since the first position of each syntax-rules pattern is
always ignored.

Since the lambda and syntax expressions are implicit in a syntax-rules form, definitions expressed
with syntax-rules are often shorter than the equivalent definitions expressed with syntax-case. The
choice of which to use when either suffices is a matter of taste, but many transformers that can be written
easily with syntax-case cannot be written easily or at all with syntax-rules (see Section 8.4).

procedure: (identifier? obj)
returns: #t if obj is an identifier, #f otherwise
libraries: (rnrs syntax-case), (rnrs)

identifier? is often used within fenders to verify that certain subforms of an input form are identifiers, as
in the definition of unnamed let below.

(define-syntax let
  (lambda (x)
    (define ids?
      (lambda (ls)
        (or (null? ls)
            (and (identifier? (car ls))
                 (ids? (cdr ls))))))
    (syntax-case x ()
      [(_ ((i e) ...) b1 b2 ...)
       (ids? #'(i ...))
       #'((lambda (i ...) b1 b2 ...) e ...)])))

Syntactic extensions ordinarily take the form (keyword subform ...), but the syntax-case system
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permits them to take the form of singleton identifiers as well. For example, the keyword pcar in the
expression below may be used both as an identifier (in which case it expands into a call to car) or as a
structured form (in which case it expands into a call to set-car!).

(let ([p (cons 0 #f)])
  (define-syntax pcar
    (lambda (x)
      (syntax-case x ()
        [_ (identifier? x) #'(car p)]
        [(_ e) #'(set-car! p e)])))
  (let ([a pcar])
    (pcar 1)
    (list a pcar)))  (0 1)

The fender (identifier? x) is used to recognize the singleton identifier case.

procedure: (free-identifier=? identifier1 identifier2)
procedure: (bound-identifier=? identifier1 identifier2)
returns: see below
libraries: (rnrs syntax-case), (rnrs)

Symbolic names alone do not distinguish identifiers unless the identifiers are to be used only as symbolic
data. The predicates free-identifier=? and bound-identifier=? are used to compare identifiers
according to their intended use as free references or bound identifiers in a given context.

free-identifier=? is used to determine whether two identifiers would be equivalent if they were to
appear as free identifiers in the output of a transformer. Because identifier references are lexically scoped, this
means (free-identifier=? id1 id2) is true if and only if the identifiers id1 and id2 refer to the
same binding. (For this comparison, two like-named identifiers are assumed to have the same binding if
neither is bound.) Literal identifiers (auxiliary keywords) appearing in syntax-case patterns (such as
else in case and cond) are matched with free-identifier=?.

Similarly, bound-identifier=? is used to determine whether two identifiers would be equivalent if they
were to appear as bound identifiers in the output of a transformer. In other words, if
bound-identifier=? returns true for two identifiers, a binding for one will capture references to the
other within its scope. In general, two identifiers are bound-identifier=? only if both are present in the
original program or both are introduced by the same transformer application (perhaps implicitly---see
datum->syntax). bound-identifier=? can be used for detecting duplicate identifiers in a binding
construct or for other preprocessing of a binding construct that requires detecting instances of the bound
identifiers.

The definition below is equivalent to the earlier definition of a simplified version of cond with
syntax-rules, except that else is recognized via an explicit call to free-identifier? within a
fender rather than via inclusion in the literals list.

(define-syntax cond
  (lambda (x)
    (syntax-case x ()
      [(_ (e0 e1 e2 ...))
       (and (identifier? #'e0) (free-identifier=? #'e0 #'else))
       #'(begin e1 e2 ...)]
      [(_ (e0 e1 e2 ...)) #'(if e0 (begin e1 e2 ...))]
      [(_ (e0 e1 e2 ...) c1 c2 ...)
       #'(if e0 (begin e1 e2 ...) (cond c1 c2 ...))])))
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With either definition of cond, else is not recognized as an auxiliary keyword if an enclosing lexical
binding for else exists. For example,

(let ([else #f])
  (cond [else (write "oops")]))

does not write "oops", since else is bound lexically and is therefore not the same else that appears in the
definition of cond.

The following definition of unnamed let uses bound-identifier=? to detect duplicate identifiers.

(define-syntax let
  (lambda (x)
    (define ids?
      (lambda (ls)
        (or (null? ls)
            (and (identifier? (car ls)) (ids? (cdr ls))))))
    (define unique-ids?
      (lambda (ls)
        (or (null? ls)
            (and (not (memp
                        (lambda (x) (bound-identifier=? x (car ls)))
                        (cdr ls)))
                 (unique-ids? (cdr ls))))))
    (syntax-case x ()
      [(_ ((i e) ...) b1 b2 ...)
       (and (ids? #'(i ...)) (unique-ids? #'(i ...)))
       #'((lambda (i ...) b1 b2 ...) e ...)])))

With the definition of let above, the expression

(let ([a 3] [a 4]) (+ a a))

is a syntax violation, whereas

(let ([a 0])
  (let-syntax ([dolet (lambda (x)
                        (syntax-case x ()
                          [(_ b)
                           #'(let ([a 3] [b 4]) (+ a b))]))])
    (dolet a)))

evaluates to 7 since the identifier a introduced by dolet and the identifier a extracted from the input form
are not bound-identifier=?. Since both occurrences of a, however, if left as free references, would
refer to the same binding for a, free-identifier=? would not distinguish them.

Two identifiers that are free-identifier=? may not be bound-identifier=?. An identifier
introduced by a transformer may refer to the same enclosing binding as an identifier not introduced by the
transformer, but an introduced binding for one will not capture references to the other. On the other hand,
identifiers that are bound-identifier=? are free-identifier=?, as long as the identifiers have
valid bindings in the context where they are compared.

syntax: (with-syntax ((pattern expr) ...) body1 body2 ...)
returns: the values of the final body expression
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libraries: (rnrs syntax-case), (rnrs)

It is sometimes useful to construct a transformer's output in separate pieces, then put the pieces together.
with-syntax facilitates this by allowing the creation of local pattern bindings.

pattern is identical in form to a syntax-case pattern. The value of each expr is computed and
destructured according to the corresponding pattern, and pattern variables within the pattern are bound
as with syntax-case to appropriate portions of the value within the body body1 body2 ..., which is
processed and evaluated like a lambda body.

with-syntax may be defined as a syntactic extension in terms of syntax-case.

(define-syntax with-syntax
  (lambda (x)
    (syntax-case x ()
      [(_ ((p e) ...) b1 b2 ...)
       #'(syntax-case (list e ...) ()
           [(p ...) (let () b1 b2 ...)])])))

The following definition of full cond demonstrates the use of with-syntax to support transformers that
employ recursion internally to construct their output.

(define-syntax cond
  (lambda (x)
    (syntax-case x ()
      [(_ c1 c2 ...)
       (let f ([c1 #'c1] [cmore #'(c2 ...)])
         (if (null? cmore)
             (syntax-case c1 (else =>)
               [(else e1 e2 ...) #'(begin e1 e2 ...)]
               [(e0) #'(let ([t e0]) (if t t))]
               [(e0 => e1) #'(let ([t e0]) (if t (e1 t)))]
               [(e0 e1 e2 ...) #'(if e0 (begin e1 e2 ...))])
             (with-syntax ([rest (f (car cmore) (cdr cmore))])
               (syntax-case c1 (=>)
                 [(e0) #'(let ([t e0]) (if t t rest))]
                 [(e0 => e1) #'(let ([t e0]) (if t (e1 t) rest))]
                 [(e0 e1 e2 ...)
                  #'(if e0 (begin e1 e2 ...) rest)]))))])))

syntax: (quasisyntax template ...)
syntax: #`template
syntax: (unsyntax template ...)
syntax: #,template
syntax: (unsyntax-splicing template ...)
syntax: #,@template
returns: see below
libraries: (rnrs syntax-case), (rnrs)

#`template is equivalent to (quasisyntax template), while #,template is equivalent to
(unsyntax template), and #,@template to (unsyntax-splicing template). The
abbreviated forms are converted into the longer forms when the program is read, prior to macro expansion.

quasisyntax is similar to syntax, but it allows parts of the quoted text to be evaluated, in a manner
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similar to quasiquote (Section 6.1).

Within a quasisyntax template, subforms of unsyntax and unsyntax-splicing forms are
evaluated, and everything else is treated as ordinary template material, as with syntax. The value of each
unsyntax subform is inserted into the output in place of the unsyntax form, while the value of each
unsyntax-splicing subform is spliced into the surrounding list or vector structure. unsyntax and
unsyntax-splicing are valid only within quasisyntax expressions.

quasisyntax expressions may be nested, with each quasisyntax introducing a new level of syntax
quotation and each unsyntax or unsyntax-splicing taking away a level of quotation. An expression
nested within n quasisyntax expressions must be within n unsyntax or unsyntax-splicing
expressions to be evaluated.

quasisyntax can be used in place of with-syntax in many cases. For example, the following definition
of case employs quasisyntax to construct its output, using internal recursion in a manner similar to the
definition of cond given under the description of with-syntax above.

(define-syntax case
  (lambda (x)
    (syntax-case x ()
      [(_ e c1 c2 ...)
       #`(let ([t e])
           #,(let f ([c1 #'c1] [cmore #'(c2 ...)])
               (if (null? cmore)
                   (syntax-case c1 (else)
                     [(else e1 e2 ...) #'(begin e1 e2 ...)]
                     [((k ...) e1 e2 ...)
                      #'(if (memv t '(k ...)) (begin e1 e2 ...))])
                   (syntax-case c1 ()
                     [((k ...) e1 e2 ...)
                      #`(if (memv t '(k ...))
                            (begin e1 e2 ...)
                            #,(f (car cmore) (cdr cmore)))]))))])))

unsyntax and unsyntax-splicing forms that contain zero or more than one subform are valid only in
splicing (list or vector) contexts. (unsyntax template ...) is equivalent to
(unsyntax template) ..., and (unsyntax-splicing template ...) is equivalent to
(unsyntax-splicing template) .... These forms are primarily useful as intermediate forms in the
output of the quasisyntax expander. They support certain useful nested quasiquotation (quasisyntax)
idioms [3], such as #,@#,@, which has the effect of a doubly indirect splicing when used within a doubly
nested and doubly evaluated quasisyntax expression, as with the nested quasiquote examples shown
in Section 6.1.

unsyntax and unsyntax-splicing are auxiliary keywords for quasisyntax. It is a syntax violation
to reference these identifiers except in contexts where they are recognized as auxiliary keywords.

procedure: (make-variable-transformer procedure)
returns: a variable transformer
libraries: (rnrs syntax-case), (rnrs)

As described in the lead-in to this section, transformers may simply be procedures that accept one argument, a
syntax object representing the input form, and return a new syntax object representing the output form. The
form passed to a transformer usually represents a parenthesized form whose first subform is the keyword
bound to the transformer or just the keyword itself. make-variable-transformer may be used to
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convert a procedure into a special kind of transformer to which the expander also passes set! forms in which
the keyword appears just after the set! keyword, as if it were a variable to be assigned. This allows the
programmer to control what happens when the keyword appears in such contexts. The argument,
procedure, should accept one argument.

(let ([ls (list 0)])
  (define-syntax a
    (make-variable-transformer
      (lambda (x)
        (syntax-case x ()
          [id (identifier? #'id) #'(car ls)]
          [(set! _ e) #'(set-car! ls e)]
          [(_ e ...) #'((car ls) e ...)]))))
  (let ([before a])
    (set! a 1)
    (list before a ls)))  (0 1 (1))

This syntactic abstraction can be defined more succinctly using identifier-syntax, as shown in
Section 8.2, but make-variable-transformer can be used to create transformers that perform
arbitrary computations, while identifier-syntax is limited to simple term rewriting, like
syntax-rules. identifier-syntax can be defined in terms of make-variable-transformer,
as shown below.

(define-syntax identifier-syntax
  (lambda (x)
    (syntax-case x (set!)
      [(_ e)
       #'(lambda (x)
           (syntax-case x ()
             [id (identifier? #'id) #'e]
             [(_ x (... ...)) #'(e x (... ...))]))]
      [(_ (id exp1) ((set! var val) exp2))
       (and (identifier? #'id) (identifier? #'var))
       #'(make-variable-transformer
           (lambda (x)
             (syntax-case x (set!)
               [(set! var val) #'exp2]
               [(id x (... ...)) #'(exp1 x (... ...))]
               [id (identifier? #'id) #'exp1])))])))

procedure: (syntax->datum obj)
returns: obj stripped of syntactic information
libraries: (rnrs syntax-case), (rnrs)

The procedure syntax->datum strips all syntactic information from a syntax object and returns the
corresponding Scheme "datum." Identifiers stripped in this manner are converted to their symbolic names,
which can then be compared with eq?. Thus, a predicate symbolic-identifier=? might be defined as
follows.

(define symbolic-identifier=?
  (lambda (x y)
    (eq? (syntax->datum x)
         (syntax->datum y))))
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Two identifiers that are free-identifier=? need not be symbolic-identifier=?: two identifiers
that refer to the same binding usually have the same name, but the rename and prefix subforms of the
library's import form (page 345) may result in two identifiers with different names but the same binding.

procedure: (datum->syntax template-identifier obj)
returns: a syntax object
libraries: (rnrs syntax-case), (rnrs)

datum->syntax constructs a syntax object from obj that contains the same contextual information as
template-identifier, with the effect that the syntax object behaves as if it were introduced into the
code when template-identifier was introduced. The template identifier is often the keyword of an
input form, extracted from the form, and the object is often a symbol naming an identifier to be constructed.

datum->syntax allows a transformer to "bend" lexical scoping rules by creating implicit identifiers that
behave as if they were present in the input form, thus permitting the definition of syntactic extensions that
introduce visible bindings for or references to identifiers that do not appear explicitly in the input form. For
example, we can define a loop expression that binds the variable break to an escape procedure within the
loop body.

(define-syntax loop
  (lambda (x)
    (syntax-case x ()
      [(k e ...)
       (with-syntax ([break (datum->syntax #'k 'break)])
         #'(call/cc
             (lambda (break)
               (let f () e ... (f)))))])))

(let ([n 3] [ls '()])
  (loop
    (if (= n 0) (break ls))
    (set! ls (cons 'a ls))
    (set! n (- n 1))))  (a a a)

Were we to define loop as

(define-syntax loop
  (lambda (x)
    (syntax-case x ()
      [(_ e ...)
       #'(call/cc
           (lambda (break)
             (let f () e ... (f))))])))

the variable break would not be visible in e ....

It is also useful for obj to represent an arbitrary Scheme form, as demonstrated by the following definition of
include.

(define-syntax include
  (lambda (x)
    (define read-file
      (lambda (fn k)
        (let ([p (open-input-file fn)])
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          (let f ([x (read p)])
            (if (eof-object? x)
                (begin (close-port p) '())
                (cons (datum->syntax k x) (f (read p))))))))
    (syntax-case x ()
      [(k filename)
       (let ([fn (syntax->datum #'filename)])
         (with-syntax ([(expr ...) (read-file fn #'k)])
           #'(begin expr ...)))])))

(include "filename") expands into a begin expression containing the forms found in the file named
by "filename". For example, if the file f-def.ss contains the expression
(define f (lambda () x)), the expression

(let ([x "okay"])
  (include "f-def.ss")
  (f))

evaluates to "okay".

The definition of include uses datum->syntax to convert the objects read from the file into syntax
objects in the proper lexical context, so that identifier references and definitions within those expressions are
scoped where the include form appears.

procedure: (generate-temporaries list)
returns: a list of distinct generated identifiers
libraries: (rnrs syntax-case), (rnrs)

Transformers can introduce a fixed number of identifiers into their output by naming each identifier. In some
cases, however, the number of identifiers to be introduced depends upon some characteristic of the input
expression. A straightforward definition of letrec, for example, requires as many temporary identifiers as
there are binding pairs in the input expression. The procedure generate-temporaries is used to
construct lists of temporary identifiers.

list may be any list; its contents are not important. The number of temporaries generated is the number of
elements in list. Each temporary is guaranteed to be different from all other identifiers.

A definition of letrec that uses generate-temporaries is shown below.

(define-syntax letrec
  (lambda (x)
    (syntax-case x ()
      [(_ ((i e) ...) b1 b2 ...)
       (with-syntax ([(t ...) (generate-temporaries #'(i ...))])
         #'(let ([i #f] ...)
             (let ([t e] ...)
               (set! i t)
               ...
               (let () b1 b2 ...))))])))

Any transformer that uses generate-temporaries in this fashion can be rewritten to avoid using it,
albeit with a loss of clarity. The trick is to use a recursively defined intermediate form that generates one
temporary per expansion step and completes the expansion after enough temporaries have been generated.
Here is a definition of let-values (page 99) that uses this technique to support multiple sets of bindings.
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(define-syntax let-values
  (syntax-rules ()
    [(_ () f1 f2 ...) (let () f1 f2 ...)]
    [(_ ((fmls1 expr1) (fmls2 expr2) ...) f1 f2 ...)
     (lvhelp fmls1 () () expr1 ((fmls2 expr2) ...) (f1 f2 ...))]))

(define-syntax lvhelp
  (syntax-rules ()
    [(_ (x1 . fmls) (x ...) (t ...) e m b)
     (lvhelp fmls (x ... x1) (t ... tmp) e m b)]
    [(_ () (x ...) (t ...) e m b)
     (call-with-values
       (lambda () e)
       (lambda (t ...)
         (let-values m (let ([x t] ...) . b))))]
    [(_ xr (x ...) (t ...) e m b)
     (call-with-values
       (lambda () e)
       (lambda (t ... . tmpr)
         (let-values m (let ([x t] ... [xr tmpr]) . b))))]))

The implementation of lvhelp is complicated by the need to evaluate all of the right-hand-side expressions
before creating any of the bindings and by the need to support improper formals lists.

Section 8.4. Examples

This section presents a series of illustrative syntactic extensions defined with either syntax-rules or
syntax-case, starting with a few simple but useful syntactic extensions and ending with a fairly complex
mechanism for defining structures with automatically generated constructors, predicates, field accessors, and
field setters.

The simplest example in this section is the following definition of rec. rec is a syntactic extension that
permits internally recursive anonymous (not externally named) procedures to be created with minimal effort.

(define-syntax rec
  (syntax-rules ()
    [(_ x e) (letrec ([x e]) x)]))

(map (rec sum
       (lambda (x)
         (if (= x 0)
             0
             (+ x (sum (- x 1))))))
     '(0 1 2 3 4 5))  (0 1 3 6 10 15)

Using rec, we can define the full let (both unnamed and named) as follows.

(define-syntax let
  (syntax-rules ()
    [(_ ((x e) ...) b1 b2 ...)
     ((lambda (x ...) b1 b2 ...) e ...)]
    [(_ f ((x e) ...) b1 b2 ...)
     ((rec f (lambda (x ...) b1 b2 ...)) e ...)]))
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We can also define let directly in terms of letrec, although the definition is a bit less clear.

(define-syntax let
  (syntax-rules ()
    [(_ ((x e) ...) b1 b2 ...)
     ((lambda (x ...) b1 b2 ...) e ...)]
    [(_ f ((x e) ...) b1 b2 ...)
     ((letrec ([f (lambda (x ...) b1 b2 ...)]) f) e ...)]))

These definitions rely upon the fact that the first pattern cannot match a named let, since the first subform of
a named let must be an identifier, not a list of bindings. The following definition uses a fender to make this
check more robust.

(define-syntax let
  (lambda (x)
    (syntax-case x ()
      [(_ ((x e) ...) b1 b2 ...)
       #'((lambda (x ...) b1 b2 ...) e ...)]
      [(_ f ((x e) ...) b1 b2 ...)
       (identifier? #'f)
       #'((rec f (lambda (x ...) b1 b2 ...)) e ...)])))

With the fender, we can even put the clauses in the opposite order.

(define-syntax let
  (lambda (x)
    (syntax-case x ()
      [(_ f ((x e) ...) b1 b2 ...)
       (identifier? #'f)
       #'((rec f (lambda (x ...) b1 b2 ...)) e ...)]
      [(_ ((x e) ...) b1 b2 ...)
       #'((lambda (x ...) b1 b2 ...) e ...)])))

To be completely robust, the ids? and unique-ids? checks employed in the definition of unnamed let
in Section 8.3 should be employed here as well.

Both variants of let are easily described by simple one-line patterns, but do requires a bit more work. The
precise syntax of do cannot be expressed directly with a single pattern because some of the bindings in a do
expression's binding list may take the form (var val) while others take the form (var val update).
The following definition of do uses syntax-case internally to parse the bindings separately from the
overall form.

(define-syntax do
  (lambda (x)
    (syntax-case x ()
      [(_ (binding ...) (test res ...) expr ...)
       (with-syntax ([((var val update) ...)
                      (map (lambda (b)
                             (syntax-case b ()
                               [(var val) #'(var val var)]
                               [(var val update) #'(var val update)]))
                           #'(binding ...))])
         #'(let doloop ([var val] ...)
             (if test
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                 (begin (if #f #f) res ...)
                 (begin expr ... (doloop update ...)))))])))

The odd-looking expression (if #f #f) is inserted before the result expressions res ... in case no
result expressions are provided, since begin requires at least one subexpression. The value of (if #f #f)
is unspecified, which is what we want since the value of do is unspecified if no result expressions are
provided. At the expense of a bit more code, we could use syntax-case to determine whether any result
expressions are provided and to produce a loop with either a one- or two-armed if as appropriate. The
resulting expansion would be cleaner but semantically equivalent.

As mentioned in Section 8.2, ellipses lose their special meaning within templates of the form
(... template). This fact allows syntactic extensions to expand into syntax definitions containing
ellipses. This usage is illustrated by the definition below of be-like-begin.

(define-syntax be-like-begin
  (syntax-rules ()
    [(_ name)
     (define-syntax name
       (syntax-rules ()
         [(_ e0 e1 (... ...))
          (begin e0 e1 (... ...))]))]))

With be-like-begin defined in this manner, (be-like-begin sequence) has the same effect as
the following definition of sequence.

(define-syntax sequence
  (syntax-rules ()
    [(_ e0 e1 ...) (begin e0 e1 ...)]))

That is, a sequence form becomes equivalent to a begin form so that, for example:

(sequence (display "Say what?") (newline))

prints "Say what?" followed by a newline.

The following example shows how one might restrict if expressions within a given expression to require the
"else" (alternative) subexpression by defining a local if in terms of the built-in if. Within the body of the
let-syntax binding below, two-armed if works as always:

(let-syntax ([if (lambda (x)
                   (syntax-case x ()
                     [(_ e1 e2 e3)
                      #'(if e1 e2 e3)]))])
  (if (< 1 5) 2 3))  2

but one-armed if results in a syntax error.

(let-syntax ([if (lambda (x)
                   (syntax-case x ()
                     [(_ e1 e2 e3)
                      #'(if e1 e2 e3)]))])
  (if (< 1 5) 2)) syntax violation

Although this local definition of if looks simple enough, there are a few subtle ways in which an attempt to
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write it might go wrong. If letrec-syntax were used in place of let-syntax, the identifier if inserted
into the output would refer to the local if rather than the built-in if, and expansion would loop indefinitely.

Similarly, if the underscore were replaced with the identifier if, expansion would again loop indefinitely.
The if appearing in the template (if e1 e2 e3) would be treated as a pattern variable bound to the
corresponding identifier if from the input form, which denotes the local version of if.

Placing if in the list of literals in an attempt to patch up the latter version would not work either. This would
cause syntax-case to compare the literal if in the pattern, which would be scoped outside the
let-syntax expression, with the if in the input expression, which would be scoped inside the
let-syntax. Since they would not refer to the same binding, they would not be free-identifier=?,
and a syntax violation would result.

The conventional use of underscore ( _ ) helps the programmer avoid situations like these in which the wrong
identifier is matched against or inserted by accident.

It is a syntax violation to generate a reference to an identifier that is not present within the context of an input
form, which can happen if the "closest enclosing lexical binding" for an identifier inserted into the output of a
transformer does not also enclose the input form. For example,

(let-syntax ([divide (lambda (x)
                       (let ([/ +])
                         (syntax-case x ()
                           [(_ e1 e2) #'(/ e1 e2)])))])
  (let ([/ *]) (divide 2 1)))

should result in a syntax violation with a message to the effect that / is referenced in an invalid context, since
the occurrence of / in the output of divide is a reference to the variable / bound by the let expression
within the transformer.

The next example defines a define-integrable form that is similar to define for procedure
definitions except that it causes the code for the procedure to be integrated, or inserted, wherever a direct call
to the procedure is found.

(define-syntax define-integrable
  (syntax-rules (lambda)
    [(_ name (lambda formals form1 form2 ...))
     (begin
       (define xname (lambda formals form1 form2 ...))
       (define-syntax name
         (lambda (x)
           (syntax-case x ()
             [_ (identifier? x) #'xname]
             [(_ arg (... ...))
              #'((lambda formals form1 form2 ...)
                 arg
                 (... ...))]))))]))

The form (define-integrable name lambda-expression) expands into a pair of definitions: a
syntax definition of name and a variable definition of xname. The transformer for name converts apparent
calls to name into direct calls to lambda-expression. Since the resulting forms are merely direct
lambda applications (the equivalent of let expressions), the actual parameters are evaluated exactly once
and before evaluation of the procedure's body, as required. All other references to name are replaced with
references to xname. The definition of xname binds it to the value of lambda-expression. This allows
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the procedure to be used as a first-class value. The define-integrable transformer does nothing special
to maintain lexical scoping within the lambda expression or at the call site, since lexical scoping is
maintained automatically by the expander. Also, because xname is introduced by the transformer, the binding
for xname is not visible anywhere except where references to it are introduced by the the transformer for
name.

The above definition of define-integrable does not work for recursive procedures, since a recursive
call would cause an indefinite number of expansion steps, likely resulting in exhaustion of memory at
expansion time. A solution to this problem for directly recursive procedures is to wrap each occurrence of the
lambda expression with a let-syntax binding that unconditionally expands name to xname.

(define-syntax define-integrable
  (syntax-rules (lambda)
    [(_ name (lambda formals form1 form2 ...))
     (begin
       (define xname
         (let-syntax ([name (identifier-syntax xname)])
           (lambda formals form1 form2 ...)))
       (define-syntax name
         (lambda (x)
           (syntax-case x ()
             [_ (identifier? x) #'xname]
             [(_ arg (... ...))
              #'((let-syntax ([name (identifier-syntax xname)])
                   (lambda formals form1 form2 ...))
                  arg (... ...))]))))]))

This problem can be solved for mutually recursive procedures by replacing the let-syntax forms with the
nonstandard fluid-let-syntax form, which is described in the Chez Scheme User's Guide [9].

Both definitions of define-integrable treat the case where an identifier appears in the first position of a
structured expression differently from the case where it appears elsewhere, as does the pcar example given
in the description for identifier?. In other situations, both cases must be treated the same. The form
identifier-syntax can make doing so more convenient.

(let ([x 0])
  (define-syntax x++
    (identifier-syntax
      (let ([t x])
        (set! x (+ t 1)) t)))
  (let ([a x++]) (list a x)))  (0 1)

The following example uses identifier-syntax, datum->syntax, and local syntax definitions to
define a form of method, one of the basic building blocks of object-oriented programming (OOP) systems. A
method expression is similar to a lambda expression, except that in addition to the formal parameters and
body, a method expression also contains a list of instance variables (ivar ...). When a method is
invoked, it is always passed an object (instance), represented as a vector of fields corresponding to the
instance variables, and zero or more additional arguments. Within the method body, the object is bound
implicitly to the identifier self and the additional arguments are bound to the formal parameters. The fields
of the object may be accessed or altered within the method body via instance variable references or
assignments.

(define-syntax method
  (lambda (x)
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    (syntax-case x ()
      [(k (ivar ...) formals b1 b2 ...)
       (with-syntax ([(index ...)
                      (let f ([i 0] [ls #'(ivar ...)])
                        (if (null? ls)
                            '()
                            (cons i (f (+ i 1) (cdr ls)))))]
                     [self (datum->syntax #'k 'self)]
                     [set! (datum->syntax #'k 'set!)])
         #'(lambda (self . formals)
             (let-syntax ([ivar (identifier-syntax
                                  (vector-ref self index))]
                          ...)
               (let-syntax ([set!
                             (syntax-rules (ivar ...)
                               [(_ ivar e) (vector-set! self index e)]
                               ...
                               [(_ x e) (set! x e)])])
                 b1 b2 ...))))])))

Local bindings for ivar ... and for set! make the fields of the object appear to be ordinary variables,
with references and assignments translated into calls to vector-ref and vector-set!.
datum->syntax is used to make the introduced bindings of self and set! visible in the method body.
Nested let-syntax expressions are needed so that the identifiers ivar ... serving as auxiliary
keywords for the local version of set! are scoped properly.

By using the general form of identifier-syntax to handle set! forms more directly, we can simplify
the definition of method.

(define-syntax method
  (lambda (x)
    (syntax-case x ()
      [(k (ivar ...) formals b1 b2 ...)
       (with-syntax ([(index ...)
                      (let f ([i 0] [ls #'(ivar ...)])
                        (if (null? ls)
                            '()
                            (cons i (f (+ i 1) (cdr ls)))))]
                     [self (datum->syntax #'k 'self)])
         #'(lambda (self . formals)
             (let-syntax ([ivar (identifier-syntax
                                  [_ (vector-ref self index)]
                                  [(set! _ e)
                                   (vector-set! self index e)])]
                          ...)
               b1 b2 ...)))])))

The examples below demonstrate simple uses of method.

(let ([m (method (a) (x) (list a x self))])
  (m #(1) 2))  (1 2 #(1))

(let ([m (method (a) (x)
           (set! a x)
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           (set! x (+ a x))
           (list a x self))])
  (m #(1) 2))  (2 4 #(2))

In a complete OOP system based on method, the instance variables ivar ... would likely be drawn from
class declarations, not listed explicitly in the method forms, although the same techniques would be used to
make instance variables appear as ordinary variables within method bodies.

The final example of this section defines a simple structure definition facility that represents structures as
vectors with named fields. Structures are defined with define-structure, which takes the form

(define-structure name field ...)

where name names the structure and field ... names its fields. define-structure expands into a
series of generated definitions: a constructor make-name, a type predicate name?, and one accessor
name-field and setter set-name-field! per field name.

(define-syntax define-structure
  (lambda (x)
    (define gen-id
      (lambda (template-id . args)
        (datum->syntax template-id
          (string->symbol
            (apply string-append
              (map (lambda (x)
                     (if (string? x)
                         x
                         (symbol->string (syntax->datum x))))
                   args))))))
    (syntax-case x ()
      [(_ name field ...)
       (with-syntax ([constructor (gen-id #'name "make-" #'name)]
                     [predicate (gen-id #'name #'name "?")]
                     [(access ...)
                      (map (lambda (x) (gen-id x #'name "-" x))
                           #'(field ...))]
                     [(assign ...)
                      (map (lambda (x)
                             (gen-id x "set-" #'name "-" x "!"))
                           #'(field ...))]
                     [structure-length (+ (length #'(field ...)) 1)]
                     [(index ...)
                      (let f ([i 1] [ids #'(field ...)])
                        (if (null? ids)
                            '()
                            (cons i (f (+ i 1) (cdr ids)))))])
         #'(begin
             (define constructor
               (lambda (field ...)
                 (vector 'name field ...)))
             (define predicate
               (lambda (x)
                 (and (vector? x)
                      (= (vector-length x) structure-length)
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                      (eq? (vector-ref x 0) 'name))))
             (define access
               (lambda (x)
                 (vector-ref x index)))
             ...
             (define assign
               (lambda (x update)
                 (vector-set! x index update)))
             ...))])))

The constructor accepts as many arguments as there are fields in the structure and creates a vector whose first
element is the symbol name and whose remaining elements are the argument values. The type predicate
returns true if its argument is a vector of the expected length whose first element is name.

Since a define-structure form expands into a begin containing definitions, it is itself a definition and
can be used wherever definitions are valid.

The generated identifiers are created with datum->syntax to allow the identifiers to be visible where the
define-structure form appears.

The examples below demonstrate the use of define-structure.

(define-structure tree left right)
(define t
  (make-tree
    (make-tree 0 1)
    (make-tree 2 3)))

t  #(tree #(tree 0 1) #(tree 2 3))
(tree? t)  #t
(tree-left t)  #(tree 0 1)
(tree-right t)  #(tree 2 3)
(set-tree-left! t 0)
t  #(tree 0 #(tree 2 3))
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Chapter 9. Records
This chapter describes the means by which the programmer may define new data types, or records types, each
distinct from all other types. A record type determines the number and names of the fields each instance of the
type has. Records are defined via the define-record-type form or the
make-record-type-descriptor procedure.

Section 9.1. Defining Records

A define-record-type form defines a record type and, along with it, a constructor procedure for
records of the type, a type predicate that returns true only for records of the type, an access procedure for each
field, and an assignment procedure for each mutable field. For example, the definition

(define-record-type point (fields x y))

creates a point record type with two fields, x and y, and defines the following procedures:

(make-point x y) constructor
(point? obj) predicate
(point-x p) accessor for field x
(point-y p) accessor for field y
With this definition in place, we can use these procedures to create and manipulate records of the point
type, as illustrated below.

(define p (make-point 36 -17))
(point? p)  #t
(point? '(cons 36 -17))  #f
(point-x p)  36
(point-y p)  -17

Fields are immutable by default, but may be declared mutable. In the alternate definition of point below, the
x field is mutable while y remains immutable.

(define-record-type point (fields (mutable x) y))

In this case, define-record-type defines a mutator for the x field in addition to the other products
shown above.

(point-x-set! p x) mutator for field x
The mutator can be used to change the contents of the x field.

(define p (make-point 36 -17))
(point-x-set! p (- (point-x p) 12))
(point-x p)  24

A field may be declared immutable explicitly for clarity; the definition of point below is equivalent to the
second definition above.

(define-record-type point (fields (mutable x) (immutable y)))

The names of the procedures defined by define-record-type follow the regular naming convention
illustrated by the examples above, by default, but the programmer can override the defaults if desired. With
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the following definition of point, the constructor is mkpoint, the predicate is ispoint?, and the
accessors for x and y are x-val and y-val. The mutator for x is set-x-val!.

(define-record-type (point mkpoint ispoint?)
  (fields (mutable x x-val set-x-val!)
          (immutable y y-val)))

By default, a record definition creates a new type each time it is evaluated, as illustrated by the example
below.

(define (f p)
  (define-record-type point (fields x y))
  (if (eq? p 'make) (make-point 3 4) (point? p)))
(f (f 'make))  #f

The first (inner) call to f returns a point p, which is passed to f in the second (outer) call, which applies
point? to p. This point? is looking for points of the type created by the second call, while p is a point of
the type created by the first call. So point? returns #f.

This default generative behavior may be overridden by including a nongenerative clause in the record
definition.

(define (f p)
  (define-record-type point (fields x y) (nongenerative))
  (if (eq? p 'make) (make-point 3 4) (point? p)))
(define p (f 'make))
(f p)  #t

Record types created in this manner are still distinct from record types created by a definition appearing in a
different part of the program, even if the definitions are syntactically identical:

(define (f)
  (define-record-type point (fields x y) (nongenerative))
  (make-point 3 4))
(define (g p)
  (define-record-type point (fields x y) (nongenerative))
  (point? p))
(g (f))  #f

Even this can be overridden by including a uid (unique id) in the nongenerative clause:

(define (f)
  (define-record-type point (fields x y)
    (nongenerative really-the-same-point))
  (make-point 3 4))
(define (g p)
  (define-record-type point (fields x y)
    (nongenerative really-the-same-point))
  (point? p))
(g (f))  #t

The uid may be any identifier, but programmers are encouraged to select uids from the RFC 4122 UUID
namespace [20], possibly with the record-type name as a prefix.
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A record type may be defined as a subtype of an existing "parent" type with a parent clause that declares
the name of the existing record type. If a parent is specified, the new "child" record type inherits the parent
record's fields, and each instance of the child type is considered to be an instance of the parent type, so that
accessors and mutators for the parent type may be used on instances of the child type.

(define-record-type point (fields x y))
(define-record-type cpoint (parent point) (fields color))

The child type has all of the fields of the parent type, plus the additional fields declared in the child's
definition. This is reflected in the constructor for cpoint, which now takes three arguments, with the parent
arguments followed by the child argument.

(define cp (make-cpoint 3 4 'red))

A record of the child type is considered a record of the parent type, but a record of the parent type is not a
record of the new type.

(point? (make-cpoint 3 4 'red))  #t
(cpoint? (make-point 3 4))  #f

Only one new accessor is created for cpoint, the one for the new field color. The existing accessors and
mutators for the parent type may be used to access and modify the parent fields of the child type.

(define cp (make-cpoint 3 4 'red))
(point-x cp)  3
(point-y cp)  4
(cpoint-color cp)  red

As the examples given so far illustrate, the default constructor defined by define-record-type accepts
as many arguments as the record has fields, including parent fields, and parent's parent fields, and so on. The
programmer may override the default and specify the arguments to the constructor for the new type and how it
determines the initial values of the constructed record's fields, via the protocol clause. The following
definition creates a point record with three fields: x, y, and d, where d represents the displacement from the
origin. The constructor still takes only two arguments, the x and y values, and initializes d to the square root
of the sum of the squares of x and y.

(define-record-type point
  (fields x y d)
  (protocol
    (lambda (new)
      (lambda (x y)
        (new x y (sqrt (+ (* x x) (* y y))))))))

(define p (make-point 3 4))
(point-x p)  3
(point-y p)  4
(point-d p)  5

The procedure value of the expression within the protocol clause receives as an argument a primitive
constructor new and returns a final constructor c. There are essentially no limits on what c is allowed to do,
but if it returns, it should return the result of calling new. Before it does so, it may modify the new record
instance (if the record type has mutable fields), register it with some external handler, print messages, etc. In
this case, c accepts two arguments, x and y, and applies new to x, y, and the result of computing the origin
displacement based on x and y.
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If a parent record is specified, the construction protocol becomes more involved. The following definition of
cpoint assumes that point has been defined as shown just above.

(define-record-type cpoint
  (parent point)
  (fields color)
  (protocol
    (lambda (pargs->new)
      (lambda (c x y)
        ((pargs->new x y) c)))))

(define cp (make-cpoint 'red 3 4))
(point-x cp)  3
(point-y cp)  4
(point-d cp)  5
(cpoint-color cp)  red

Because a parent clause is present, the procedure value of the expression within the protocol clause
receives a procedure pargs->new that, when applied to parent arguments, returns a new procedure. The
new procedure, when passed the values of the child fields, returns the result of applying the parent protocol to
an appropriate new procedure of its own. In this case, pargs->new is passed the values of the child
constructor's second and third arguments (the x and y values) and the resulting new procedure is passed the
value of the child constructor's first argument (the color). Thus, the protocol supplied in this example
effectively reverses the normal order of arguments in which the parent arguments come before the child
arguments, while arranging to pass along the arguments needed by the parent protocol.

The default protocol is equivalent to

(lambda (new) new)

for record types with no parents, while for record types with parents, the default protocol is equivalent to the
following

(lambda (pargs->new)
  (lambda (x1 ... xn y1 ... ym)
    ((pargs->new x1 ... xn) y1 ... ym)))

where n is the number of parent (including grandparent, etc.) fields and m is the number of child fields.

Use of the protocol clause insulates the child record definition from some changes to the parent record
type. The parent definition may be modified to add or remove fields, or even add, remove, or change a parent,
yet the child protocol and constructor need not change as long as the parent protocol does not change.

Additional details and options for define-record-type are given in its formal description below.

syntax: (define-record-type record-name clause ...)
syntax: (define-record-type (record-name constructor pred) clause ...)
libraries: (rnrs records syntactic), (rnrs)

A define-record-type form, or record definition, is a definition and may appear anywhere other
definitions may appear. It defines a record type identified by record-name, plus a predicate, constructor,
accessors, and mutators for the record type. If the record definition takes the first form above, the names of the
constructor and predicate are derived from record-name: make-record-name for the constructor and
record-name? for the predicate. If the record definition takes the second form above, the name of the
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constructor is constructor and the name of the predicate is pred. All names defined by a record
definition are scoped where the record definition appears.

The clauses clause ... of the record definition determine the fields of the record type and the names of
their accessors and mutators; its parent type, if any; its construction protocol; whether it is nongenerative and,
if so, whether its uid is specified; whether it is sealed; and whether it is opaque. The syntax and impact of each
clause is described below.

None of the clauses is required; thus, the simplest record definition is

(define-record-type record-name)

which defines a new, generative, non-sealed, non-opaque record type with no parent and no fields, plus a
constructor of no arguments and a predicate.

At most one of each kind of clause may be present in the set of clauses, and if a parent clause is present, a
parent-rtd clause must not be present. The clauses that appear may appear in any order.

Fields clause.  A (fields field-spec ...) clause declares the fields of the record type. Each
field-spec must take one of the following forms:

field-name
(immmutable field-name)
(mutable field-name)
(immmutable field-name accessor-name)
(mutable field-name accessor-name mutator-name)

where field-name, accessor-name, and mutator-name are identifiers. The first form,
field-name, is equivalent to (immutable field-name). The value of a field declared immutable
may not be changed, and no mutator is created for it. With the first three forms, the name of the accessor is
rname-fname, where rname is the record name and fname is the field name. With the third form, the
name of the accessor is rname-fname-set!. The fourth and fifth forms explicitly declare the accessor and
mutator names.

If no fields clause is present or the list field-spec ... is empty, the record type has no fields (other
than parent fields, if any).

Parent clause.  A (parent parent-name) clause declares the parent record type; parent-name must
be the name of a non-sealed record type previously defined via define-record-type. Instances of a
record type are also considered instances of its parent record type and have all the fields of its parent record
type in addition to those declared via the fields clause.

Nongenerative clause.  A nongenerative clause may take one of two forms:

(nongenerative)
(nongenerative uid)

where uid is a symbol. The first form is equivalent to the second, with a uid generated by the implementation
at macro-expansion time. When a define-record-type form with a nongenerative clause is evaluated, a
new type is created if and only if the uid is not the uid of an existing record type.

If it is the uid of an existing record type, the parent, field-names, sealed property, and opaque property must
match as follows.
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If a parent is specified, the existing record type must have the same parent rtd (by eqv?). If a parent
is not specified, the existing record type must not have a parent.

• 

The same number of fields must be provided, with the same names and in the same order, and the
mutability of each field must be the same.

• 

If a (sealed #t) clause is present, the existing record type must be sealed. Otherwise, the existing
record type must not be sealed.

• 

If an (opaque #t) clause is present, the existing record type must be opaque. Otherwise, the
existing record type must be opaque if and only if an opaque parent type is specified.

• 

If these constraints are met, no new record type is created, and the other products of the record-type definition
(constructor, predicate, accessors, and mutators) operate on records of the existing type. If these constraints
are not met, the implementation may treat it as a syntax violation, or it may raise a run-time exception with
condition type &assertion.

With the first form of nongenerative clause, the generated uid can be the uid of an existing record type
only if the same definition is executed multiple times, e.g., if it appears in the body of a procedure that is
invoked multiple times.

If uid is not the uid of an existing record type, or if no nongenerative clause is present, a new record
type is created.

Protocol clause.  A (protocol expression) determines the protocol that the generated constructor
uses to construct instances of the record type. It must evaluate to a procedure, and this procedure should be an
appropriate protocol for the record type, as described on page 326.

Sealed clause. A sealed clause of the form (sealed #t) declares that the record type is sealed. This
means that it cannot be extended, i.e., cannot be used as the parent for another record definition or
make-record-type-descriptor call. If no sealed clause is present or if one of the form
(sealed #f) is present, the record type is not sealed.

Opaque clause. An opaque clause of the form (opaque #t) declares that the record type is opaque.
Instances of an opaque record type are not considered records by the record? predicate or, more
importantly, the rtd-extraction procedure record-rtd, which are both described in Section 9.3. Thus, it is
not possible for code that does not have access to the record-name, accessors, or mutators to access or
modify any of the fields of an opaque record type. A record type is also opaque if its parent is opaque. If no
opaque clause is present or if one of the form (opaque #f) is present, and the parent, if any, is not
opaque, the record type is not opaque.

Parent-rtd clause.  A (parent-rtd parent-rtd parent-rcd) clause is an alternative to the
parent clause for specifying the parent record type, along with a parent record constructor descriptor. It is
primarily useful when the parent rtd and rcd were obtained via calls to
make-record-type-descriptor and make-record-constructor-descriptor.

parent-rtd must evaluate to an rtd or #f. If parent-rtd evaluates to #f, parent-rcd must also
evaluate to #f. Otherwise, parent-rcd must evaluate to an rcd or #f. If parent-rcd evaluates to an
rcd, it must encapsulate an rtd equivalent (by eqv?) to the value of parent-rtd. If the value of
parent-rcd is #f, it is treated as an rcd for the value of parent-rtd with a default protocol.

The define-record-type form is designed in such a way that it is normally possible for a compiler to
determine the shapes of the record types it defines, including the offsets for all fields. This guarantee does not
hold, however, when the parent-rtd clause is used, since the parent rtd might not be determinable until
run time. Thus, the parent clause is preferred over the parent-rtd clause whenever the parent clause
suffices.
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syntax: fields
syntax: mutable
syntax: immutable
syntax: parent
syntax: protocol
syntax: sealed
syntax: opaque
syntax: nongenerative
syntax: parent-rtd
libraries: (rnrs records syntactic), (rnrs)

These identifiers are auxiliary keywords for define-record-type. It is a syntax violation to reference
these identifiers except in contexts where they are recognized as auxiliary keywords.

Section 9.2. Procedural Interface

The procedural (make-record-type-descriptor) interface may also be used to create new record
types. The procedural interface is more flexible than the syntactic interface, but this flexibility can lead to less
readable and efficient programs, so programmers should use the syntactic interface whenever it suffices.

procedure: (make-record-type-descriptor name parent uid s? o? fields)
returns: a record-type descriptor (rtd) for a new or existing record type
libraries: (rnrs records procedural), (rnrs)

name must be a symbol, parent must be #f or the rtd of a non-sealed record type, uid must be #f or a
symbol, and fields must be a vector, each element of which is a two-element list of the form
(mutable field-name) or (immutable field-name). The field names field-name ...
must be symbols and need not be distinct from each other.

If uid is #f or is not the uid of an existing record type, this procedure creates a new record type and returns a
record-type descriptor (rtd) for the new type. The type has the parent type (page 325) described by parent,
if nonfalse; the uid specified by uid, if nonfalse; and the fields specified by fields. It is sealed (page 330)
if s? is nonfalse. It is opaque (page 330) if opaque is nonfalse or the parent (if specified) is opaque. The
name of the new record type is name and the names of the fields are field-name ....

If uid is nonfalse and is the uid (page 325) of an existing record type, the parent, fields, s?, and o?
arguments must match the corresponding characteristics of the existing record type. That is, parent must be
the same (by eqv?); the number of fields must be the same; the fields must have the same names, be in the
same order, and have the same mutability; s? must be false if and only if the existing record type is sealed;
and, if a parent is not specified or is not opaque, o? must be false if and only if the existing record type is
opaque. If this is the case, make-record-type-descriptor returns the rtd for the existing record type.
Otherwise, an exception with condition type &assertion is raised.

Using the rtd returned by make-record-type-descriptor, programs can generate constructors, type
predicates, field accessors, and field mutators dynamically. The following code demonstrates how the
procedural interface might be used to create a point record type and associated definitions similar to those
of the second point record definition in Section 9.1, with a mutable x field and an immutable y field.

(define point-rtd (make-record-type-descriptor 'point #f #f #f #f
                '#((mutable x) (immutable y))))
(define point-rcd (make-record-constructor-descriptor point-rtd
                    #f #f))
(define make-point (record-constructor point-rcd))
(define point? (record-predicate point-rtd))
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(define point-x (record-accessor point-rtd 0))
(define point-y (record-accessor point-rtd 1))
(define point-x-set! (record-mutator point-rtd 0))

See the additional examples given at the end of this section.

procedure: (record-type-descriptor? obj)
returns: #f if obj is a record-type descriptor, otherwise #f
libraries: (rnrs records procedural), (rnrs)

See the examples given at the end of this section.

procedure: (make-record-constructor-descriptor rtd parent-rcd protocol)
returns: a record-constructor descriptor (rcd)
libraries: (rnrs records procedural), (rnrs)

An rtd alone is sufficient to create predicates, accessors, and mutators. To create a constructor, however, it is
first necessary to create a record-constructor descriptor (rcd) for the record type. An rcd encapsulates three
pieces of information: the rtd of the record type for which the rcd has been created, the parent rcd (if any), and
the protocol.

The parent-rcd argument must be an rcd or #f. If it is an rcd, rtd must have a parent rtd, and the parent
rtd must be the same as the rtd encapsulated within parent-rcd. If parent-rcd is false, either rtd has
no parent or an rcd with a default protocol is assumed for the parent.

The protocol argument must be a procedure or #f. If it is #f, a default protocol is assumed. Protocols are
discussed on page 326.

See the examples given at the end of this section.

syntax: (record-type-descriptor record-name)
returns: the rtd for the record type identified by record-name
syntax: (record-constructor-descriptor record-name)
returns: the rcd for the record type identified by record-name
libraries: (rnrs records syntactic), (rnrs)

Each record definition creates, behind the scenes, an rtd and rcd for the defined record type. These procedures
allow the rtd and rcd to be obtained and used like any other rtd or rcd. record-name must be the name of a
record previously defined via define-record-type.

procedure: (record-constructor rcd)
returns: a record constructor for the record type encapsulated within rcd
libraries: (rnrs records procedural), (rnrs)

The behavior of the record constructor is determined by the protocol and parent rcd (if any) also encapsulated
within rcd.

See the examples given at the end of this section.

procedure: (record-predicate rtd)
returns: a predicate for rtd
libraries: (rnrs records procedural), (rnrs)

This procedure returns a predicate that accepts one argument and returns #t if the argument is an instance of
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the record-type described by rtd, #f otherwise.

See the examples given at the end of this section.

procedure: (record-accessor rtd idx)
returns: an accessor for the field of rtd specified by idx
libraries: (rnrs records procedural), (rnrs)

idx must be a nonnegative integer less than the number of fields of rtd, not counting parent fields. An idx
value of 0 specifies the first field given in the define-record-type form or
make-record-type-descriptor call that created the record type, 1 specifies the second, and so on.

A child rtd cannot be used directly to create accessors for parent fields. To create an accessor for a parent
field, the record-type descriptor of the parent must be used instead.

See the examples given at the end of this section.

procedure: (record-mutator rtd idx)
returns: a mutator for the field of rtd specified by idx
libraries: (rnrs records procedural), (rnrs)

idx must be a nonnegative integer less than the number of fields of rtd, not counting parent fields. An idx
value of 0 specifies the first field given in the define-record-type form or
make-record-type-descriptor call that created the record type, 1 specifies the second, and so on.
The indicated field must be mutable; otherwise, an exception with condition type &assertion is raised.

A child rtd cannot be used directly to create mutators for parent fields. To create a mutator for a parent field,
the record-type descriptor of the parent must be used instead.

The following example illustrates the creation of parent and child record types, predicates, accessors,
mutators, and constructors using the procedures described in this section.

(define rtd/parent
  (make-record-type-descriptor 'parent #f #f #f #f
    '#((mutable x))))

(record-type-descriptor? rtd/parent)  #t
(define parent? (record-predicate rtd/parent))
(define parent-x (record-accessor rtd/parent 0))
(define set-parent-x! (record-mutator rtd/parent 0))

(define rtd/child
  (make-record-type-descriptor 'child rtd/parent #f #f #f
    '#((mutable x) (immutable y))))

(define child? (record-predicate rtd/child))
(define child-x (record-accessor rtd/child 0))
(define set-child-x! (record-mutator rtd/child 0))
(define child-y (record-accessor rtd/child 1))

(record-mutator rtd/child 1) exception: immutable field

(define rcd/parent
  (make-record-constructor-descriptor rtd/parent #f
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    (lambda (new) (lambda (x) (new (* x x))))))

(record-type-descriptor? rcd/parent)  #f

(define make-parent (record-constructor rcd/parent))

(define p (make-parent 10))
(parent? p)  #t
(parent-x p)  100
(set-parent-x! p 150)
(parent-x p)  150

(define rcd/child
  (make-record-constructor-descriptor rtd/child rcd/parent
    (lambda (pargs->new)
      (lambda (x y)
        ((pargs->new x) (+ x 5) y)))))

(define make-child (record-constructor rcd/child))
(define c (make-child 10 'cc))
(parent? c)  #t
(child? c)  #t
(child? p)  #f

(parent-x c)  100
(child-x c)  15
(child-y c)  cc

(child-x p) exception: invalid argument type

Section 9.3. Inspection

This section describes various procedures for asking questions about or extracting information from
record-type descriptors (rtds). It also describes the record-rtd procedure, with which the rtd of a
non-opaque record instance may be extracted, allowing the record type of the instance to be inspected and, via
record accessors and mutators generated from the rtd, the record itself to be inspected or modified. This is a
powerful feature that permits the coding of portable record printers and inspectors.

The record-type descriptor cannot be extracted from an instance of an opaque record type; this is the feature
that distinguishes opaque from non-opaque record types.

procedure: (record-type-name rtd)
returns: the name associated with rtd
libraries: (rnrs records inspection), (rnrs)

(define record->name
  (lambda (x)
    (and (record? x) (record-type-name (record-rtd x)))))

(define-record-type dim (fields w l h))
(record->name (make-dim 10 15 6))  dim

(define-record-type dim (fields w l h) (opaque #t))
(record->name (make-dim 10 15 6))  #f
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procedure: (record-type-parent rtd)
returns: the parent of rtd, or #f if it has no parent
libraries: (rnrs records inspection), (rnrs)

(define-record-type point (fields x y))
(define-record-type cpoint (parent point) (fields color))
(record-type-parent (record-type-descriptor point))  #f
(record-type-parent (record-type-descriptor cpoint))  #<rtd>

procedure: (record-type-uid rtd)
returns: the uid of rtd, or #f if it has no uid
libraries: (rnrs records inspection), (rnrs)

Whether a record type created without a programmer-supplied uid actually has one anyway is left up to the
implementation, so this procedure is never guaranteed to return #f.

(define-record-type point (fields x y))
(define-record-type cpoint
  (parent point)
  (fields color)
  (nongenerative e40cc926-8cf4-4559-a47c-cac636630314))
(record-type-uid (record-type-descriptor point)) unspecified
(record-type-uid (record-type-descriptor cpoint)) 
                             e40cc926-8cf4-4559-a47c-cac636630314

procedure: (record-type-generative? rtd)
returns: #t if the record type described by rtd is generative, #f otherwise
procedure: (record-type-sealed? rtd)
returns: #t if the record type described by rtd is sealed, #f otherwise
procedure: (record-type-opaque? rtd)
returns: #t if the record type described by rtd is opaque, #f otherwise
libraries: (rnrs records inspection), (rnrs)

(define-record-type table
  (fields keys vals)
  (opaque #t))
(define rtd (record-type-descriptor table))
(record-type-generative? rtd)  #t
(record-type-sealed? rtd)  #f
(record-type-opaque? rtd)  #t

(define-record-type cache-table
  (parent table)
  (fields key val)
  (nongenerative))
(define rtd (record-type-descriptor cache-table))
(record-type-generative? rtd)  #f
(record-type-sealed? rtd)  #f
(record-type-opaque? rtd)  #t

procedure: (record-type-field-names rtd)
returns: a vector containing the names of the fields of the type described by rtd
libraries: (rnrs records inspection), (rnrs)
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The vector returned by this procedure is immutable: the effect on rtd of modifying it is unspecified. The
vector does not include parent field names. The order of the names in the vector is the same as the order in
which the fields were specified in the define-record-type form or
make-record-type-descriptor call that created the record type.

(define-record-type point (fields x y))
(define-record-type cpoint (parent point) (fields color))
(record-type-field-names
  (record-type-descriptor point))  #(x y)
(record-type-field-names
  (record-type-descriptor cpoint))  #(color)

procedure: (record-field-mutable? rtd idx)
returns: #t if the specified field of rtd is mutable, #f otherwise
libraries: (rnrs records inspection), (rnrs)

idx must be a nonnegative integer less than the number of fields of rtd, not counting parent fields. An idx
value of 0 specifies the first field given in the define-record-type form or
make-record-type-descriptor call that created the record type, 1 specifies the second, and so on.

(define-record-type point (fields (mutable x) (mutable y)))
(define-record-type cpoint (parent point) (fields color))

(record-field-mutable? (record-type-descriptor point) 0)  #t
(record-field-mutable? (record-type-descriptor cpoint) 0)  #f

procedure: (record? obj)
returns: #t if obj is a non-opaque record instance, #f otherwise
libraries: (rnrs records inspection), (rnrs)

When passed an instance of an opaque record type, record? returns #f. While an instance of an opaque
record type is, in essence, a record, the point of opacity is to hide all representation information from the parts
of a program that should not have access to the information, and this includes whether an object is a record.
Furthermore, the primary purpose of this predicate is to allow programs to check whether it is possible to
obtain from the argument an rtd via the record-rtd procedure described below.

(define-record-type statement (fields str))
(define q (make-statement "He's dead, Jim"))
(statement? q)  #t
(record? q)  #t

(define-record-type opaque-statement (fields str) (opaque #t))
(define q (make-opaque-statement "He's moved on, Jim"))
(opaque-statement? q)  #t
(record? q)  #f

procedure: (record-rtd record)
returns: the record-type descriptor (rtd) of record
libraries: (rnrs records inspection), (rnrs)

The argument must be an instance of a non-opaque record type. In combination with some of the other
procedures described in this section and Section 9.2, record-rtd allows the inspection or mutation of
record instances, even if the type of the instance is unknown to the inspector. This capability is illustrated by
the procedure print-fields below, which accepts a record argument and writes the name and value of

The Scheme Programming Language, 4th Edition

260 Section 9.3. Inspection



each field of the record.

(define print-fields
  (lambda (r)
    (unless (record? r)
      (assertion-violation 'print-fields "not a record" r))
    (let loop ([rtd (record-rtd r)])
      (let ([prtd (record-type-parent rtd)])
        (when prtd (loop prtd)))
      (let* ([v (record-type-field-names rtd)]
             [n (vector-length v)])
        (do ([i 0 (+ i 1)])
            ((= i n))
          (write (vector-ref v i))
          (display "=")
          (write ((record-accessor rtd i) r))
          (newline))))))

With the familiar definitions of point and cpoint:

(define-record-type point (fields x y))
(define-record-type cpoint (parent point) (fields color))

the expression (print-fields (make-cpoint -3 7 'blue)) displays the following three lines.

x=-3
y=7
color=blue
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Chapter 10. Libraries and Top-Level Programs
Libraries and top-level programs are the basic units of portable code in the language defined by the Revised6
Report on Scheme [24]. Top-level programs may import from one or more libraries, and libraries may import
from other libraries.

Libraries are named using a parenthesized syntax that encloses a sequence of identifiers, optionally followed
by a version; the version is itself a parenthesized form that encloses a sequence of subversions represented as
exact nonnegative integers. So, for example, (a), (a b), (a b ()), and (a b (1 2 3)) are all valid
library names. Implementations typically treat the sequence of names as a path by which a library's source or
object code can be found, possibly rooted in some standard set of locations in the host-machine's filesystem.

An implementation of the standard library mechanism is available with the portable implementation of
syntax-case at http://www.cs.indiana.edu/syntax-case/.

Section 10.1. Standard Libraries

The Revised6 Report [24] describes a base library

  (rnrs base (6))

that defines the most commonly used features of the language. A separate Standard Libraries document [26]
describes the libraries listed below.

  (rnrs arithmetic bitwise (6))
  (rnrs arithmetic fixnums (6))
  (rnrs arithmetic flonums (6))
  (rnrs bytevectors (6))
  (rnrs conditions (6))
  (rnrs control (6))
  (rnrs enums (6))
  (rnrs eval (6))
  (rnrs exceptions (6))
  (rnrs files (6))
  (rnrs hashtables (6))
  (rnrs io ports (6))
  (rnrs io simple (6))
  (rnrs lists (6))
  (rnrs mutable-pairs (6))
  (rnrs mutable-strings (6))
  (rnrs programs (6))
  (rnrs r5rs (6))
  (rnrs records procedural (6))
  (rnrs records syntactic (6))
  (rnrs records inspection (6))
  (rnrs sorting (6))
  (rnrs syntax-case (6))
  (rnrs unicode (6))

One more library is described in the Standard Libraries document, a composite library

  (rnrs (6))
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that exports all of the (rnrs base (6)) bindings along with those of the other libraries listed above,
except those of (rnrs eval (6)), (rnrs mutable-pairs (6)),
(rnrs mutable-strings (6)), and (rnrs r5rs (6)).

Although each of these libraries has the version (6), references to them can and in most cases should leave
the version out, e.g., the composite library should be referenced simply as (rnrs).

Section 10.2. Defining New Libraries

New libraries are defined with the library form, which has the following syntax.

(library library-name
  (export export-spec ...)
  (import import-spec ...)

library-body)

A library-name specifies the name and possibly version by which the library is identified by the import
form of another library or top-level program. It also serves as kind of path that the implementation uses to
locate the library, via some implementation-specific process, whenever it needs to be loaded. A
library-name has one of the following two forms:

(identifier identifier ...)
(identifier identifier ... version)

where version has the following form:

(subversion ...)

and each subversion represents an exact nonnegative integer. A library name with no version is treated
the same as a library name with the empty version (). For example, (list-tools setops) and
(list-tools setops ()) are equivalent and specify a library name with no version, while
(list-tools setops (1 2)) specifies a versioned library name, which can be thought of as
Version 1.2 of the (list-tools setops) library.

The export subform names the exports and, optionally, the names by which they should be known outside
of the library. Each export-spec takes one of the following two forms:

identifier
(rename (internal-name export-name) ...)

where each internal-name and export-name is an identifier. The first form names a single export,
identifier, whose export name is the same as its internal name. The second names a set of exports, each
of whose export name is given explicitly and may differ from its internal name.

The import subform names the other libraries upon which the new library depends and, possibly, the set of
identifiers to be imported and the names by which they should be known inside the new library. It may also
specify when the bindings should be made available for implementations that require such information. Each
import-spec takes one of the following two forms:

import-set
(for import-set import-level ...)

where import-level is one of the following:
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run
expand
(meta level)

and level represents an exact integer.

The for syntax declares when the imported bindings might be used by the importing library and thus when
the implementation must make the bindings available. run and (meta 0) are equivalent and specify that
the bindings imported from a library might be referenced by the run-time expressions (define
right-hand-side expressions and initialization expressions) of the importing library. expand and (meta 1)
are equivalent and specify that the bindings imported from a library might be referenced by the transformer
expressions (define-syntax, let-syntax, or letrec-syntax right-hand-side expressions) of the
importing library. (meta 2) specifies that the bindings imported from a library might be referenced by a
transformer expression that appears within a transformer expression of the importing library, and so on for
higher meta levels. Negative meta levels may also be specified and are needed in certain circumstances when
a transformer expands into the transformer for another keyword binding used at a lower meta level.

A library export may have a non-zero export meta level, in which case the effective import level is the sum of
the level specified by for and the export level. The exports of each standard library except (rnrs base)
and (rnrs) have export level zero. For (rnrs base), all exports have export level zero except for
syntax-rules, identifier-syntax, and their auxiliary keywords _, ..., and set!. set! has
export levels zero and one, while the others have export level one. All exports of the (rnrs) library have
export levels zero and one.

It can be difficult for the programmer to specify the import levels that allow a library or top-level program to
compile or run properly. Moreover, it is often impossible to cause a library's bindings to be made available
when they are needed without causing them to be made available in some cases when they are not needed. For
example, it is not possible to say that the run-time bindings of a library A are needed when a library B is
expanded without also having the run-time bindings of A made available when code importing B is expanded.
Making bindings available involves executing the code for the right-hand sides of the bindings and possibly
executing initialization expressions as well, so the inability to specify when bindings are needed precisely can
add both compile- and run-time overhead to a program.

Because of this, implementations are permitted to ignore export levels and the for wrapper on an
import-set and instead automatically determine, while expanding an importing library or top-level
program, when an imported library's bindings must be made available, based on where references to the
imported library's exports actually appear. When using such an implementation, the for wrapper need never
be used, i.e., all import-specs can be import-sets. If code is intended for use with systems that do not
automatically determine when a library's bindings must be made available, however, the for must be used if
the importing library's bindings would not otherwise be available at the right time.

An import-set takes one of the following forms:

library-spec
(only import-set identifier ...)
(except import-set identifier ...)
(prefix import-set prefix)
(rename import-set (import-name internal-name) ...)

where prefix, import-name, and internal-name are identifiers. An import-set is a recursive
specification of the identifiers to be imported from a library and possibly the names by which they should be
known within the importing library. At the base of the recursive structure must sit a library-spec, which
identifies a library and imports all of the identifiers from that library. An only wrapper restricts the imported
identifiers of the enclosed import-set to the ones listed, an except wrapper restricts the imported
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identifiers of the enclosed import-set to those not listed, a prefix wrapper adds a prefix to each of the
imported identifiers of the enclosed import-set, and a rename wrapper specifies internal names for
selected identifiers of the enclosed import-set, while leaving the names of the other imports alone. So, for
example, the import-set

(prefix
  (only
    (rename (list-tools setops) (difference diff))
    union
    diff)
  set:)

imports only union and difference from the (list-tools setops) library, renames
difference to diff while leaving union alone, and adds the prefix set: to the two names so that the
names by which the two imports are known inside the importing library are set:union and set:diff.

A library-spec takes one of the following forms:

library-reference
(library library-reference)

where a library-reference is in either of the following two forms:

(identifier identifier ...)
(identifier identifier ... version-reference)

Enclosing a library-reference in a library wrapper is necessary when the first identifier of the
library-reference is for, library, only, except, prefix, or rename, to distinguish it from an
import-spec or import-set identified by one of these keywords.

A version-reference identifies a particular version of the library or a set of possible versions. A
version-reference has one of the following forms:

(subversion-reference1 ... subversion-referencen)
(and version-reference ...)
(or version-reference ...)
(not version-reference)

A version-reference of the first form matches a version with at least n elements if each
subversion-reference matches version's corresponding subversion. An and
version-reference form matches a version if each of its version-reference subforms matches
version. An or version-reference form matches a version if any of its version-reference
subforms matches version. A not version-reference form matches a version if its
version-reference subform does not match version.

A subversion-reference takes one of the following forms:

subversion
(>= subversion)
(<= subversion)
(and subversion-reference ...)
(or subversion-reference ...)
(not subversion-reference)
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A subversion-reference of the first form matches a subversion if it is identical to it. A >=
subversion-reference matches a version's subversion if the version's subversion is
greater than or equal to the subversion appearing within the >= form. Similarly, a <=
subversion-reference matches a version's subversion if the version's subversion is less
than or equal to the subversion appearing within the >= form. An and subversion-reference
form matches a version's subversion if each of its subversion-reference subforms matches the
version's subversion. An or subversion-reference matches a version's subversion if
any of its subversion-reference subforms match the version's subversion. A not
subversion-reference matches a version's subversion if its subversion-reference
subform does not match the version's subversion.

For example, if two versions of a library are available, one with version (1 2) and the other with version
(1 3 1), the version references () and (1) match both, (1 2) matches the first but not the second,
(1 3) matches the second but not the first, (1 (>= 2)) matches both, and
(and (1 (>= 3)) (not (1 3 1))) matches neither.

When a library reference identifies more than one available library, one of the available libraries is selected in
some implementation-dependent manner.

Libraries and top-level programs should not, directly or indirectly, specify the import of two libraries that
have the same names but different versions. To avoid problems such as incompatible types and replicated
state, implementations are encouraged, though not required, to prohibit programs from importing two versions
of the same library.

A library-body contains definitions of exported identifiers, definitions of identifiers not intended for
export, and initialization expressions. It consists of a (possibly empty) sequence of definitions followed by a
(possibly empty) sequence of initialization expressions. When begin, let-syntax, or letrec-syntax
forms occur in a library body prior to the first expression, they are spliced into the body. Any body form may
be produced by a syntactic extension, including definitions, the splicing forms just mentioned, or initialization
expressions. A library body is expanded in the same manner as a lambda or other body (page 292), and it
expands into the equivalent of a letrec* form so that the definitions and initialization forms in the body are
evaluated from left to right.

Each of the exports listed in a library's export form must either be imported from another library or defined
within the library-body, in either case with the internal rather than the export name, if the two differ.

Each identifier imported into or defined within a library must have exactly one binding. If imported into a
library, it must not be defined in the library body, and if defined in the library body, it must be defined only
once. If imported from two libraries, it must have the same binding in both cases, which can happen only if
the binding originates in one of the two libraries and is reexported by the other or if the binding originates in a
third library and is reexported by both.

The identifiers defined within a library and not exported by the library are not visible in code that appears
outside of the library. A syntactic extension defined within a library may, however, expand into a reference to
such an identifier, so that the expanded code does contain a reference to the identifier; this is referred to as an
indirect export.

The exported variables of a library are immutable both inside the library and outside, whether they are
explicitly or implicitly exported. It is a syntax violation if an explicitly exported variable appears on the
left-hand side of a set! expression within or outside of the exporting library. It is also a syntax violation if
any other variable defined by a library appears on the left-hand side of a set! expression and is indirectly
exported.

Libraries are loaded and the code contained within them evaluated on an "as needed" basis by the
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implementation, as determined by the import relationships among libraries. A library's transformer
expressions (the expressions on the right-hand sides of a library body's define-syntax forms) may be
evaluated at different times from the library's body expressions (the expressions on the right-hand side of the
body's define forms, plus initialization expressions). At a minimum, the transformer expressions of a
library must be evaluated when (if not before) a reference to one of the library's exported keywords is found
while expanding another library or top-level program, and the body expressions must be evaluated when (if
not before) a reference to one of the library's exported variables is evaluated, which may occur either when a
program using the library is run or when another library or top-level program is being expanded, if the
reference is evaluated by a transformer called during the expansion process. An implementation may evaluate
a library's transformer and body expressions as many times as it pleases in the process of expanding other
libraries. In particular, it may evaluate the expressions zero times if they are not actually needed, exactly one
time, or one time for each meta level of the expansion. It is generally a bad idea for the evaluation of a
library's transformer or body expressions to involve externally visible side effects, e.g., popping up a window,
since the time or times at which these side effects occur is unspecified. Localized effects that affect only the
library's initialization, e.g., to create a table used by the library, are generally okay.

Examples are given in Section 10.4.

Section 10.3. Top-Level Programs

A top-level program is not a syntactic form per se but rather a set of forms that are usually delimited only by
file boundaries. Top-level programs can be thought of as library forms without the library wrapper, library
name, and export form. The other difference is that definitions and expressions can be intermixed within the
body of a top-level program but not within the body of a library. Thus the syntax of a top-level program is,
simply, an import form followed by a sequence of definitions and expressions:

(import import-spec ...)
definition-or-expression
...

An expression that appears within a top-level program body before one or more definitions is treated as if it
appeared on the right-hand side of a definition for a dummy variable that is not visible anywhere within the
program.

procedure: (command-line)
returns: a list of strings representing command-line arguments
libraries: (rnrs programs), (rnrs)

This procedure may be used within a top-level program to obtain a list of the command-line arguments passed
to the program.

procedure: (exit)
procedure: (exit obj)
returns: does not return
libraries: (rnrs programs), (rnrs)

This procedure may be used to exit from a top-level program to the operating system. If no obj is given, the
exit value returned to the operating system should indicate a normal exit. If obj is false, the exit value
returned to the operating system should indicate an abnormal exit. Otherwise, obj is translated into an exit
value as appropriate for the operating system.
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Section 10.4. Examples

The example below demonstrates several features of the library syntax. It defines "Version 1" of the
(list-tools setops) library, which exports two keywords and several variables. The library imports
the (rnrs base) library, which provides everything it needs except the member procedure, which it
imports from (rnrs lists). Most of the variables exported by the library are bound to procedures, which
is typical.

The syntactic extension set expands into a reference to the variable list->set, and member? similarly
expands into a reference to the variable $member?. While list->set is explicitly exported, $member? is
not. This makes $member? an indirect export. The procedure u-d-help is not explicitly exported, and
since neither of the exported syntactic extensions expand into references to u-d-help, it is not indirectly
exported either. This means it could be assigned, but it is not assigned in this example.

(library (list-tools setops (1))
  (export set empty-set empty-set? list->set set->list
          union intersection difference member?)
  (import (rnrs base) (only (rnrs lists) member))

  (define-syntax set
    (syntax-rules ()
      [(_ x ...)
       (list->set (list x ...))]))

  (define empty-set '())

  (define empty-set? null?)

  (define list->set
    (lambda (ls)
      (cond
        [(null? ls) '()]
        [(member (car ls) (cdr ls)) (list->set (cdr ls))]
        [else (cons (car ls) (list->set (cdr ls)))])))

  (define set->list (lambda (set) set))

  (define u-d-help
    (lambda (s1 s2 ans)
      (let f ([s1 s1])
        (cond
          [(null? s1) ans]
          [(member? (car s1) s2) (f (cdr s1))]
          [else (cons (car s1) (f (cdr s1)))]))))

  (define union
    (lambda (s1 s2)
      (u-d-help s1 s2 s2)))

  (define intersection
    (lambda (s1 s2)
      (cond
        [(null? s1) '()]
        [(member? (car s1) s2)
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         (cons (car s1) (intersection (cdr s1) s2))]
        [else (intersection (cdr s1) s2)])))

  (define difference
    (lambda (s1 s2)
      (u-d-help s1 s2 '())))

  (define member-help?
    (lambda (x s)
      (and (member x s) #t)))

  (define-syntax member?
    (syntax-rules ()
      [(_ elt-expr set-expr)
       (let ([x elt-expr] [s set-expr])
         (and (not (null? s)) (member-help? x s)))])))

The next library, (more-setops), defines a few additional set operations in terms of the
(list-tools setops) operations. No version is included in the library reference to
(list-tools setops); this is equivalent to an empty version reference, which matches any version. The
quoted-set keyword is interesting because its transformer references list->set from
(list-tools setops) at expansion time. As a result, if another library or top-level program that
imports from (more-setops) references quoted-set, the run-time expressions of the
(list-tools setops) library will have to be evaluated when the other library or top-level program is
expanded. On the other hand, the run-time expressions of the (list-tools setops) library need not be
evaluated when the (more-setops) library is itself expanded.

(library (more-setops)
  (export quoted-set set-cons set-remove)
  (import (list-tools setops) (rnrs base) (rnrs syntax-case))

  (define-syntax quoted-set
    (lambda (x)
      (syntax-case x ()
        [(k elt ...)
         #`(quote
             #,(datum->syntax #'k
                 (list->set
                   (syntax->datum #'(elt ...)))))])))

  (define set-cons
    (lambda (opt optset)
      (union (set opt) optset)))

  (define set-remove
    (lambda (opt optset)
      (difference optset (set opt)))))

If the implementation does not automatically infer when bindings need to be made available, the import
form in the (more-setops) library must be modified to specify at which meta levels the bindings it
imports are used via the for import-spec syntax as follows:

(import
  (for (list-tools setops) expand run)
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  (for (rnrs base) expand run)
  (for (rnrs syntax-case) expand))

To complete the example, the short top-level program below exercises several of the
(list-tools setops) and (more-setops) exports.

(import (list-tools setops) (more-setops) (rnrs))
(define-syntax pr
  (syntax-rules () 
    [(_ obj)
     (begin
       (write 'obj)
       (display " ;=> ")
       (write obj)
       (newline))]))
(define get-set1
  (lambda ()
    (quoted-set a b c d)))
(define set1 (get-set1))
(define set2 (quoted-set a c e))

(pr (list set1 set2))
(pr (eq? (get-set1) (get-set1)))
(pr (eq? (get-set1) (set 'a 'b 'c 'd)))
(pr (union set1 set2))
(pr (intersection set1 set2))
(pr (difference set1 set2))
(pr (set-cons 'a set2))
(pr (set-cons 'b set2))
(pr (set-remove 'a set2))

What running this program should print is left as an exercise for the reader.

Additional library and top-level program examples are given in Chapter 12.
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Chapter 11. Exceptions and Conditions
Exceptions and conditions provide the means for system and user code to signal, detect, and recover from
errors that occur when a program is run.

Exceptions are raised by the standard syntactic forms and procedures under a variety of circumstances, e.g.,
when the wrong number of arguments is passed to a procedure, when the syntax of an expression passed to
eval is incorrect, or when a file cannot be opened by one of the file open procedures. In these situations, the
exception is raised with a standard condition type.

Exceptions may also be raised by user code via the raise or raise-continuable procedures. In this
case, the exception may be raised with one of the standard condition types, a user-defined subtype of one of
the standard condition types (possibly defined using define-condition-type), or an arbitrary Scheme
value that is not a condition type.

At any point during a program's execution, a single exception handler, called the current exception handler, is
charged with handling all exceptions that are raised. By default, the current exception handler is one provided
by the implementation. The default exception handler typically prints a message that describes the condition
or other value with which the exception was raised and, for any serious condition, terminates the running
program. In interactive systems, this typically means a reset to the read-eval-print loop.

User code may establish a new current exception handler via the guard syntax or the
with-exception-handler procedure. In either case, the user code may handle all exceptions or, based
on the condition or other value with which the exception was raised, just some of the exceptions while
reraising the others for the old current exception handler to handle. When guard forms and
with-exception-handler calls are nested dynamically, a chain of exception handlers is established,
and each may defer to the next in the chain.

Section 11.1. Raising and Handling Exceptions

procedure: (raise obj)
procedure: (raise-continuable obj)
returns: see below
libraries: (rnrs exceptions), (rnrs)

Both of these procedures raise an exception, effectively invoking the current exception handler, passing obj
as the only argument. For raise, the exception is non-continuable, while for raise-continuable, the
exception is continuable. An exception handler may return (with zero or more values) to the continuation of a
continuable exception. If an exception handler attempts to return to the continuation of a non-continuable
exception, however, a new exception with condition type &non-continuable is raised. Thus, raise
never returns, while raise-continuable may return zero or more values, depending upon the exception
handler.

If the current exception handler, p, was established via a guard form or call to
with-exception-handler, the current exception handler is reset to the handler that was current when p
was established before raise or raise-continuable invokes p. This allows p to defer to the
preexisting exception handler simply by reraising the exception, and it helps prevent infinite regression when
an exception handler inadvertently causes a different exception to be raised. If p returns and the exception is
continuable, p is reinstated as the current exception handler.

(raise
  (condition
    (make-error)
    (make-message-condition "no go"))) error: no go
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(raise-continuable
  (condition
    (make-violation)
    (make-message-condition "oops"))) violation: oops
(list
  (call/cc
    (lambda (k)
      (vector
        (with-exception-handler
          (lambda (x) (k (+ x 5)))
          (lambda () (+ (raise 17) 8)))))))  (22)
(list
  (vector
    (with-exception-handler
      (lambda (x) (+ x 5))
      (lambda () (+ (raise-continuable 17) 8)))))  (#(30))
(list
  (vector
    (with-exception-handler
      (lambda (x) (+ x 5))
      (lambda () (+ (raise 17) 8))))) violation: non-continuable

procedure: (error who msg irritant ...)
procedure: (assertion-violation who msg irritant ...)
libraries: (rnrs base), (rnrs)

error raises a non-continuable exception with condition type &error and should be used to describe
situations for which the &error condition type is appropriate, typically a situation involving the program's
interaction with something outside of the program. assertion-violation raises a non-continuable
exception with condition type &assertion and should be used to describe situations for which the
&assertion condition type is appropriate, typically an invalid argument to a procedure or invalid value of a
subexpression of a syntactic form.

The continuation object with which the exception is raised also includes a &who condition whose who field is
who if who is not #f, a &message condition whose message field is msg, and an &irritants condition
whose irritants field is (irritant ...).

who must be a string, a symbol, or #f identifying the procedure or syntactic form reporting the error upon
whose behalf the error is being reported. It is usually best to identify a procedure the programmer has called
rather than some other procedure the programmer may not be aware is involved in carrying out the operation.
msg must be a string and should describe the exceptional situation. The irritants may be any Scheme objects
and should include values that may have caused or been materially involved in the exceptional situation.

syntax: (assert expression)
returns: see below
libraries: (rnrs base), (rnrs)

assert evaluates expression and returns the value of expression if the value is not #f. If the value
of expression is #f, assert raises a non-continuable exception with condition types &assertion and
&message, with an implementation-dependent value in its message field. Implementations are encouraged to
provide information about the location of the assert call within the condition whenever possible.

procedure: (syntax-violation who msg form)
procedure: (syntax-violation who msg form subform)
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returns: does not return
libraries: (rnrs syntax-case), (rnrs)

This procedure raises a non-continuable exception with a condition of type &syntax. It should be used to
report a syntax error detected by the transformer of a syntactic extension. The value of the condition's form
field is form, and the value of its subform field is subform, or #f if subform is not provided.

The continuation object with which the exception is raised also includes a &who condition whose who field is
who, if who is not #f or is inferred from form, and a &message condition whose message field is msg.

who must be a string, a symbol, or #f. If who is #f, it is inferred to be the symbolic name of form if form
is an identifier or the symbolic name of the first subform of form if form is a list-structured form whose first
subform is an identifier. message must be a string. form should be the syntax object or datum
representation of the syntactic form within which the syntax violation occurred, and subform, if not #f,
should be a syntax object or datum representation of a subform more specifically involved in the violation.
For example, if a duplicate formal parameter is found in a lambda expression, form might be the lambda
expression and subform might be the duplicated parameter.

Some implementations attach source information to syntax objects, e.g., line, character, and filename for
forms originating in a file, in which case this information might also be present as some
implementation-dependent condition type within the condition object.

procedure: (with-exception-handler procedure thunk)
returns: see below
libraries: (rnrs exceptions), (rnrs)

This procedure establishes procedure, which should accept one argument, as the current exception handler
in place of the old current exception handler, old-proc, and invokes thunk without arguments. If the call
to thunk returns, old-proc is reestablished as the current exception handler and the values returned by
thunk are returned. If control leaves or subsequently reenters the call to thunk via the invocation of a
continuation obtained via call/cc, the procedure that was the current exception handler when the
continuation was captured is reinstated.

(define (try thunk)
  (call/cc
    (lambda (k)
      (with-exception-handler
        (lambda (x) (if (error? x) (k #f) (raise x)))
        thunk))))
(try (lambda () 17))  17
(try (lambda () (raise (make-error))))  #f
(try (lambda () (raise (make-violation)))) violation
(with-exception-handler
  (lambda (x)
    (raise
      (apply condition
        (make-message-condition "oops")
        (simple-conditions x))))
  (lambda ()
    (try (lambda () (raise (make-violation)))))) violation: oops

syntax: (guard (var clause1 clause2 ...) b1 b2 ...)
returns: see below
libraries: (rnrs exceptions), (rnrs)
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A guard expression establishes a new current exception handler, procedure (described below), in place of
the old current exception handler, old-proc, and evaluates the body b1 b2 .... If the body returns,
guard reestablishes old-proc as the current exception handler. If control leaves or subsequently reenters
the body via the invocation of a continuation obtained via call/cc, the procedure that was the current
exception handler when the continuation was captured is reinstated.

The procedure procedure established by guard binds var to the value it receives and, within the scope of
that binding, processes the clauses clause1 clause2 ... in turn, as if contained within an implicit cond
expression. This implicit cond expression is evaluated in the continuation of the guard expression, with
old-proc as the current exception handler.

If no else clause is provided, guard supplies one that reraises the exception with the same value, as if with
raise-continuable, in the continuation of the call to procedure, with old-proc as the current
exception handler.

(guard (x [else x]) (raise "oops"))  "oops"
(guard (x [#f #f]) (raise (make-error))) error
(define-syntax try
  (syntax-rules ()
    [(_ e1 e2 ...)
     (guard (x [(error? x) #f]) e1 e2 ...)]))
(define open-one
  (lambda fn*
    (let loop ([ls fn*])
      (if (null? ls)
          (error 'open-one "all open attempts failed" fn*)
          (or (try (open-input-file (car ls)))
              (loop (cdr ls)))))))
; say bar.ss exists but not foo.ss:
(open-one "foo.ss" "bar.ss")  #<input port bar.ss>

Section 11.2. Defining Condition Types

While a program may pass raise or raise-continuable any Scheme value, the best way to describe
an exceptional situation is usually to create and pass a condition object. Where the Revised6 Report requires
the implementation to raise exceptions, the value passed to the current exception handler is always a condition
object of one or more of the standard condition types described in Section 11.3. User code may create a
condition object that is an instance of one or more standard condition types or it may create an extended
condition type and create a condition object of that type.

Condition types are similar to record types but are more flexible in that a condition object may be an instance
of two or more condition types, even if neither is a subtype of the other. When a condition is an instance of
multiple types, it is referred to as a compound condition. Compound conditions are useful for communicating
multiple pieces of information about an exception to the exception handler. A condition that is not a
compound condition is referred to as a simple condition. In most cases, the distinction between the two is
unimportant, and a simple condition is treated as if it were a compound condition with itself as its only simple
condition.

syntax: &condition
libraries: (rnrs conditions), (rnrs)

&condition is a record-type name (Chapter 9) and the root of the condition-type hierarchy. All simple
condition types are extensions of this type, and all conditions, whether simple or compound, are considered
instances of this type.
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procedure: (condition? obj)
returns: #t if obj is a condition object, otherwise #f
libraries: (rnrs conditions), (rnrs)

A condition object is an instance of a subtype of &condition or a compound condition, possibly created by
user code with condition.

(condition? 'stable)  #f
(condition? (make-error))  #t
(condition? (make-message-condition "oops"))  #t
(condition?
  (condition
    (make-error)
    (make-message-condition "no such element")))  #t

procedure: (condition condition ...)
returns: a condition, possibly compound
libraries: (rnrs conditions), (rnrs)

condition is used to create condition objects that may consist of multiple simple conditions. Each
argument condition may be simple or complex; if simple, it is treated as a compound condition with itself
as its only simple condition. The simple conditions of the result condition are the simple conditions of the
condition arguments, flattened into a single list and appearing in order, with the simple conditions of the
first condition followed by the simple conditions of the second, and so on.

If the list has exactly one element, the result condition may be simple or compound; otherwise it is compound.
The distinction between simple and compound conditions is not usually important but can be detected, if
define-record-type rather than define-condition-type is used to extend an existing condition
type, via the predicate defined by define-record-type.

(condition)  #<condition>
(condition
  (make-error)
  (make-message-condition "oops"))  #<condition>

(define-record-type (&xcond make-xcond xcond?) (parent &condition))
(xcond? (make-xcond))  #t
(xcond? (condition (make-xcond)))  #t or #f
(xcond? (condition))  #f
(xcond? (condition (make-error) (make-xcond)))  #f

procedure: (simple-conditions condition)
returns: a list of the simple conditions of condition
libraries: (rnrs conditions), (rnrs)

(simple-conditions (condition))  '()
(simple-conditions (make-error))  (#<condition &error>)
(simple-conditions (condition (make-error)))  (#<condition &error>)
(simple-conditions
  (condition
    (make-error)
    (make-message-condition
      "oops")))  (#<condition &error> #<condition &message>)
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(let ([c1 (make-error)]
      [c2 (make-who-condition "f")]
      [c3 (make-message-condition "invalid argument")]
      [c4 (make-message-condition
            "error occurred while reading from file")]
      [c5 (make-irritants-condition '("a.ss"))])
  (equal?
    (simple-conditions
      (condition
        (condition (condition c1 c2) c3)
        (condition c4 (condition c5))))
    (list c1 c2 c3 c4 c5)))  #t

syntax: (define-condition-type name parent constructor pred field ...)
libraries: (rnrs conditions), (rnrs)

A define-condition-type form is a definition and may appear anywhere other definitions may appear.
It is used to define new simple condition types.

The subforms name, parent, constructor, and pred must be identifiers. Each field must be of the
form (field-name accessor-name), where field-name and accessor-name are identifiers.

define-condition-type defines name as a new record type whose parent record type is parent,
whose constructor name is constructor, whose predicate name is pred, whose fields are
field-name ..., and whose field accessors are named by accessor-name ....

With the exception of the predicate and field accessors, define-condition-type is essentially an
ordinary record definition equivalent to

(define-record-type (name constructor pred)
  (parent parent)
  (fields ((immutable field-name accessor-name) ...)))

The predicate differs from one that would be generated by a define-record-type form in that it returns
#t not only for an instance of the new type but also for compound conditions whose simple conditions
include an instance of the new type. Similarly, field accessors accept instances of the new type as well as
compound conditions whose simple conditions include at least one instance of the new record type. If an
accessor receives a compound condition whose simple conditions list includes one or more instances of the
new type, the accessor operates on the first instance in the list.

(define-condition-type &mistake &condition make-mistake mistake?
  (type mistake-type))

(mistake? 'booboo)  #f

(define c1 (make-mistake 'spelling))
(mistake? c1)  #t
(mistake-type c1)  spelling

(define c2 (condition c1 (make-irritants-condition '(eggregius))))
(mistake? c2)  #t
(mistake-type c2)  spelling
(irritants-condition? c2)  #t
(condition-irritants c2)  (eggregius)
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procedure: (condition-predicate rtd)
returns: a condition predicate
procedure: (condition-accessor rtd procedure)
returns: a condition accessor
libraries: (rnrs conditions), (rnrs)

These procedures may be used to create the same kind of special predicates and accessors that are created by
define-record-type from a record-type descriptor, rtd, of a simple condition type or other type
derived from a simple condition type.

For both procedures, rtd must be a record-type descriptor of a subtype of &condition, and for
condition-accessor, procedure should accept one argument.

The predicate returned by condition-predicate accepts one argument, which may be any Scheme
value. The predicate returns #t if the value is a condition of the type described by rtd, i.e., an instance of the
type described by rtd (or one of its subtypes) or a compound condition whose simple conditions include an
instance of the type described by rtd. Otherwise, the predicate returns #f.

The accessor returned by condition-accessor accepts one argument, c, which must be a condition of
the type described by rtd. The accessor applies procedure to a single argument, the first element of c's
simple condition list that is an instance of the type described by rtd (this is c itself if c is a simple
condition), and returns the result of this application. In most situations, procedure is a record accessor for a
field of the type described by rtd.

(define-record-type (&mistake make-mistake $mistake?)
  (parent &condition)
  (fields (immutable type $mistake-type)))

; define predicate and accessor as if we'd used define-condition-type
(define rtd (record-type-descriptor &mistake))
(define mistake? (condition-predicate rtd))
(define mistake-type (condition-accessor rtd $mistake-type))

(define c1 (make-mistake 'spelling))
(define c2 (condition c1 (make-irritants-condition '(eggregius))))
(list (mistake? c1) (mistake? c2))  (#t #t)
(list ($mistake? c1) ($mistake? c2))  (#t #f)
(mistake-type c1)  spelling
($mistake-type c1)  spelling
(mistake-type c2)  spelling
($mistake-type c2) violation

Section 11.3. Standard Condition Types

syntax: &serious
procedure: (make-serious-condition)
returns: a condition of type &serious
procedure: (serious-condition? obj)
returns: #t if obj is a condition of type &serious, #f otherwise
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate situations of a serious nature that, if uncaught, generally result in termination
of the program's execution. Conditions of this type typically occur as one of the more specific subtypes
&error or &violation. This condition type might be defined as follows.
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(define-condition-type &serious &condition
  make-serious-condition serious-condition?)

syntax: &violation
procedure: (make-violation)
returns: a condition of type &violation
procedure: (violation? obj)
returns: #t if obj is a condition of type &violation, #f otherwise
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate that the program has violated some requirement, usually due to a bug in the
program. This condition type might be defined as follows.

(define-condition-type &violation &serious
  make-violation violation?)

syntax: &assertion
procedure: (make-assertion-violation)
returns: a condition of type &assertion
procedure: (assertion-violation? obj)
returns: #t if obj is a condition of type &assertion, #f otherwise
libraries: (rnrs conditions), (rnrs)

This condition type indicates a specific violation in which the program has passed the wrong number or types
of arguments to a procedure. This condition type might be defined as follows.

(define-condition-type &assertion &violation
  make-assertion-violation assertion-violation?)

syntax: &error
procedure: (make-error)
returns: a condition of type &error
procedure: (error? obj)
returns: #t if obj is a condition of type &error, #f otherwise
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate that an error has occurred with the program's interaction with its operating
environment, such as the failure of an attempt to open a file. It is not used to describe situations in which an
error in the program has been detected. This condition type might be defined as follows.

(define-condition-type &error &serious
  make-error error?)

syntax: &warning
procedure: (make-warning)
returns: a condition of type &warning
procedure: (warning? obj)
returns: #t if obj is a condition of type &warning, #f otherwise
libraries: (rnrs conditions), (rnrs)

Warning conditions indicate situations that do not prevent the program from continuing its execution but, in
some cases, might result in a more serious problem at some later point. For example, a compiler might use a
condition of this type to indicate that it has processed a call to a standard procedure with the wrong number of
arguments; this will not become a serious problem unless the call is actually evaluated at some later point.
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This condition type might be defined as follows.

(define-condition-type &warning &condition
  make-warning warning?)

syntax: &message
procedure: (make-message-condition message)
returns: a condition of type &message
procedure: (message-condition? obj)
returns: #t if obj is a condition of type &message, #f otherwise
procedure: (condition-message condition)
returns: the contents of condition's message field
libraries: (rnrs conditions), (rnrs)

Conditions of this type are usually included with a &warning condition or one of the &serious condition
subtypes to provide a more specific description of the exceptional situation. The message argument to the
constructor may be any Scheme value but is typically a string. This condition type might be defined as
follows.

(define-condition-type &message &condition
  make-message-condition message-condition?
  (message condition-message))

syntax: &irritants
procedure: (make-irritants-condition irritants)
returns: a condition of type &irritants
procedure: (irritants-condition? obj)
returns: #t if obj is a condition of type &irritants, #f otherwise
procedure: (condition-irritants condition)
returns: the contents of condition's irritants field
libraries: (rnrs conditions), (rnrs)

Conditions of this type are usually included with a &message condition to provide information about
Scheme values that may have caused or been materially involved in the exceptional situation. For example, if
a procedure receives the wrong type of argument, it may raise an exception with a compound condition
consisting of an assertion condition, a who condition naming the procedure, a message condition stating that
the wrong type of argument was received, and an irritants condition listing the argument. The irritants
argument to the constructor should be a list. This condition type might be defined as follows.

(define-condition-type &irritants &condition
  make-irritants-condition irritants-condition?
  (irritants condition-irritants))

syntax: &who
procedure: (make-who-condition who)
returns: a condition of type &who
procedure: (who-condition? obj)
returns: #t if obj is a condition of type &who, #f otherwise
procedure: (condition-who condition)
returns: the contents of condition's who field
libraries: (rnrs conditions), (rnrs)

Conditions of this type are often included with a &message condition to identify the syntactic form or
procedure that detected the error. The who argument to the constructor should be a symbol or string. This
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condition type might be defined as follows.

(define-condition-type &who &condition
  make-who-condition who-condition?
  (who condition-who))

syntax: &non-continuable
procedure: (make-non-continuable-violation)
returns: a condition of type &non-continuable
procedure: (non-continuable-violation? obj)
returns: #t if obj is a condition of type &non-continuable, #f otherwise
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate that a non-continuable violation has occurred. raise raises an exception
with this type if the current exception handler returns. This condition type might be defined as follows.

(define-condition-type &non-continuable &violation
  make-non-continuable-violation
  non-continuable-violation?)

syntax: &implementation-restriction
procedure: (make-implementation-restriction-violation)
returns: a condition of type &implementation-restriction
procedure: (implementation-restriction-violation? obj)
returns: #t if obj is a condition of type &implementation-restriction, #f otherwise
libraries: (rnrs conditions), (rnrs)

An implementation-restriction condition indicates that the program has attempted to exceed some limitation in
the implementation, such as when the value of a fixnum addition operation would result in a number that
exceeds the implementation's fixnum range. It does not normally indicate a deficiency in the implementation
but rather a mismatch between what the program is attempting to do and what the implementation can
support. In many cases, implementation restrictions are dictated by the underlying hardware. This condition
type might be defined as follows.

(define-condition-type &implementation-restriction &violation
  make-implementation-restriction-violation
  implementation-restriction-violation?)

syntax: &lexical
procedure: (make-lexical-violation)
returns: a condition of type &lexical
procedure: (lexical-violation? obj)
returns: #t if obj is a condition of type &lexical, #f otherwise
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate that a lexical error has occurred in the parsing of a Scheme program or datum,
such as mismatched parentheses or an invalid character appearing within a numeric constant. This condition
type might be defined as follows.

(define-condition-type &lexical &violation
  make-lexical-violation lexical-violation?)

syntax: &syntax
procedure: (make-syntax-violation form subform)
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returns: a condition of type &syntax
procedure: (syntax-violation? obj)
returns: #t if obj is a condition of type &syntax, #f otherwise
procedure: (syntax-violation-form condition)
returns: the contents of condition's form field
procedure: (syntax-violation-subform condition)
returns: the contents of condition's subform field
libraries: (rnrs conditions), (rnrs)

Conditions of this type indicate that a syntax error has occurred in the parsing of a Scheme program. In most
implementations, syntax errors are detected by the macro expander. Each of the form and subform
arguments to make-syntax-violation should be a syntax object (Section 8.3) or datum, the former
indicating the containing form and the latter indicating the specific subform. For example, if a duplicate
formal parameter is found in a lambda expression, form might be the lambda expression and subform
might be the duplicated parameter. If there is no need to identify a subform, subform should be #f. This
condition type might be defined as follows.

(define-condition-type &syntax &violation
  make-syntax-violation syntax-violation?
  (form syntax-violation-form)
  (subform syntax-violation-subform))

syntax: &undefined
procedure: (make-undefined-violation)
returns: a condition of type &undefined
procedure: (undefined-violation? obj)
returns: #t if obj is a condition of type &undefined, #f otherwise
libraries: (rnrs conditions), (rnrs)

An undefined condition indicates an attempt to reference an unbound variable. This condition type might be
defined as follows.

(define-condition-type &undefined &violation
  make-undefined-violation undefined-violation?)

The next several condition types describe conditions that occur when input or output operations fail in some
manner.

syntax: &i/o
procedure: (make-i/o-error)
returns: a condition of type &i/o
procedure: (i/o-error? obj)
returns: #t if obj is a condition of type &i/o, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

A condition of type &i/o indicates that an input/output error of some sort has occurred. Conditions of this
type typically occur as one of the more specific subtypes described below. This condition type might be
defined as follows.

(define-condition-type &i/o &error
  make-i/o-error i/o-error?)

syntax: &i/o-read
procedure: (make-i/o-read-error)
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returns: a condition of type &i/o-read
procedure: (i/o-read-error? obj)
returns: #t if obj is a condition of type &i/o-read, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

This condition type indicates that an error has occurred while reading from a port. This condition type might
be defined as follows.

(define-condition-type &i/o-read &i/o
  make-i/o-read-error i/o-read-error?)

syntax: &i/o-write
procedure: (make-i/o-write-error)
returns: a condition of type &i/o-write
procedure: (i/o-write-error? obj)
returns: #t if obj is a condition of type &i/o-write, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

This condition type indicates that an error has occurred while writing to a port. This condition type might be
defined as follows.

(define-condition-type &i/o-write &i/o
  make-i/o-write-error i/o-write-error?)

syntax: &i/o-invalid-position
procedure: (make-i/o-invalid-position-error position)
returns: a condition of type &i/o-invalid-position
procedure: (i/o-invalid-position-error? obj)
returns: #t if obj is a condition of type &i/o-invalid-position, #f otherwise
procedure: (i/o-error-position condition)
returns: the contents of condition's position field
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

This condition type indicates an attempt to set a port's position to a position that is out of range for the
underlying file or other object. The position argument to the constructor should be the invalid position.
This condition type might be defined as follows.

(define-condition-type &i/o-invalid-position &i/o
  make-i/o-invalid-position-error
  i/o-invalid-position-error?
  (position i/o-error-position))

syntax: &i/o-filename
procedure: (make-i/o-filename-error filename)
returns: a condition of type &i/o-filename
procedure: (i/o-filename-error? obj)
returns: #t if obj is a condition of type &i/o-filename, #f otherwise
procedure: (i/o-error-filename condition)
returns: the contents of condition's filename field
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

This condition type indicates an input/output error that occurred while operating on a file. The filename
argument to the constructor should be the name of the file. This condition type might be defined as follows.
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(define-condition-type &i/o-filename &i/o
  make-i/o-filename-error i/o-filename-error?
  (filename i/o-error-filename))

syntax: &i/o-file-protection
procedure: (make-i/o-file-protection-error filename)
returns: a condition of type &i/o-file-protection
procedure: (i/o-file-protection-error? obj)
returns: #t if obj is a condition of type &i/o-file-protection, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

A condition of this type indicates that an attempt has been made to perform some input/output operation on a
file for which the program does not have the proper permission. This condition type might be defined as
follows.

(define-condition-type &i/o-file-protection &i/o-filename
  make-i/o-file-protection-error
  i/o-file-protection-error?)

syntax: &i/o-file-is-read-only
procedure: (make-i/o-file-is-read-only-error filename)
returns: a condition of type &i/o-file-is-read-only
procedure: (i/o-file-is-read-only-error? obj)
returns: #t if obj is a condition of type &i/o-file-is-read-only, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

A condition of this type indicates an attempt to treat as writeable a read-only file. This condition type might
be defined as follows.

(define-condition-type &i/o-file-is-read-only &i/o-file-protection
  make-i/o-file-is-read-only-error
  i/o-file-is-read-only-error?)

syntax: &i/o-file-already-exists
procedure: (make-i/o-file-already-exists-error filename)
returns: a condition of type &i/o-file-already-exists
procedure: (i/o-file-already-exists-error? obj)
returns: #t if obj is a condition of type &i/o-file-already-exists, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

A condition of this type indicates a situation in which an operation on a file failed because the file already
exists, e.g., an attempt is made to open an existing file for output without the no-fail file option. This
condition type might be defined as follows.

(define-condition-type &i/o-file-already-exists &i/o-filename
  make-i/o-file-already-exists-error
  i/o-file-already-exists-error?)

syntax: &i/o-file-does-not-exist
procedure: (make-i/o-file-does-not-exist-error filename)
returns: a condition of type &i/o-file-does-not-exist
procedure: (i/o-file-does-not-exist-error? obj)
returns: #t if obj is a condition of type &i/o-file-does-not-exist, #f otherwise
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)
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A condition of this type indicates a situation in which an operation on a file failed because the file does not
exist, e.g., an attempt is made to open a nonexistent file for input only. This condition type might be defined
as follows.

(define-condition-type &i/o-file-does-not-exist &i/o-filename
  make-i/o-file-does-not-exist-error
  i/o-file-does-not-exist-error?)

syntax: &i/o-port
procedure: (make-i/o-port-error pobj)
returns: a condition of type &i/o-port
procedure: (i/o-port-error? obj)
returns: #t if obj is a condition of type &i/o-port, #f otherwise
procedure: (i/o-error-port condition)
returns: the contents of condition's pobj field
libraries: (rnrs io ports), (rnrs io simple), (rnrs files), (rnrs)

A condition of this type is usually included with a condition of one of the other &i/o subtypes to indicate the
port involved in the exceptional situation, if a port is involved. The pobj argument to the constructor should
be the port. This condition type might be defined as follows.

(define-condition-type &i/o-port &i/o
  make-i/o-port-error i/o-port-error?
  (pobj i/o-error-port))

syntax: &i/o-decoding
procedure: (make-i/o-decoding-error pobj)
returns: a condition of type &i/o-decoding
procedure: (i/o-decoding-error? obj)
returns: #t if obj is a condition of type &i/o-decoding, #f otherwise
libraries: (rnrs io ports), (rnrs)

A condition of this type indicates that a decoding error has occurred during the transcoding of bytes to
characters. The pobj argument to the constructor should be the port involved, if any. The port should be
positioned past the invalid encoding. This condition type might be defined as follows.

(define-condition-type &i/o-decoding &i/o-port
  make-i/o-decoding-error i/o-decoding-error?)

syntax: &i/o-encoding
procedure: (make-i/o-encoding-error pobj cobj)
returns: a condition of type &i/o-encoding
procedure: (i/o-encoding-error? obj)
returns: #t if obj is a condition of type &i/o-encoding, #f otherwise
procedure: (i/o-encoding-error-char condition)
returns: the contents of condition's cobj field
libraries: (rnrs io ports), (rnrs)

A condition of this type indicates that an encoding error has occurred during the transcoding of characters to
bytes. The pobj argument to the constructor should be the port involved, if any, and the cobj argument
should be the character for which the encoding failed. This condition type might be defined as follows.

(define-condition-type &i/o-encoding &i/o-port
  make-i/o-encoding-error i/o-encoding-error?
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  (cobj i/o-encoding-error-char))

The final two condition types describe conditions that occur when implementations are required to produce a
NaN or infinity but have no representations for these values.

syntax: &no-infinities
procedure: (make-no-infinities-violation)
returns: a condition of type &no-infinities
procedure: (no-infinities-violation? obj)
returns: #t if obj is a condition of type &no-infinities, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

This condition indicates that the implementation has no representation for infinity. This condition type might
be defined as follows.

(define-condition-type &no-infinities &implementation-restriction
  make-no-infinities-violation
  no-infinities-violation?)

syntax: &no-nans
procedure: (make-no-nans-violation)
returns: a condition of type &no-nans
procedure: (no-nans-violation? obj)
returns: #t if obj is a condition of type &no-nans, #f otherwise
libraries: (rnrs arithmetic flonums), (rnrs)

This condition indicates that the implementation has no representation for NaN. This condition type might be
defined as follows.

(define-condition-type &no-nans &implementation-restriction
  make-no-nans-violation no-nans-violation?)
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Chapter 12. Extended Examples
This chapter presents a series of programs that perform more complicated tasks than most of the examples
found throughout the earlier chapters of the book. They illustrate a variety of programming techniques and
demonstrate a particular programming style.

Each section of this chapter describes one program in detail and gives examples of its use. This is followed by
a listing of the code. At the end of each section are exercises intended to stimulate thought about the program
and to suggest possible extensions. These exercises are generally more difficult than those found in Chapters 2
and 3, and a few are major projects.

Section 12.1 presents a simple matrix multiplication package. It demonstrates a set of procedures that could be
written in almost any language. Its most interesting features are that all multiplication operations are
performed by calling a single generic procedure, mul, which calls the appropriate help procedure depending
upon the dimensions of its arguments, and that it dynamically allocates results of the proper size. Section 12.2
presents a merge sorting algorithm for ordering lists according to arbitrary predicates. Section 12.3 describes a
syntactic form that is used to construct sets. It demonstrates a simple but efficient syntactic transformation
from set notation to Scheme code. Section 12.4 presents a word-counting program borrowed from The C
Programming Language [19], translated from C into Scheme. It shows character and string manipulation, data
structure creation and manipulation, and basic file input and output. Section 12.5 presents a Scheme printer
that implements basic versions of put-datum, write, and display. Section 12.6 presents a simple
formatted output facility similar to those found in many Scheme systems and in other languages. Section 12.7
presents a simple interpreter for Scheme that illustrates Scheme as a language implementation vehicle while
giving an informal operational semantics for Scheme as well as a useful basis for investigating extensions to
Scheme. Section 12.8 presents a small, extensible abstract object facility that could serve as the basis for an
entire object-oriented subsystem. Section 12.9 presents a recursive algorithm for computing the Fourier
transform of a sequence of input values. It highlights the use of Scheme's complex arithmetic. Section 12.10
presents a concise unification algorithm that shows how procedures can be used as continuations and as
substitutions (unifiers) in Scheme. Section 12.11 describes a multitasking facility and its implementation in
terms of continuations.

Section 12.1. Matrix and Vector Multiplication

This example program involves mostly basic programming techniques. It demonstrates simple arithmetic and
vector operations, looping with the do syntactic form, dispatching based on object type, and raising
exceptions.

Multiplication of scalar to scalar, scalar to matrix, or matrix to matrix is performed by a single generic
procedure, called mul. mul is called with two arguments, and it decides based on the types of its arguments
what operation to perform. Because scalar operations use Scheme's multiplication procedure, *, mul scalars
can be any built-in numeric type (exact or inexact complex, real, rational, or integer).

The product of an m × n matrix A and an n × p matrix B is the m × p matrix C whose entries are defined by

The product of a scalar x and an m × n matrix A is the m × n matrix C whose entries are defined by the
equation

Cij = xAij.

That is, each element of C is the product of x and the corresponding element of A. Vector-vector,
vector-matrix, and matrix-vector multiplication may be considered special cases of matrix-matrix
multiplication, where a vector is represented as a 1 × n or n × 1 matrix.
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Here are a few examples, each preceded by the equivalent operation in standard mathematical notation.

Scalar times scalar:

3 × 4 = 12

(mul 3 4)  12

• 

Scalar times vector (1 × 3 matrix):

(mul 1/2 '#(#(1 2 3)))  #(#(1/2 1 3/2))

• 

Scalar times matrix:

(mul -2
     '#(#(3 -2 -1)
        #(-3 0 -5)
        #(7 -1 -1)))  #(#(-6 4 2)

   #(6 0 10)
   #(-14 2 2))

• 

Vector times matrix:

(mul '#(#(1 2 3))
     '#(#(2 3)
        #(3 4)
        #(4 5)))  #(#(20 26))

• 

Matrix times vector:

(mul '#(#(2 3 4)
        #(3 4 5))
     '#(#(1) #(2) #(3)))  #(#(20) #(26))

• 

Matrix times matrix:

(mul '#(#(1 2 3)
        #(4 5 6))
     '#(#(1 2 3 4)
        #(2 3 4 5)
        #(3 4 5 6)))  #(#(14 20 26 32)

   #(32 47 62 77))

• 
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The code for mul and its helpers, which is structured as a library, appears below. The first few definitions
establish a set of procedures that support the matrix data type. A matrix is a vector of vectors. Included are a
procedure to create matrices, procedures to access and assign matrix elements, and a matrix predicate.
Following these definitions is the definition of mul itself. Inside the lambda expression for mul are a set of
definitions for help procedures that support mul.

mul checks the types of its arguments and chooses the appropriate help procedure to do the work. Each helper
operates on arguments of specific types. For example, mat-sca-mul multiplies a matrix by a scalar. If the
type of either argument is invalid or the arguments are incompatible, e.g., rows or columns do not match up,
mul or one of its helpers raises an exception.

(library (tspl matrix)
  (export make-matrix matrix? matrix-rows matrix-columns
          matrix-ref matrix-set! mul)
  (import (rnrs))

 ; make-matrix creates a matrix (a vector of vectors).
  (define make-matrix
    (lambda (rows columns)
      (do ([m (make-vector rows)]
           [i 0 (+ i 1)])
          ((= i rows) m)
        (vector-set! m i (make-vector columns)))))

 ; matrix? checks to see if its argument is a matrix.
 ; It isn't foolproof, but it's generally good enough.
  (define matrix?
    (lambda (x)
      (and (vector? x)
           (> (vector-length x) 0)
           (vector? (vector-ref x 0)))))

 ; matrix-rows returns the number of rows in a matrix.
  (define matrix-rows
    (lambda (x)
      (vector-length x)))

 ; matrix-columns returns the number of columns in a matrix.
  (define matrix-columns
    (lambda (x)
      (vector-length (vector-ref x 0))))

 ; matrix-ref returns the jth element of the ith row.
  (define matrix-ref
    (lambda (m i j)
      (vector-ref (vector-ref m i) j)))

 ; matrix-set! changes the jth element of the ith row.
  (define matrix-set!
    (lambda (m i j x)
      (vector-set! (vector-ref m i) j x)))

 ; mat-sca-mul multiplies a matrix by a scalar.
  (define mat-sca-mul
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    (lambda (m x)
      (let* ([nr (matrix-rows m)]
             [nc (matrix-columns m)]
             [r (make-matrix nr nc)])
        (do ([i 0 (+ i 1)])
            ((= i nr) r)
          (do ([j 0 (+ j 1)])
              ((= j nc))
            (matrix-set! r i j (* x (matrix-ref m i j))))))))

 ; mat-mat-mul multiplies one matrix by another, after verifying
 ; that the first matrix has as many columns as the second
 ; matrix has rows.
  (define mat-mat-mul
    (lambda (m1 m2)
      (let* ([nr1 (matrix-rows m1)]
             [nr2 (matrix-rows m2)]
             [nc2 (matrix-columns m2)]
             [r (make-matrix nr1 nc2)])
        (unless (= (matrix-columns m1) nr2) (match-error m1 m2))
        (do ([i 0 (+ i 1)])
            ((= i nr1) r)
          (do ([j 0 (+ j 1)])
              ((= j nc2))
            (do ([k 0 (+ k 1)]
                 [a 0 (+ a
                         (* (matrix-ref m1 i k)
                            (matrix-ref m2 k j)))])
                ((= k nr2)
                 (matrix-set! r i j a))))))))

 ; type-error is called to complain when mul receives an invalid
 ; type of argument.
  (define type-error
    (lambda (what)
      (assertion-violation 'mul
        "not a number or matrix"
         what)))

 ; match-error is called to complain when mul receives a pair of
 ; incompatible arguments.
  (define match-error
    (lambda (what1 what2)
      (assertion-violation 'mul
        "incompatible operands" what1
        what2)))

 ; mul is the generic matrix/scalar multiplication procedure
  (define mul
    (lambda (x y)
      (cond
        [(number? x)
         (cond
           [(number? y) (* x y)]
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           [(matrix? y) (mat-sca-mul y x)]
           [else (type-error y)])]
        [(matrix? x)
         (cond
           [(number? y) (mat-sca-mul x y)]
           [(matrix? y) (mat-mat-mul x y)]
           [else (type-error y)])]
        [else (type-error x)]))))

Exercise 12.1.1

Make the necessary changes to rename mul to *.

Exercise 12.1.2

The predicate matrix? is usually sufficient but not completely reliable, since it may return #t for objects
that are not matrices. In particular, it does not verify that all of the matrix rows are vectors, that each row has
the same number of elements, or that the elements themselves are numbers. Modify matrix? to perform
each of these additional checks.

Exercise 12.1.3

Another solution to Exercise 12.1.2 is to define a matrix record type encapsulating the vectors of the matrix. If
the matrix creation routine never allows a malformed matrix record to be created, a matrix record check is the
only check needed to ensure that the input is well formed. Define a matrix record type and recode the library
to use it.

Exercise 12.1.4

Write similar generic procedures for addition and subtraction. Devise a generic dispatch procedure or
syntactic form so that the type dispatching code need not be rewritten for each new operation.

Exercise 12.1.5

This version of mul uses vectors of vectors to represent matrices. Rewrite the system, using nested lists to
represent matrices. What efficiency is gained or lost by this change?

Section 12.2. Sorting

This section illustrates a list sorting algorithm based on a simple technique known as merge sorting. The
procedure sort defined here accepts two arguments: a predicate and a list, just like the built-in list-sort.
It returns a list containing the elements of the old list sorted according to the predicate. As with list-sort,
the predicate should be a procedure that expects two arguments and returns #t if its first argument must
precede its second in the sorted list and false otherwise. That is, if the predicate is applied to two elements x
and y, where x appears after y in the input list, it should return true only if x should appear before y in the
output list. If this constraint is met, sort will perform a stable sort; with a stable sort, two elements that are
already sorted with respect to each other will appear in the output in the same order in which they appeared in
the input. Thus, sorting a list that is already sorted will result in no reordering, even if there are equivalent
elements.

(sort < '(3 4 2 1 2 5))  (1 2 2 3 4 5)
(sort > '(0.5 1/2))  (0.5 1/2)
(sort > '(1/2 0.5))  (1/2 0.5)
(list->string
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  (sort char>?
        (string->list "coins")))  "sonic"

A companion procedure, merge, is also defined by the code. merge accepts a predicate and two sorted lists
and returns a merged list in sorted order of the elements of the two lists. With a properly defined predicate,
merge is also stable in the sense that an item from the first list will appear before an item from the second list
unless it is necessary that the item from the second list appear first.

(merge char<?
       '(#\a #\c)
       '(#\b #\c #\d))  (#\a #\b #\c #\c #\d)
(merge <
       '(1/2 2/3 3/4)
       '(0.5 0.6 0.7))  (1/2 0.5 0.6 2/3 0.7 3/4)
(list->string
  (merge char>?
    (string->list "old")
    (string->list "toe")))  "tooled"

The merge sorting algorithm is simple and elegant. The input list is split into two approximately equal
sublists. These sublists are sorted recursively, yielding two sorted lists. The sorted lists are then merged to
form a single sorted list. The base case for the recursion is a list of one element, which is already sorted.

To reduce overhead, the implementation computes the length of the input list once, in sort, rather than at
each step of the recursion, in dosort. This also allows dosort to isolate the first half of the list merely by
halving the length, saving the cost of allocating a new list containing half of the elements. As a result, ls may
contain more than n elements, but only the first n elements are considered part of the list.

(library (tspl sort)
  (export sort merge)
  (import (rnrs))

  (define dosort
    (lambda (pred? ls n)
      (if (= n 1)
          (list (car ls))
          (let ([i (div n 2)])
            (domerge pred?
              (dosort pred? ls i)
              (dosort pred? (list-tail ls i) (- n i)))))))

  (define domerge
    (lambda (pred? l1 l2)
      (cond
        [(null? l1) l2]
        [(null? l2) l1]
        [(pred? (car l2) (car l1))
         (cons (car l2) (domerge pred? l1 (cdr l2)))]
        [else (cons (car l1) (domerge pred? (cdr l1) l2))])))

  (define sort
    (lambda (pred? l)
      (if (null? l) l (dosort pred? l (length l)))))
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  (define merge
    (lambda (pred? l1 l2)
      (domerge pred? l1 l2))))

Exercise 12.2.1

In dosort, when n is 1, why is (list (car ls)) returned instead of just ls? How much allocation
would be saved overall by replacing (list (car ls)) with
(if (null? (cdr ls)) ls (list (car ls)))?

Exercise 12.2.2

How much work is actually saved by not copying the first part of the input list when splitting it in dosort?

Exercise 12.2.3

All or nearly all allocation could be saved if the algorithm were to work destructively, using set-cdr! to
separate and join lists. Write destructive versions sort! and merge! of the sort and merge. Determine
the difference between the two sets of procedures in terms of allocation and run time for various inputs.

Section 12.3. A Set Constructor

This example describes a syntactic extension, set-of, that allows the construction of sets represented as lists
with no repeated elements [22]. It uses define-syntax and syntax-rules to compile set expressions
into recursion expressions. The expanded code is often as efficient as that which can be produced by hand.

A set-of expression takes the following form.

(set-of expr clause ...)

expr describes the elements of the set in terms of the bindings established by the set-of clauses
clause .... Each clause can take one of three forms:

A clause of the form (x in s) establishes a binding for x to each element of the set s in turn. This
binding is visible within the remaining clauses and the expression expr.

1. 

A clause of the form (x is e) establishes a binding for x to e. This binding is visible within the
remaining clauses and the expression expr. This form is essentially an abbreviation for
(x in (list e)).

2. 

A clause taking any other form is treated as a predicate; this is used to force refusal of certain
elements as in the second of the examples below.

3. 

(set-of x
  (x in '(a b c)))  (a b c)

(set-of x
  (x in '(1 2 3 4))
  (even? x))  (2 4)

(set-of (cons x y)
  (x in '(1 2 3))
  (y is (* x x)))  ((1 . 1) (2 . 4) (3 . 9))
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(set-of (cons x y)
  (x in '(a b))
  (y in '(1 2)))  ((a . 1) (a . 2) (b . 1) (b . 2))

A set-of expression is transformed into nested let, named let, and if expressions, corresponding to
each is, in, or predicate subexpression. For example, the simple expression

(set-of x (x in '(a b c)))

is transformed into

(let loop ([set '(a b c)])
  (if (null? set)
      '()
      (let ([x (car set)])
        (set-cons x (loop (cdr set))))))

The expression

(set-of x (x in '(1 2 3 4)) (even? x))

is transformed into

(let loop ([set '(1 2 3 4)])
  (if (null? set)
      '()
      (let ([x (car set)])
        (if (even? x)
            (set-cons x (loop (cdr set)))
            (loop (cdr set))))))

The more complicated expression

(set-of (cons x y) (x in '(1 2 3)) (y is (* x x)))

is transformed into

(let loop ([set '(1 2 3)])
  (if (null? set)
      '()
      (let ([x (car set)])
        (let ([y (* x x)])
          (set-cons (cons x y)
                    (loop (cdr set)))))))

Finally, the expression

(set-of (cons x y) (x in '(a b)) (y in '(1 2)))

is transformed into nested named let expressions:

(let loop1 ([set1 '(a b)])
  (if (null? set1)
      '()
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      (let ([x (car set1)])
        (let loop2 ([set2 '(1 2)])
          (if (null? set2)
              (loop1 (cdr set1))
              (let ([y (car set2)])
                (set-cons (cons x y)
                          (loop2 (cdr set2)))))))))

These are fairly straightforward transformations, except that the base case for the recursion on nested named
let expressions varies depending upon the level. The base case for the outermost named let is always the
empty list (), while the base case for an internal named let is the recursion step for the next outer named
let. In order to handle this, the definition of set-of employs a help syntactic extension set-of-help.
set-of-help takes an additional expression, base, which is the base case for recursion at the current
level.

(library (tspl sets)
  (export set-of set-cons in is)
  (import (rnrs))

 ; set-of uses helper syntactic extension set-of-help, passing it
 ; an initial base expression of '()
  (define-syntax set-of
    (syntax-rules ()
      [(_ e m ...)
       (set-of-help e '() m ...)]))

 ; set-of-help recognizes in, is, and predicate expressions and
 ; changes them into nested named let, let, and if expressions.
  (define-syntax set-of-help
    (syntax-rules (in is)
      [(_ e base) (set-cons e base)]
      [(_ e base (x in s) m ...)
       (let loop ([set s])
         (if (null? set)
             base
             (let ([x (car set)])
               (set-of-help e (loop (cdr set)) m ...))))]
      [(_ e base (x is y) m ...)
       (let ([x y]) (set-of-help e base m ...))]
      [(_ e base p m ...)
       (if p (set-of-help e base m ...) base)]))

 ; since in and is are used as auxiliary keywords by set-of, the
 ; library must export definitions for them as well
  (define-syntax in
    (lambda (x)
      (syntax-violation 'in "misplaced auxiliary keyword" x)))

  (define-syntax is
    (lambda (x)
      (syntax-violation 'is "misplaced auxiliary keyword" x)))

 ; set-cons returns the original set y if x is already in y.
  (define set-cons
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    (lambda (x y)
      (if (memv x y)
          y
          (cons x y)))))

Exercise 12.3.1

Write a procedure, union, that takes an arbitrary number of sets (lists) as arguments and returns the union of
the sets, using only the set-of syntactic form. For example:

(union)  ()
(union '(a b c))  (a b c)
(union '(2 5 4) '(9 4 3))  (2 5 9 4 3)
(union '(1 2) '(2 4) '(4 8))  (1 2 4 8)

Exercise 12.3.2

A single-list version of map can (almost) be defined as follows.

(define map1
  (lambda (f ls)
    (set-of (f x) (x in ls))))

(map1 - '(1 2 3 2))  (-1 -3 -2)

Why does this not work? What could be changed to make it work?

Exercise 12.3.3

Devise a different definition of set-cons that maintains sets in some sorted order, making the test for set
membership, and hence set-cons itself, potentially more efficient.

Section 12.4. Word Frequency Counting

This program demonstrates several basic programming techniques, including string and character
manipulation, file input/output, data structure manipulation, and recursion. The program is adapted from
Chapter 6 of The C Programming Language [19]. One reason for using this particular example is to show how
a C program might look when converted almost literally into Scheme.

A few differences between the Scheme program and the original C program are worth noting. First, the
Scheme version employs a different protocol for file input and output. Rather than implicitly using the
standard input and output ports, it requires that filenames be passed in, thus demonstrating the opening and
closing of files. Second, the procedure get-word returns one of three values: a string (the word), a
nonalphabetic character, or an eof value. The original C version returned a flag for letter (to say that a word
was read) or a nonalphabetic character. Furthermore, the C version passed in a string to fill and a limit on the
number of characters in the string; the Scheme version builds a new string of whatever length is required (the
characters in the word are held in a list until the end of the word has been found, then converted into a string
with list->string). Finally, char-type uses the primitive Scheme character predicates
char-alphabetic? and char-numeric? to determine whether a character is a letter or digit.

The main program, frequency, takes an input filename and an output filename as arguments, e.g.,
(frequency "pickle" "freq.out") prints the frequency count for each word in the file "pickle" to
the file "freq.out." As frequency reads words from the input file, it inserts them into a binary tree structure
(using a binary sorting algorithm). Duplicate entries are recorded by incrementing the count associated with
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each word. Once end of file is reached, the program traverses the tree, printing each word with its count.

Assume that the file "pickle" contains the following text.

Peter Piper picked a peck of pickled peppers;
A peck of pickled peppers Peter Piper picked.
If Peter Piper picked a peck of pickled peppers,
Where's the peck of pickled peppers Peter Piper picked?

Then, after typing (frequency "pickle" "freq.out"), the file "freq.out" should contain the
following.

1 A
1 If
4 Peter
4 Piper
1 Where
2 a
4 of
4 peck
4 peppers
4 picked
4 pickled
1 s
1 the

The code for the word-counting program is structured as a top-level program, with the script header
recommended in the scripts chapter of the nonnormative appendices to the Revised6 Report [25]. It takes the
names of input and output files from the command line.

#! /usr/bin/env scheme-script
(import (rnrs))

;;; If the next character on p is a letter, get-word reads a word
;;; from p and returns it in a string.  If the character is not a
;;; letter, get-word returns the character (on eof, the eof-object).
(define get-word
  (lambda (p)
    (let ([c (get-char p)])
      (if (eq? (char-type c) 'letter)
          (list->string
            (let loop ([c c])
              (cons
                c
                (if (memq (char-type (lookahead-char p))
                          '(letter digit))
                    (loop (get-char p))
                    '()))))
          c))))

;;; char-type tests for the eof-object first, since the eof-object
;;; may not be a valid argument to char-alphabetic? or char-numeric?
;;; It returns the eof-object, the symbol letter, the symbol digit,
;;; or the argument itself if it is not a letter or digit.
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(define char-type
  (lambda (c)
    (cond
      [(eof-object? c) c]
      [(char-alphabetic? c) 'letter]
      [(char-numeric? c) 'digit]
      [else c])))

;;; Tree nodes are represented as a record type with four fields: word,
;;; left, right, and count.  Only one field, word, is initialized by an
;;; argument to the constructor procedure make-tnode.  The remaining
;;; fields are initialized by the constructor and changed by subsequent
;;; operations.
(define-record-type tnode
  (fields (immutable word)
          (mutable left)
          (mutable right)
          (mutable count))
  (protocol
    (lambda (new)
      (lambda (word)
        (new word '() '() 1)))))

;;; If the word already exists in the tree, tree increments its
;;; count.  Otherwise, a new tree node is created and put into the
;;; tree.  In any case, the new or modified tree is returned.
(define tree
  (lambda (node word)
    (cond
      [(null? node) (make-tnode word)]
      [(string=? word (tnode-word node))
       (tnode-count-set! node (+ (tnode-count node) 1))
       node]
      [(string<? word (tnode-word node))
       (tnode-left-set! node (tree (tnode-left node) word))
       node]
      [else
       (tnode-right-set! node (tree (tnode-right node) word))
       node])))

;;; tree-print prints the tree in "in-order," i.e., left subtree,
;;; then node, then right subtree.  For each word, the count and the
;;; word are printed on a single line.
(define tree-print
  (lambda (node p)
    (unless (null? node)
      (tree-print (tnode-left node) p)
      (put-datum p (tnode-count node))
      (put-char p #\space)
      (put-string p (tnode-word node))
      (newline p)
      (tree-print (tnode-right node) p))))

;;; frequency is the driver routine.  It opens the files, reads the
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;;; words, and enters them into the tree.  When the input port
;;; reaches end-of-file, it prints the tree and closes the ports.
(define frequency
  (lambda (infn outfn)
    (let ([ip (open-file-input-port infn (file-options)
                (buffer-mode block) (native-transcoder))]
          [op (open-file-output-port outfn (file-options)
                (buffer-mode block) (native-transcoder))])
      (let loop ([root '()])
        (let ([w (get-word ip)])
          (cond
            [(eof-object? w) (tree-print root op)]
            [(string? w) (loop (tree root w))]
            [else (loop root)])))
      (close-port ip)
      (close-port op))))

(unless (= (length (command-line)) 3)
  (put-string (current-error-port) "usage: ")
  (put-string (current-error-port) (car (command-line)))
  (put-string (current-error-port) " input-filename output-filename\n")
  (exit #f))

(frequency (cadr (command-line)) (caddr (command-line)))

Exercise 12.4.1

In the output file shown earlier, the capitalized words appeared before the others in the output file, and the
capital A was not recognized as the same word as the lower-case a. Modify tree to use the case-insensitive
versions of the string comparisons so that this does not happen.

Exercise 12.4.2

The "word" s appears in the file "freq.out," although it is really just a part of the contraction Where's.
Adjust get-word to allow embedded single quote marks.

Exercise 12.4.3

Modify this program to "weed out" certain common words such as a, an, the, is, of, etc., in order to
reduce the amount of output for long input files. Try to devise other ways to cut down on useless output.

Exercise 12.4.4

get-word buffers characters in a list, allocating a new pair (with cons) for each character. Make it more
efficient by using a string to buffer the characters. Devise a way to allow the string to grow if necessary.
[Hint: Use string-append or a string output port.]

Exercise 12.4.5

The tree implementation works by creating trees and later filling in their left and right fields. This
requires many unnecessary assignments. Rewrite the tree procedure to avoid tree-left-set! and
tree-right-set! entirely.
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Exercise 12.4.6

Recode the program to use a hashtable (Section 6.13) in place of a binary tree, and compare the running times
of the new and old programs on large input files. Are hashtables always faster or always slower? Is there a
break-even point? Does the break-even point depend on the size of the file or on some other characteristic of
the file?

Section 12.5. Scheme Printer

Printing Scheme objects may seem like a complicated process, but in fact a rudimentary printer is
straightforward, as this example demonstrates. put-datum, write, and display are all implemented by
the same code. Sophisticated printers often support various printer controls and handle printing of cyclic
objects, but the one given here is completely basic.

The main driver for the program is a procedure wr, which takes an object to print x, a flag d?, and a port p.
The flag d? (for display) is #t if the code is to display the object, #f otherwise. The d? flag is important
only for characters and strings. Recall from Section 7.8 that display prints strings without the enclosing
quote marks and characters without the #\ syntax.

The entry points for write and display handle the optionality of the second (port) argument, passing the
value of current-output-port when no port argument is provided.

Procedures, ports, and the end-of-file object are printed as #<procedure>, #<port>, and #<eof>.
Unrecognized types of values are printed as #<unknown>. So, for example, a hashtable, enumeration set,
and object of some implementation-specific type will all print as #<unknown>.

(library (tspl printer)
  (export put-datum write display)
  (import (except (rnrs) put-datum write display))

 ; define these here to avoid confusing paren-balancers
  (define lparen #\()
  (define rparen #\))

 ; wr is the driver, dispatching on the type of x
  (define wr
    (lambda (x d? p)
      (cond
        [(symbol? x) (put-string p (symbol->string x))]
        [(pair? x) (wrpair x d? p)]
        [(number? x) (put-string p (number->string x))]
        [(null? x) (put-string p "()")]
        [(boolean? x) (put-string p (if x "#t" "#f"))]
        [(char? x) (if d? (put-char p x) (wrchar x p))]
        [(string? x) (if d? (put-string p x) (wrstring x p))]
        [(vector? x) (wrvector x d? p)]
        [(bytevector? x) (wrbytevector x d? p)]
        [(eof-object? x) (put-string p "#<eof>")]
        [(port? x) (put-string p "#<port>")]
        [(procedure? x) (put-string p "#<procedure>")]
        [else (put-string p "#<unknown>")])))

 ; wrpair handles pairs and nonempty lists
  (define wrpair
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    (lambda (x d? p)
      (put-char p lparen)
      (let loop ([x x])
        (wr (car x) d? p)
        (cond
          [(pair? (cdr x)) (put-char p #\space) (loop (cdr x))]
          [(null? (cdr x))]
          [else (put-string p " . ") (wr (cdr x) d? p)]))
      (put-char p rparen)))

 ; wrchar handles characters.  Used only when d? is #f.
  (define wrchar
    (lambda (x p)
      (put-string p "#\\")
      (cond
        [(assq x '((#\alarm . "alarm") (#\backspace . "backspace")
                   (#\delete . "delete") (#\esc . "esc")
                   (#\newline . "newline") (#\nul . "nul")
                   (#\page . "page") (#\return . "return")
                   (#\space . "space") (#\tab . "tab")
                   (#\vtab . "vtab"))) =>
         (lambda (a) (put-string p (cdr a)))]
        [else (put-char p x)])))

 ; wrstring handles strings.  Used only when d? is #f.
  (define wrstring
    (lambda (x p)
      (put-char p #\")
      (let ([n (string-length x)])
        (do ([i 0 (+ i 1)])
            ((= i n))
          (let ([c (string-ref x i)])
            (case c
              [(#\alarm) (put-string p "\\a")]
              [(#\backspace) (put-string p "\\b")]
              [(#\newline) (put-string p "\\n")]
              [(#\page) (put-string p "\\f")]
              [(#\return) (put-string p "\\r")]
              [(#\tab) (put-string p "\\t")]
              [(#\vtab) (put-string p "\\v")]
              [(#\") (put-string p "\\\"")]
              [(#\\) (put-string p "\\\\")]
              [else (put-char p c)]))))
      (put-char p #\")))

  (define wrvector
    (lambda (x d? p)
      (put-char p #\#)
      (let ([n (vector-length x)])
        (do ([i 0 (+ i 1)] [sep lparen #\space])
            ((= i n))
          (put-char p sep)
          (wr (vector-ref x i) d? p)))
      (put-char p rparen)))
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  (define wrbytevector
    (lambda (x d? p)
      (put-string p "#vu8")
      (let ([n (bytevector-length x)])
        (do ([i 0 (+ i 1)] [sep lparen #\space])
            ((= i n))
          (put-char p sep)
          (wr (bytevector-u8-ref x i) d? p)))
      (put-char p rparen)))

 ; check-and-wr is called when the port is supplied
  (define check-and-wr
    (lambda (who x d? p)
      (unless (and (output-port? p) (textual-port? p))
        (assertion-violation who "invalid argument" p))
      (wr x d? p)))

 ; put-datum calls wr with d? set to #f
  (define put-datum
    (lambda (p x)
      (check-and-wr 'put-datum x #f p)))

 ; write calls wr with d? set to #f
  (define write
    (case-lambda
      [(x) (wr x #f (current-output-port))]
      [(x p) (check-and-wr 'write x #f p)]))

 ; display calls wr with d? set to #t
  (define display
    (case-lambda
      [(x) (wr x #t (current-output-port))]
      [(x p) (check-and-wr 'display x #t p)])))

Exercise 12.5.1

Numbers are printed with the help of number->string. Correct printing of all Scheme numeric types,
especially inexact numbers, is a complicated task. Handling exact integers and ratios is fairly straightforward,
however. Modify the code to print exact integers and ratios numbers directly (without number->string),
but continue to use number->string for inexact and complex numbers.

Exercise 12.5.2

Modify wr and its helpers to direct their output to an internal buffer rather than to a port. Use the modified
versions to implement a procedure object->string that, like number->string, returns a string
containing a printed representation of its input. For example:

(object->string '(a b c))  "(a b c)"
(object->string "hello")  "\"hello\""

You may be surprised just how easy this change is to make.
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Exercise 12.5.3

Some symbols are not printed properly by wr, including those that start with digits or contain whitespace.
Modify wr to call a wrsymbol helper that uses hex scalar escapes as necessary to handle such symbols. A
hex scalar escape takes the form #\xn;, where n is the Unicode scalar value of a character expressed in
hexadecimal notation. Consult the grammar for symbols on page 458 to determine when hex scalar escapes
are necessary.

Section 12.6. Formatted Output

It is often necessary to print strings containing the printed representations of Scheme objects, especially
numbers. Doing so with Scheme's standard output routines can be tedious. For example, the tree-print
procedure of Section 12.4 requires a sequence of four calls to output routines to print a simple one-line
message:

(put-datum p (tnode-count node))
(put-char p #\space)
(put-string p (tnode-word node))
(newline p)

The formatted output facility defined in this section allows these four calls to be replaced by the single call to
fprintf below.

(fprintf p "~s ~a~%" (tnode-count node) (tnode-word node))

fprintf expects a port argument, a control string, and an indefinite number of additional arguments that are
inserted into the output as specified by the control string. In the example, the value of
(tnode-count node) is written first, in place of ~s. This is followed by a space and the displayed value
of (tnode-word node), in place of ~a. The ~% is replaced in the output with a newline.

The procedure printf, also defined in this section, is like fprintf except that no port argument is
expected and output is sent to the current output port.

~s, ~a, and ~% are format directives; ~s causes the first unused argument after the control string to be
printed to the output via write, ~a causes the first unused argument to be printed via display, and ~%
simply causes a newline character to be printed. The simple implementation of fprintf below recognizes
only one other format directive, ~~, which inserts a tilde into the output. For example,

(printf "The string ~s displays as ~~.~%" "~")

prints

The string "~" displays as ~.

(library (tspl formatted-output)
  (export printf fprintf)
  (import (rnrs))

 ; dofmt does all of the work.  It loops through the control string
 ; recognizing format directives and printing all other characters
 ; without interpretation.  A tilde at the end of a control string is
 ; treated as an ordinary character.  No checks are made for proper
 ; inputs.  Directives may be given in either lower or upper case.
  (define dofmt
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    (lambda (p cntl args)
      (let ([nmax (- (string-length cntl) 1)])
        (let loop ([n 0] [a args])
          (if (<= n nmax)
              (let ([c (string-ref cntl n)])
                (if (and (char=? c #\~) (< n nmax))
                    (case (string-ref cntl (+ n 1))
                      [(#\a #\A)
                       (display (car a) p)
                       (loop (+ n 2) (cdr a))]
                      [(#\s #\S)
                       (write (car a) p)
                       (loop (+ n 2) (cdr a))]
                      [(#\%)
                       (newline p)
                       (loop (+ n 2) a)]
                      [(#\~)
                       (put-char p #\~) (loop (+ n 2) a)]
                      [else
                       (put-char p c) (loop (+ n 1) a)])
                    (begin
                      (put-char p c)
                      (loop (+ n 1) a)))))))))

 ; printf and fprintf differ only in that fprintf passes its
 ; port argument to dofmt while printf passes the current output
 ; port.
  (define printf
    (lambda (control . args)
      (dofmt (current-output-port) control args)))

  (define fprintf
    (lambda (p control . args)
      (dofmt p control args))))

Exercise 12.6.1

Add error checking to the code for invalid port arguments (fprintf), invalid tilde escapes, and extra or
missing arguments.

Exercise 12.6.2

Using the optional radix argument to number->string, augment printf and fprintf with support for
the following new format directives:

  a. ~b or ~B: print the next unused argument, which must be a number, in binary;
  b. ~o or ~O: print the next unused argument, which must be a number, in octal; and
  c. ~x or ~X: print the next unused argument, which must be a number, in hexadecimal.
For example:

(printf "#x~x #o~o #b~b~%" 16 8 2)

would print
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#x10 #o10 #b10

Exercise 12.6.3

Add an "indirect" format directive, ~@, that treats the next unused argument, which must be a string, as if it
were spliced into the current format string. For example:

(printf "--- ~@ ---" "> ~s <" '(a b c))

would print

---> (a b c) <---

Exercise 12.6.4

Implement format, a version of fprintf that places its output into a string instead of writing to a port.
Make use of object->string from Exercise 12.5.2 to support the ~s and ~a directives.

(let ([x 3] [y 4])
  (format "~s + ~s = ~s" x y (+ x y)))  "3 + 4 = 7"

Exercise 12.6.5

Instead of using object->string, define format using a string output port.

Exercise 12.6.6

Modify format, fprintf, and printf to allow a field size to be specified after the tilde in the ~a and ~s
format directives. For example, the directive ~10s would cause the next unused argument to be inserted into
the output left-justified in a field of size 10. If the object requires more spaces than the amount specified,
allow it to extend beyond the field.

(let ([x 'abc] [y '(def)])
  (format "(cons '~5s '~5s) = ~5s"
    x y (cons x y)))  "(cons 'abc   '(def)) = (abc def)"

[Hint: Use format recursively.]

Section 12.7. A Meta-Circular Interpreter for Scheme

The program described in this section is a meta-circular interpreter for Scheme, i.e., it is an interpreter for
Scheme written in Scheme. The interpreter shows how small Scheme is when the core structure is considered
independently from its syntactic extensions and primitives. It also illustrates interpretation techniques that can
be applied equally well to languages other than Scheme.

The relative simplicity of the interpreter is somewhat misleading. An interpreter for Scheme written in
Scheme can be quite a bit simpler than one written in most other languages. Here are a few reasons why this
one is simpler.

Tail calls are handled properly only because tail calls in the interpreter are handled properly by the
host implementation. All that is required is that the interpreter itself be tail-recursive.

• 

First-class procedures in interpreted code are implemented by first-class procedures in the interpreter,
which in turn are supported by the host implementation.

• 
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First-class continuations created with call/cc are provided by the host implementation's
call/cc.

• 

Primitive procedures such as cons and assq and services such as storage management are provided
by the host implementation.

• 

Converting the interpreter to run in a language other than Scheme may require explicit support for some or all
of these items.

The interpreter stores lexical bindings in an environment, which is simply an association list (see page 165).
Evaluation of a lambda expression results in the creation of a procedure within the scope of variables
holding the environment and the lambda body. Subsequent application of the procedure combines the new
bindings (the actual parameters) with the saved environment.

The interpreter handles only the core syntactic forms described in Section 3.1, and it recognizes bindings for
only a handful of primitive procedures. It performs no error checking.

(interpret 3)  3

(interpret '(cons 3 4))  (3 . 4)

(interpret
  '((lambda (x . y)
      (list x y))
    'a 'b 'c 'd))  (a (b c d))

(interpret
  '(((call/cc (lambda (k) k))
     (lambda (x) x))
    "HEY!"))  "HEY!"

(interpret
  '((lambda (memq)
      (memq memq 'a '(b c a d e)))
    (lambda (memq x ls)
      (if (null? ls) #f
          (if (eq? (car ls) x)
              ls
              (memq memq x (cdr ls)))))))  (a d e)

(interpret
  '((lambda (reverse)
      (set! reverse
        (lambda (ls new)
          (if (null? ls)
              new
              (reverse (cdr ls) (cons (car ls) new)))))
      (reverse '(a b c d e) '()))
 #f))  (e d c b a)

(library (tspl interpreter)
  (export interpret)
  (import (rnrs) (rnrs mutable-pairs))

 ; primitive-environment contains a small number of primitive
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 ; procedures; it can be extended easily with additional primitives.
  (define primitive-environment
    `((apply . ,apply) (assq . ,assq) (call/cc . ,call/cc)
      (car . ,car) (cadr . ,cadr) (caddr . ,caddr)
      (cadddr . ,cadddr) (cddr . ,cddr) (cdr . ,cdr)
      (cons . ,cons) (eq? . ,eq?) (list . ,list) (map . ,map)
      (memv . ,memv) (null? . ,null?) (pair? . ,pair?)
      (read . ,read) (set-car! . ,set-car!)
      (set-cdr! . ,set-cdr!) (symbol? . ,symbol?)))

 ; new-env returns a new environment from a formal parameter
 ; specification, a list of actual parameters, and an outer
 ; environment.  The symbol? test identifies "improper"
 ; argument lists.  Environments are association lists,
 ; associating variables with values.
  (define new-env
    (lambda (formals actuals env)
      (cond
        [(null? formals) env]
        [(symbol? formals) (cons (cons formals actuals) env)]
        [else
         (cons
           (cons (car formals) (car actuals))
           (new-env (cdr formals) (cdr actuals) env))])))

 ; lookup finds the value of the variable var in the environment
 ; env, using assq.  Assumes var is bound in env.
  (define lookup
    (lambda (var env)
      (cdr (assq var env))))

 ; assign is similar to lookup but alters the binding of the
 ; variable var by changing the cdr of the association pair
  (define assign
    (lambda (var val env)
      (set-cdr! (assq var env) val)))

 ; exec evaluates the expression, recognizing a small set of core forms.
  (define exec
    (lambda (expr env)
      (cond
        [(symbol? expr) (lookup expr env)]
        [(pair? expr)
         (case (car expr)
           [(quote) (cadr expr)]
           [(lambda)
            (lambda vals
              (let ([env (new-env (cadr expr) vals env)])
                (let loop ([exprs (cddr expr)])
                  (if (null? (cdr exprs))
                      (exec (car exprs) env)
                      (begin
                        (exec (car exprs) env)
                        (loop (cdr exprs)))))))]
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           [(if)
            (if (exec (cadr expr) env)
                (exec (caddr expr) env)
                (exec (cadddr expr) env))]
           [(set!) (assign (cadr expr) (exec (caddr expr) env) env)]
           [else
            (apply
              (exec (car expr) env)
              (map (lambda (x) (exec x env)) (cdr expr)))])]
        [else expr])))

 ; interpret starts execution with the primitive environment.
  (define interpret
    (lambda (expr)
      (exec expr  primitive-environment))))

Exercise 12.7.1

As written, the interpreter cannot interpret itself because it does not support several of the syntactic forms
used in its implementation: let (named and unnamed), internal define, case, cond, and begin. Rewrite
the code for the interpreter, using only the syntactic forms it supports.

Exercise 12.7.2

After completing the preceding exercise, use the interpreter to run a copy of the interpreter, and use the copy
to run another copy of the interpreter. Repeat this process to see how many levels deep it will go before the
system grinds to a halt.

Exercise 12.7.3

At first glance, it might seem that the lambda case could be written more simply as follows.

[(lambda)
 (lambda vals
   (let ([env (new-env (cadr expr) vals env)])
     (let loop ([exprs (cddr expr)])
       (let ([val (exec (car exprs) env)])
         (if (null? (cdr exprs))
             val
             (loop (cdr exprs)))))))]

Why would this be incorrect? [Hint: What property of Scheme would be violated?]

Exercise 12.7.4

Try to make the interpreter more efficient by looking for ways to ask fewer questions or to allocate less
storage space. [Hint: Before evaluation, convert lexical variable references into (access n), where n
represents the number of values in the environment association list in front of the value in question.]

Exercise 12.7.5

Scheme evaluates arguments to a procedure before applying the procedure and applies the procedure to the
values of these arguments (call-by-value). Modify the interpreter to pass arguments unevaluated and arrange
to evaluate them upon reference (call-by-name). [Hint: Use lambda to delay evaluation.] You will need to
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create versions of the primitive procedures (car, null?, etc.) that take their arguments unevaluated.

Section 12.8. Defining Abstract Objects

This example demonstrates a syntactic extension that facilitates the definition of simple abstract objects (see
Section 2.9). This facility has unlimited potential as the basis for a complete object-oriented subsystem in
Scheme.

Abstract objects are similar to basic data structures such as pairs and vectors. Rather than being manipulated
via access and assignment operators, however, abstract objects respond to messages. The valid messages and
the actions to be taken for each message are defined by code within the object itself rather than by code
outside the object, resulting in more modular and potentially more secure programming systems. The data
local to an abstract object is accessible only through the actions performed by the object in response to the
messages.

A particular type of abstract object is defined with define-object, which has the general form

(define-object (name var1 ...)
  ((var2 expr) ...)
  ((msg action) ...))

The first set of bindings ((var2 expr) ...) may be omitted. define-object defines a procedure
that is called to create new abstract objects of the given type. This procedure is called name, and the
arguments to this procedure become the values of the local variables var1 .... After the procedure is
invoked, the variables var2 ... are bound to the values expr ... in sequence (as with let*) and the
messages msg ... are bound to the procedure values action ... in a mutually recursive fashion (as
with letrec). Within these bindings, the new abstract object is created; this object is the value of the
creation procedure.

The syntactic form send-message is used to send messages to abstract objects.
(send-message object msg arg ...) sends object the message msg with arguments
arg .... When an object receives a message, the arg ... become the parameters to the action procedure
associated with the message, and the value returned by this procedure is returned by send-message.

The following examples should help to clarify how abstract objects are defined and used. The first example is
a simple kons object that is similar to Scheme's built-in pair object type, except that to access or assign its
fields requires sending it messages.

(define-object (kons kar kdr)
  ((get-car (lambda () kar))
   (get-cdr (lambda () kdr))
   (set-car! (lambda (x) (set! kar x)))
   (set-cdr! (lambda (x) (set! kdr x)))))

(define p (kons 'a 'b))
(send-message p get-car)  a
(send-message p get-cdr)  b
(send-message p set-cdr! 'c)
(send-message p get-cdr)  c

The simple kons object does nothing but return or assign one of the fields as requested. What makes abstract
objects interesting is that they can be used to restrict access or perform additional services. The following
version of kons requires that a password be given with any request to assign one of the fields. This password
is a parameter to the kons procedure.
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(define-object (kons kar kdr pwd)
  ((get-car (lambda () kar))
   (get-cdr (lambda () kar))
   (set-car!
     (lambda (x p)
       (if (string=? p pwd)
           (set! kar x))))
   (set-cdr!
     (lambda (x p)
       (if (string=? p pwd)
           (set! kar x))))))

(define p1 (kons 'a 'b "magnificent"))
(send-message p1 set-car! 'c "magnificent")
(send-message p1 get-car)  c
(send-message p1 set-car! 'd "please")
(send-message p1 get-car)  c

(define p2 (kons 'x 'y "please"))
(send-message p2 set-car! 'z "please")
(send-message p2 get-car)  z

One important ability of an abstract object is that it can keep statistics on messages sent to it. The following
version of kons counts accesses to the two fields. This version also demonstrates the use of explicitly
initialized local bindings.

(define-object (kons kar kdr)
  ((count 0))
  ((get-car
    (lambda ()
      (set! count (+ count 1))
      kar))
   (get-cdr
    (lambda ()
      (set! count (+ count 1))
      kdr))
    (accesses
     (lambda () count))))

(define p (kons 'a 'b))
(send-message p get-car)  a
(send-message p get-cdr)  b
(send-message p accesses)  2
(send-message p get-cdr)  b
(send-message p accesses)  3

The implementation of define-object is straightforward. The object definition is transformed into a
definition of the object creation procedure. This procedure is the value of a lambda expression whose
arguments are those specified in the definition. The body of the lambda consists of a let* expression to
bind the local variables and a letrec expression to bind the message names to the action procedures. The
body of the letrec is another lambda expression whose value represents the new object. The body of this
lambda expression compares the messages passed in with the expected messages using a case expression
and applies the corresponding action procedure to the remaining arguments.
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For example, the definition

(define-object (kons kar kdr)
  ((count 0))
  ((get-car
    (lambda ()
      (set! count (+ count 1))
      kar))
   (get-cdr
    (lambda ()
      (set! count (+ count 1))
      kdr))
   (accesses
    (lambda () count))))

is transformed into

(define kons
  (lambda (kar kdr)
    (let* ([count 0])
      (letrec ([get-car
                (lambda ()
                  (set! count (+ count 1)) kar)]
               [get-cdr
                (lambda ()
                  (set! count (+ count 1)) kdr)]
               [accesses (lambda () count)])
        (lambda (msg . args)
          (case msg
            [(get-car) (apply get-car args)]
            [(get-cdr) (apply get-cdr args)]
            [(accesses) (apply accesses args)]
            [else (assertion-violation 'kons
                    "invalid message"
                    (cons msg args))]))))))

(library (tspl oop)
  (export define-object send-message)
  (import (rnrs))

 ; define-object creates an object constructor that uses let* to bind
 ; local fields and letrec to define the exported procedures.  An
 ; object is itself a procedure that accepts messages corresponding
 ; to the names of the exported procedures.  The second pattern is
 ; used to allow the set of local fields to be omitted.
  (define-syntax define-object
    (syntax-rules ()
      [(_ (name . varlist)
          ((var1 val1) ...)
          ((var2 val2) ...))
       (define name
         (lambda varlist
           (let* ([var1 val1] ...)
             (letrec ([var2 val2] ...)
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               (lambda (msg . args)
                 (case msg
                   [(var2) (apply var2 args)]
                   ...
                   [else
                    (assertion-violation 'name
                      "invalid message"
                      (cons msg args))]))))))]
      [(_ (name . varlist) ((var2 val2) ...))
       (define-object (name . varlist)
                      ()
                      ((var2 val2) ...))]))

 ; send-message abstracts the act of sending a message from the act
 ; of applying a procedure and allows the message to be unquoted.
  (define-syntax send-message
    (syntax-rules ()
      [(_ obj msg arg ...)
       (obj 'msg arg ...)])))

Exercise 12.8.1

Use define-object to define the stack object type from Section 2.9.

Exercise 12.8.2

Use define-object to define a queue object type with operations similar to those described in
Section 2.9.

Exercise 12.8.3

It is often useful to describe one object in terms of another. For example, the second kons object type could
be described as the same as the first but with a password argument and different actions associated with the
set-car! and set-cdr! messages. This is called inheritance; the new type of object is said to inherit
attributes from the first. Modify define-object to support inheritance by allowing the optional
declaration (inherit object-name) to appear after the message/action pairs. This will require saving
some information about each object definition for possible use in subsequent object definitions. Conflicting
argument names should be disallowed, but other conflicts should be resolved by using the initialization or
action specified in the new object definition.

Exercise 12.8.4

Based on the definition of method on page 317, define a complete object system, but use records rather than
vectors to represent object instances. If done well, the resulting object system should be more efficient and
easier to use than the system given above.

Section 12.9. Fast Fourier Transform

The procedure described in this section uses Scheme's complex arithmetic to compute the discrete Fourier
transform (DFT) of a sequence of values [4]. Discrete Fourier transforms are used to analyze and process
sampled signal sequences in a wide variety of digital electronics applications such as pattern recognition,
bandwidth compression, radar target detection, and weather surveillance.

The DFT of a sequence of N input values,
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{x(n)}n=0
N-1,

is the sequence of N output values,

{X(m)}m=0
N-1,

each defined by the equation

It is convenient to abstract away the constant amount (for given N)

in order to obtain the more concise but equivalent equation

A straightforward computation of the N output values, each as a sum of N intermediate values, requires on the
order of N2 operations. A fast Fourier transform (FFT), applicable when N is a power of 2, requires only on
the order of Nlog2N operations. Although usually presented as a rather complicated iterative algorithm, the
fast Fourier transform is most concisely and elegantly expressed as a recursive algorithm.

The recursive algorithm, which is due to Sam Daniel [7], can be derived by manipulating the preceding
summation as follows. We first split the summation into two summations and recombine them into one
summation from 0 to N/2 - 1.

We then pull out the common factor .

We can reduce  to 1 when m is even and -1 when m is odd, since

This allows us to specialize the summation for the even and odd cases of m = 2k and m = 2k + 1, 0 ≤ k ≤ N/2 -
1.
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The resulting summations are DFTs of the N/2-element sequences

{x(n) + x(n + N/2)}n=0
N/2-1

and

Thus, the DFT of an N-element sequence can be computed recursively by interlacing the DFTs of two
N/2-element sequences. If we select a base case of two elements, we can describe a recursive fast Fourier
transformation (RFFT) algorithm as follows. For N = 2,

since . For N > 2,

with the attendant interlacing of even and odd components.
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The diagram above is adapted from one by Sam Daniel [7] and shows the computational structure of the
RFFT algorithm. The first stage computes pairwise sums and differences of the first and second halves of the
input; this stage is labeled the butterfly stage. The second stage recurs on the resulting subsequences. The third
stage interlaces the output of the two recursive calls to RFFT, thus yielding the properly ordered sequence
{X(m)}m=0

N-1.

The procedure dft accepts a sequence (list) of values, x, the length of which is assumed to be a power of 2.
dft precomputes a sequence of powers of , , and calls rfft to initiate the recursion. rfft
follows the algorithm outlined above.

(define (dft x)
  (define (w-powers n)
    (let ([pi (* (acos 0.0) 2)])
      (let ([delta (/ (* -2.0i pi) n)])
        (let f ([n n] [x 0.0])
          (if (= n 0)
              '()
              (cons (exp x) (f (- n 2) (+ x delta))))))))
  (define (evens w)
    (if (null? w)
        '()
        (cons (car w) (evens (cddr w)))))
  (define (interlace x y)
    (if (null? x)
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        '()
        (cons (car x) (cons (car y) (interlace (cdr x) (cdr y))))))
  (define (split ls)
    (let split ([fast ls] [slow ls])
      (if (null? fast)
          (values '() slow)
          (let-values ([(front back) (split (cddr fast) (cdr slow))])
            (values (cons (car slow) front) back)))))
  (define (butterfly x w)
    (let-values ([(front back) (split x)])
      (values
        (map + front back)
        (map * (map - front back) w))))
  (define (rfft x w)
    (if (null? (cddr x))
        (let ([x0 (car x)] [x1 (cadr x)])
          (list (+ x0 x1) (- x0 x1)))
        (let-values ([(front back) (butterfly x w)])
          (let ([w (evens w)])
            (interlace (rfft front w) (rfft back w))))))
  (rfft x (w-powers (length x))))

Exercise 12.9.1

Alter the algorithm to employ a base case of four points. What simplifications can be made to avoid
multiplying any of the base case outputs by elements of w?

Exercise 12.9.2

Recode dft to accept a vector rather than a list as input, and have it produce a vector as output. Use lists
internally if necessary, but do not simply convert the input to a list on entry and the output to a vector on exit.

Exercise 12.9.3

Rather than recomputing the powers of w on each step for a new number of points, the code simply uses the
even-numbered elements of the preceding list of powers. Show that doing so yields the proper list of powers.
That is, show that (evens (w-powers n)) is equal to (w-powers (/ n 2)).

Exercise 12.9.4

The recursion step creates several intermediate lists that are immediately discarded. Recode the recursion step
to avoid any unnecessary allocation.

Exercise 12.9.5

Each element of a sequence of input values may be regenerated from the discrete Fourier transform of the
sequence via the equation

Noting the similarity between this equation and the original equation defining X(m), create a modified version
of dft, inverse-dft, that performs the inverse transformation. Verify that
(inverse-dft (dft seq)) returns seq for several input sequences seq.
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Section 12.10. A Unification Algorithm

Unification [23] is a pattern-matching technique used in automated theorem proving, type-inference systems,
computer algebra, and logic programming, e.g., Prolog [6].

A unification algorithm attempts to make two symbolic expressions equal by computing a unifying
substitution for the expressions. A substitution is a function that replaces variables with other expressions. A
substitution must treat all occurrences of a variable the same way, e.g., if it replaces one occurrence of the
variable x by a, it must replace all occurrences of x by a. A unifying substitution, or unifier, for two
expressions e1 and e2 is a substitution, , such that .

For example, the two expressions f(x) and f(y) can be unified by substituting x for y (or y for x). In this case,
the unifier  could be described as the function that replaces y with x and leaves other variables unchanged.
On the other hand, the two expressions x + 1 and y + 2 cannot be unified. It might appear that substituting 3
for x and 2 for y would make both expressions equal to 4 and hence equal to each other. The symbolic
expressions, 3 + 1 and 2 + 2, however, still differ.

Two expressions may have more than one unifier. For example, the expressions f(x,y) and f(1,y) can be unified
to f(1,y) with the substitution of 1 for x. They may also be unified to f(1,5) with the substitution of 1 for x and
5 for y. The first substitution is preferable, since it does not commit to the unnecessary replacement of y.
Unification algorithms typically produce the most general unifier, or mgu, for two expressions. The mgu for
two expressions makes no unnecessary substitutions; all other unifiers for the expressions are special cases of
the mgu. In the example above, the first substitution is the mgu and the second is a special case.

For the purposes of this program, a symbolic expression can be a variable, a constant, or a function
application. Variables are represented by Scheme symbols, e.g., x; a function application is represented by a
list with the function name in the first position and its arguments in the remaining positions, e.g., (f x); and
constants are represented by zero-argument functions, e.g., (a).

The algorithm presented here finds the mgu for two terms, if it exists, using a continuation-passing style, or
CPS (see Section 3.4), approach to recursion on subterms. The procedure unify takes two terms and passes
them to a help procedure, uni, along with an initial (identity) substitution, a success continuation, and a
failure continuation. The success continuation returns the result of applying its argument, a substitution, to
one of the terms, i.e., the unified result. The failure continuation simply returns its argument, a message.
Because control passes by explicit continuation within unify (always with tail calls), a return from the
success or failure continuation is a return from unify itself.

Substitutions are procedures. Whenever a variable is to be replaced by another term, a new substitution is
formed from the variable, the term, and the existing substitution. Given a term as an argument, the new
substitution replaces occurrences of its saved variable with its saved term in the result of invoking the saved
substitution on the argument expression. Intuitively, a substitution is a chain of procedures, one for each
variable in the substitution. The chain is terminated by the initial, identity substitution.

(unify 'x 'y)  y
(unify '(f x y) '(g x y))  "clash"
(unify '(f x (h)) '(f (h) y))  (f (h) (h))
(unify '(f (g x) y) '(f y x))  "cycle"
(unify '(f (g x) y) '(f y (g x)))  (f (g x) (g x))
(unify '(f (g x) y) '(f y z))  (f (g x) (g x))

(library (tspl unification)
  (export unify)
  (import (rnrs))
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 ; occurs? returns true if and only if u occurs in v
  (define occurs?
    (lambda (u v)
      (and (pair? v)
           (let f ([l (cdr v)])
             (and (pair? l)
                  (or (eq? u (car l))
                      (occurs? u (car l))
                      (f (cdr l))))))))

 ; sigma returns a new substitution procedure extending s by
 ; the substitution of u with v
  (define sigma
    (lambda (u v s)
      (lambda (x)
        (let f ([x (s x)])
          (if (symbol? x)
              (if (eq? x u) v x)
              (cons (car x) (map f (cdr x))))))))

 ; try-subst tries to substitute u for v but may require a
 ; full unification if (s u) is not a variable, and it may
 ; fail if it sees that u occurs in v.
  (define try-subst
    (lambda (u v s ks kf)
      (let ([u (s u)])
        (if (not (symbol? u))
            (uni u v s ks kf)
            (let ([v (s v)])
              (cond
                [(eq? u v) (ks s)]
                [(occurs? u v) (kf "cycle")]
                [else (ks (sigma u v s))]))))))

 ; uni attempts to unify u and v with a continuation-passing
 ; style that returns a substitution to the success argument
 ; ks or an error message to the failure argument kf.  The
 ; substitution itself is represented by a procedure from
 ; variables to terms.
  (define uni
    (lambda (u v s ks kf)

      (cond
        [(symbol? u) (try-subst u v s ks kf)]
        [(symbol? v) (try-subst v u s ks kf)]
        [(and (eq? (car u) (car v))
              (= (length u) (length v)))
         (let f ([u (cdr u)] [v (cdr v)] [s s])
           (if (null? u)
               (ks s)
               (uni (car u)
                    (car v)
                    s
                    (lambda (s) (f (cdr u) (cdr v) s))
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                    kf)))]
        [else (kf "clash")])))

 ; unify shows one possible interface to uni, where the initial
 ; substitution is the identity procedure, the initial success
 ; continuation returns the unified term, and the initial failure
 ; continuation returns the error message.
  (define unify
    (lambda (u v)
      (uni u
           v
           (lambda (x) x)
           (lambda (s) (s u))
           (lambda (msg) msg)))))

Exercise 12.10.1

Modify unify so that it returns its substitution rather than the unified term. Apply this substitution to both
input terms to verify that it returns the same result for each.

Exercise 12.10.2

As mentioned above, substitutions on a term are performed sequentially, requiring one entire pass through the
input expression for each substituted variable. Represent the substitution differently so that only one pass
through the expression need be made. Make sure that substitutions are performed not only on the input
expression but also on any expressions you insert during substitution.

Exercise 12.10.3

Extend the continuation-passing style unification algorithm into an entire continuation-passing style logic
programming system.

Section 12.11. Multitasking with Engines

Engines are a high-level process abstraction supporting timed preemption [10,15]. Engines may be used to
simulate multiprocessing, implement light-weight threads, implement operating system kernels, and perform
nondeterministic computations. The engine implementation is one of the more interesting applications of
continuations in Scheme.

An engine is created by passing a thunk (procedure of no arguments) to the procedure make-engine. The
body of the thunk is the computation to be performed by the engine. An engine itself is a procedure of three
arguments:

ticks, a positive integer that specifies the amount of fuel to be given to the engine. An engine
executes until this fuel runs out or until its computation finishes.

1. 

complete, a procedure of two arguments that specifies what to do if the computation finishes. Its
arguments will be the amount of fuel left over and the result of the computation.

2. 

expire, a procedure of one argument that specifies what to do if the fuel runs out before the
computation finishes. Its argument will be a new engine capable of continuing the computation from
the point of interruption.

3. 
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When an engine is applied to its arguments, it sets up a timer to fire in ticks time units. If the engine
computation completes before the timer goes off, the system invokes complete, passing it the number of
ticks left over and the value of the computation. If, on the other hand, the timer goes off before the engine
computation completes, the system creates a new engine from the continuation of the interrupted computation
and passes this engine to expire. complete and expire are invoked in the continuation of the engine
invocation.

The following example creates an engine from a trivial computation, 3, and gives the engine 10 ticks.

(define eng
  (make-engine
    (lambda () 3)))

(eng 10
  (lambda (ticks value) value)
  (lambda (x) x))  3

It is often useful to pass list as the complete procedure to an engine, causing the engine to return a list of
the ticks remaining and the value if the computation completes.

(eng 10
  list
  (lambda (x) x))  (9 3)

In the example above, the value was 3 and there were 9 ticks left over, i.e., it took only one unit of fuel to
evaluate 3. (The fuel amounts given here are for illustration only. The actual amount may differ.)

Typically, the engine computation does not finish in one try. The following example displays the use of an
engine to compute the 10th Fibonacci number (see Section 3.2) in steps.

(define fibonacci
  (lambda (n)
    (if (< n 2)
        n
        (+ (fibonacci (- n 1))
           (fibonacci (- n 2))))))

(define eng
  (make-engine
    (lambda ()
      (fibonacci 10))))

(eng 50
  list
  (lambda (new-eng)
    (set! eng new-eng)
    "expired"))  "expired"

(eng 50
  list
  (lambda (new-eng)
    (set! eng new-eng)
    "expired"))  "expired"
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(eng 50
  list
  (lambda (new-eng)
    (set! eng new-eng)
    "expired"))  "expired"

(eng 50
  list
  (lambda (new-eng)
    (set! eng new-eng)
    "expired"))  (22 55)

Each time the engine's fuel ran out, the expire procedure assigned eng to the new engine. The entire
computation required four allotments of 50 ticks to complete; of the last 50 it used all but 23. Thus, the total
amount of fuel used was 177 ticks. This leads us to the following procedure, mileage, which uses engines to
"time" a computation.

(define mileage
  (lambda (thunk)
    (let loop ([eng (make-engine thunk)] [total-ticks 0])
      (eng 50
        (lambda (ticks value)
          (+ total-ticks (- 50 ticks)))
        (lambda (new-eng)
          (loop new-eng (+ total-ticks 50)))))))

(mileage (lambda () (fibonacci 10)))  178

The choice of 50 for the number of ticks to use each time is arbitrary, of course. It might make more sense to
pass a much larger number, say 10000, in order to reduce the number of times the computation is interrupted.

The next procedure, round-robin, could be the basis for a simple time-sharing operating system.
round-robin maintains a queue of processes (a list of engines) and cycles through the queue in a
round-robin fashion, allowing each process to run for a set amount of time. round-robin returns a list of
the values returned by the engine computations in the order that the computations complete.

(define round-robin
  (lambda (engs)
    (if (null? engs)
        '()
        ((car engs) 1
          (lambda (ticks value)
            (cons value (round-robin (cdr engs))))
          (lambda (eng)
            (round-robin
              (append (cdr engs) (list eng))))))))

Assuming the amount of computation corresponding to one tick is constant, the effect of round-robin is to
return a list of the values sorted from the quickest to complete to the slowest to complete. Thus, when we call
round-robin on a list of engines, each computing one of the Fibonacci numbers, the output list is sorted
with the earlier Fibonacci numbers first, regardless of the order of the input list.

(round-robin
  (map (lambda (x)

The Scheme Programming Language, 4th Edition

Section 12.11. Multitasking with Engines 323



         (make-engine
           (lambda ()
              (fibonacci x))))
       '(4 5 2 8 3 7 6 2)))  (1 1 2 3 5 8 13 21)

More interesting things could happen if the amount of fuel varied each time through the loop. In this case, the
computation would be nondeterministic, i.e., the results would vary from call to call.

The following syntactic form, por (parallel-or), returns the first of its expressions to complete with a true
value. por is implemented with the procedure first-true, which is similar to round-robin but quits
when any of the engines completes with a true value. If all of the engines complete, but none with a true
value, first-true (and hence por) returns #f.

(define-syntax por
  (syntax-rules ()
    [(_ x ...)
     (first-true
       (list (make-engine (lambda () x)) ...))]))

(define first-true
  (lambda (engs)
    (if (null? engs)
        #f
        ((car engs) 1
          (lambda (ticks value)
            (or value (first-true (cdr engs))))
          (lambda (eng)
            (first-true
              (append (cdr engs) (list eng))))))))

Even if one of the expressions is an infinite loop, por can still finish (as long as one of the other expressions
completes and returns a true value).

(por 1 2)  1
(por ((lambda (x) (x x)) (lambda (x) (x x)))
     (fibonacci 10))  55

The first subexpression of the second por expression is nonterminating, so the answer is the value of the
second subexpression.

Let's turn to the implementation of engines. Any preemptive multitasking primitive must have the ability to
interrupt a running process after a given amount of computation. This ability is provided by a primitive timer
interrupt mechanism in some Scheme implementations. We will construct a suitable one here.

Our timer system defines three procedures: start-timer, stop-timer, and decrement-timer,
which can be described operationally as follows.

(start-timer ticks handler) sets the timer to ticks and installs handler as the
procedure to be invoked (without arguments) when the timer expires, i.e., reaches zero.

• 

(stop-timer) resets the timer and returns the number of ticks remaining.• 
(decrement-timer) decrements the timer by one tick if the timer is on, i.e., if it is not zero.
When the timer reaches zero, decrement-timer invokes the saved handler. If the timer has
already reached zero, decrement-timer returns without changing the timer.

• 
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Code to implement these procedures is given along with the engine implementation below.

Using the timer system requires inserting calls to decrement-timer in appropriate places. Consuming a
timer tick on entry to a procedure usually provides a sufficient level of granularity. This can be accomplished
by using timed-lambda as defined below in place of lambda. timed-lambda simply invokes
decrement-timer before executing the expressions in its body.

(define-syntax timed-lambda
  (syntax-rules ()
    [(_ formals exp1 exp2 ...)
     (lambda formals (decrement-timer) exp1 exp2 ...)]))

It may be useful to redefine named let and do to use timed-lambda as well, so that recursions expressed
with these constructs are timed. If you use this mechanism, do not forget to use the timed versions of lambda
and other forms in code run within an engine, or no ticks will be consumed.

Now that we have a suitable timer, we can implement engines in terms of the timer and continuations. We use
call/cc in two places in the engine implementation: (1) to obtain the continuation of the computation that
invokes the engine so that we can return to that continuation when the engine computation completes or the
timer expires, and (2) to obtain the continuation of the engine computation when the timer expires so that we
can return to this computation if the newly created engine is subsequently run.

The state of the engine system is contained in two variables local to the engine system: do-complete and
do-expire. When an engine is started, the engine assigns to do-complete and do-expire procedures
that, when invoked, return to the continuation of the engine's caller to invoke complete or expire. The
engine starts (or restarts) the computation by invoking the procedure passed as an argument to
make-engine with the specified number of ticks. The ticks and the local procedure timer-handler are
then used to start the timer.

Suppose that the timer expires before the engine computation completes. The procedure timer-handler is
then invoked. It initiates a call to start-timer but obtains the ticks by calling call/cc with
do-expire. Consequently, do-expire is called with a continuation that, if invoked, will restart the timer
and continue the interrupted computation. do-expire creates a new engine from this continuation and
arranges for the engine's expire procedure to be invoked with the new engine in the correct continuation.

If, on the other hand, the engine computation completes before the timer expires, the timer is stopped and the
number of ticks remaining is passed along with the value to do-complete; do-complete arranges for
the engine's complete procedure to be invoked with the ticks and value in the correct continuation.

Let's discuss a couple of subtle aspects to this code. The first concerns the method used to start the timer when
an engine is invoked. The code would apparently be simplified by letting new-engine start the timer before
it initiates or resumes the engine computation, instead of passing the ticks to the computation and letting it
start the timer. Starting the timer within the computation, however, prevents ticks from being consumed
prematurely. If the engine system itself consumes fuel, then an engine provided with a small amount of fuel
may not progress toward completion. (It may, in fact, make negative progress.) If the software timer described
above is used, this problem is actually avoided by compiling the engine-making code with the untimed
version of lambda.

The second subtlety concerns the procedures created by do-complete and do-expire and subsequently
applied by the continuation of the call/cc application. It may appear that do-complete could first
invoke the engine's complete procedure, then pass the result to the continuation (and similarly for
do-expire) as follows.

(escape (complete value ticks))
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This would result in improper treatment of tail recursion, however. The problem is that the current
continuation would not be replaced with the continuation stored in escape until the call to the complete
procedure returns. Consequently, both the continuation of the running engine and the continuation of the
engine invocation could be retained for an indefinite period of time, when in fact the actual engine invocation
may appear to be tail-recursive. This is especially inappropriate because the engine interface encourages use
of continuation-passing style and hence tail recursion. The round-robin scheduler and first-true provide
good examples of this, since the expire procedure in each invokes engines tail-recursively.

We maintain proper treatment of tail recursion by arranging for do-complete and do-expire to escape
from the continuation of the running engine before invoking the complete or expire procedures. Since
the continuation of the engine invocation is a procedure application, passing it a procedure of no arguments
results in application of the procedure in the continuation of the engine invocation.

(library (tspl timer)
  (export start-timer stop-timer decrement-timer)
  (import (rnrs))

  (define clock 0)
  (define handler #f)

  (define start-timer
    (lambda (ticks new-handler)
      (set! handler new-handler)
      (set! clock ticks)))

  (define stop-timer
    (lambda ()
      (let ([time-left clock])
        (set! clock 0)
        time-left)))

  (define decrement-timer
    (lambda ()
      (when (> clock 0)
        (set! clock (- clock 1))
        (when (= clock 0) (handler)))))

  (define-syntax timed-lambda
    (syntax-rules ()
      [(_ formals exp1 exp2 ...)
       (lambda formals (decrement-timer) exp1 exp2 ...)])))

(library (tspl engines)
  (export make-engine timed-lambda)
  (import (rnrs) (tspl timer))

  (define make-engine
    (let ([do-complete #f] [do-expire #f])
      (define timer-handler
        (lambda ()
          (start-timer (call/cc do-expire) timer-handler)))
      (define new-engine
        (lambda (resume)
          (lambda (ticks complete expire)
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            ((call/cc
               (lambda (escape)
                 (set! do-complete
                   (lambda (ticks value)
                     (escape (lambda () (complete ticks value)))))
                 (set! do-expire
                   (lambda (resume)
                     (escape (lambda ()
                               (expire (new-engine resume))))))
                 (resume ticks)))))))
      (lambda (proc)
        (new-engine
          (lambda (ticks)
            (start-timer ticks timer-handler)
            (let ([value (proc)])
              (let ([ticks (stop-timer)])
                (do-complete ticks value))))))))

  (define-syntax timed-lambda
    (syntax-rules ()
      [(_ formals exp1 exp2 ...)
       (lambda formals (decrement-timer) exp1 exp2 ...)])))

Exercise 12.11.1

If your Scheme implementation allows definition and import of libraries in the interactive top level, try
defining the libraries above, then type

(import (rename (tspl engines) (timed-lambda lambda)))

to define make-engine and redefine lambda. Then try out the examples given earlier in this section.

Exercise 12.11.2

It may appear that the nested let expressions in the body of make-engine:

(let ([value (proc)])
  (let ([ticks (stop-timer)])
    (do-complete ticks value)))

could be replaced with the following.

(let ([value (proc)] [ticks (stop-timer)])
  (do-complete value ticks))

Why is this not correct?

Exercise 12.11.3

It would also be incorrect to replace the nested let expressions discussed in the preceding exercise with the
following.

(let ([value (proc)])
  (do-complete value (stop-timer)))
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Why?

Exercise 12.11.4

Modify the engine implementation to provide a procedure, engine-return, that returns immediately from
an engine.

Exercise 12.11.5

Implement the kernel of a small operating system using engines for processes. Processes should request
services (such as reading input from the user) by evaluating an expression of the form (trap 'request).
Use call/cc and engine-return from the preceding exercise to implement trap.

Exercise 12.11.6

Write the same operating-system kernel without using engines, building instead from continuations and timer
interrupts.

Exercise 12.11.7

This implementation of engines does not allow one engine to call another, i.e., nested engines [10]. Modify
the implementation to allow nested engines.
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Answers to Selected Exercises
Exercise 2.2.1. (page 20)

  a. (+ (* 1.2 (- 2 1/3)) -8.7)
  b. (/ (+ 2/3 4/9) (- 5/11 4/3))
  c. (+ 1 (/ 1 (+ 2 (/ 1 (+ 1 1/2)))))
  d. (* (* (* (* (* (* 1 -2) 3) -4) 5) -6) 7) or (* 1 -2 3 -4 5 -6 7)

Exercise 2.2.2. (page 20)
See Section 6.4.

Exercise 2.2.3. (page 20)

  a. (car . cdr)

  b. (this (is silly))

  c. (is this silly?)

  d. (+ 2 3)

  e. (+ 2 3)

  f. +

  g. (2 3)

  h. #<procedure>

  i. cons

  j. 'cons

  k. quote

  l. 5

  m. 5
  n. 5

  o. 5

Exercise 2.2.4. (page 21)

(car (cdr (car '((a b) (c d)))))  b
(car (car (cdr '((a b) (c d)))))  c
(car (cdr (car (cdr '((a b) (c d))))))  d

Exercise 2.2.5. (page 21)

'((a . b) ((c) d) ())

Exercise 2.2.6. (page 21)
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Exercise 2.2.7. (page 21)

(car '((a b) (c d)))  (a b)
(car (car '((a b) (c d))))  a
(cdr (car '((a b) (c d))))  (b)
(car (cdr (car '((a b) (c d)))))  b
(cdr (cdr (car '((a b) (c d)))))  ()
(cdr '((a b) (c d)))  ((c d))
(car (cdr '((a b) (c d))))  (c d)
(car (car (cdr '((a b) (c d)))))  c
(cdr (car (cdr '((a b) (c d)))))  (d)
(car (cdr (car (cdr '((a b) (c d))))))  d
(cdr (cdr (car (cdr '((a b) (c d))))))  ()
(cdr (cdr '((a b) (c d))))  ()

Exercise 2.2.8. (page 21)
See Section 2.3.

Exercise 2.3.1. (page 23)

Evaluate the variables list, +, -, *, and /, yielding the list, addition, subtraction, multiplication,
and division procedures. 

1. 

Apply the list procedure to the addition, subtraction, multiplication, and division procedures, yielding
a list containing these procedures in order. 

2. 

Evaluate the variable cdr, yielding the cdr procedure. 3. 
Apply the cdr procedure to the list produced in step 2, yielding a list containing the subtraction,
multiplication, and division procedures. 

4. 

Evaluate the variable car, yielding the car procedure. 5. 
Apply the car procedure to the list produced in step 4, yielding the subtraction procedure. 6. 
Evaluate the constants 17 and 5, yielding 17 and 5. 7. 
Apply the subtraction procedure to 17 and 5, yielding 12.8. 

Other orders are possible. For example, the variable car could have been evaluated before its argument.

Exercise 2.4.1. (page 25)

  a. (let ([x (* 3 a)]) (+ (- x b) (+ x b)))
  b. (let ([x (list a b c)]) (cons (car x) (cdr x)))

Exercise 2.4.2. (page 25)
The value is 54. The outer let binds x to 9, while the inner let binds x to 3 (9/3). The inner let evaluates
to 6 (3 + 3), and the outer let evaluates to 54 (9 × 6).

Exercise 2.4.3. (page 26)

  a. (let ([x0 'a] [y0 'b])
  (list (let ([x1 'c]) (cons x1 y0))
        (let ([y1 'd]) (cons x0 y1))))

  b. (let ([x0 '((a b) c)])
  (cons (let ([x1 (cdr x0)])
          (car x1))
        (let ([x2 (car x0)])
          (cons (let ([x3 (cdr x2)])
                  (car x3))
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                (cons (let ([x4 (car x2)])
                        x4)
                      (cdr x2))))))

Exercise 2.5.1. (page 30)

  a. a
  b. (a)
  c. a
  d. ()

Exercise 2.5.2. (page 30)
See page 31.

Exercise 2.5.3. (page 30)

  a. no free variables
  b. +
  c. f
  d. cons, f, and y
  e. cons and y
  f. cons, y, and z (y also appears as a bound variable)

Exercise 2.6.1. (page 34)
The program would loop indefinitely.

Exercise 2.6.2. (page 34)

(define compose
  (lambda (p1 p2)
    (lambda (x)
      (p1 (p2 x)))))

(define cadr (compose car cdr))
(define cddr (compose cdr cdr))

Exercise 2.6.3. (page 34)

(define caar (compose car car))
(define cadr (compose car cdr))

(define cdar (compose cdr car))
(define cddr (compose cdr cdr))

(define caaar (compose car caar))
(define caadr (compose car cadr))
(define cadar (compose car cdar))
(define caddr (compose car cddr))

(define cdaar (compose cdr caar))
(define cdadr (compose cdr cadr))
(define cddar (compose cdr cdar))
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(define cdddr (compose cdr cddr))

(define caaaar (compose caar caar))
(define caaadr (compose caar cadr))
(define caadar (compose caar cdar))
(define caaddr (compose caar cddr))
(define cadaar (compose cadr caar))
(define cadadr (compose cadr cadr))
(define caddar (compose cadr cdar))
(define cadddr (compose cadr cddr))

(define cdaaar (compose cdar caar))
(define cdaadr (compose cdar cadr))
(define cdadar (compose cdar cdar))
(define cdaddr (compose cdar cddr))
(define cddaar (compose cddr caar))
(define cddadr (compose cddr cadr))
(define cdddar (compose cddr cdar))
(define cddddr (compose cddr cddr))

Exercise 2.7.1. (page 41)

(define atom?
  (lambda (x)
    (not (pair? x))))

Exercise 2.7.2. (page 41)

(define shorter
  (lambda (ls1 ls2)
    (if (< (length ls2) (length ls1))
        ls2
        ls1)))

Exercise 2.8.1. (page 46)
The structure of the output would be the mirror image of the structure of the input. For example, (a . b)
would become (b . a) and ((a . b) . (c . d)) would become ((d . c) . (b . a)).

Exercise 2.8.2. (page 46)

(define append
  (lambda (ls1 ls2)
    (if (null? ls1)
        ls2
        (cons (car ls1) (append (cdr ls1) ls2)))))

Exercise 2.8.3. (page 46)

(define make-list
  (lambda (n x)
    (if (= n 0)
        '()
        (cons x (make-list (- n 1) x)))))
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Exercise 2.8.4. (page 47)
See the description of list-ref on page 160 and the description of list-tail on page 160.

Exercise 2.8.5. (page 47)

(define shorter?
  (lambda (ls1 ls2)
    (and (not (null? ls2))
         (or (null? ls1)
             (shorter? (cdr ls1) (cdr ls2))))))

(define shorter
  (lambda (ls1 ls2)
    (if (shorter? ls2 ls1)
        ls2
        ls1)))

Exercise 2.8.6. (page 47)

(define even?
  (lambda (x)
    (or (= x 0)
        (odd? (- x 1)))))
(define odd?
  (lambda (x)
    (and (not (= x 0))
         (even? (- x 1)))))

Exercise 2.8.7. (page 47)

(define transpose
  (lambda (ls)
    (cons (map car ls) (map cdr ls))))

Exercise 2.9.1. (page 54)

(define make-counter
  (lambda (init incr)
    (let ([next init])
      (lambda ()
        (let ([v next])
          (set! next (+ next incr))
          v)))))

Exercise 2.9.2. (page 55)

(define make-stack
  (lambda ()
    (let ([ls '()])
      (lambda (msg . args)
        (case msg
          [(empty? mt?) (null? ls)]
          [(push!) (set! ls (cons (car args) ls))]
          [(top) (car ls)]
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          [(pop!) (set! ls (cdr ls))]
          [else "oops"])))))

Exercise 2.9.3. (page 55)

(define make-stack
  (lambda ()
    (let ([ls '()])
      (lambda (msg . args)
        (case msg
          [(empty? mt?) (null? ls)]
          [(push!) (set! ls (cons (car args) ls))]
          [(top) (car ls)]
          [(pop!) (set! ls (cdr ls))]
          [(ref) (list-ref ls (car args))]
          [(set!) (set-car! (list-tail ls (car args)) (cadr args))]
          [else "oops"])))))

Exercise 2.9.4. (page 55)

(define make-stack
  (lambda (n)
    (let ([v (make-vector n)] [i -1])
      (lambda (msg . args)
        (case msg
          [(empty? mt?) (= i -1)]
          [(push!)
           (set! i (+ i 1))
           (vector-set! v i (car args))]
          [(top) (vector-ref v i)]
          [(pop!) (set! i (- i 1))]
          [(ref) (vector-ref v (- i (car args)))]
          [(set!) (vector-set! v (- i (car args)) (cadr args))]
          [else "oops"])))))

Exercise 2.9.5. (page 56)

(define emptyq?
  (lambda (q)
    (eq? (car q) (cdr q))))

(define getq
  (lambda (q)
    (if (emptyq? q)
        (assertion-violation 'getq "the queue is empty")
        (car (car q)))))

(define delq!
  (lambda (q)
    (if (emptyq? q)
        (assertion-violation 'delq! "the queue is empty")
        (set-car! q (cdr (car q))))))

Exercise 2.9.6. (page 56)
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(define make-queue
  (lambda ()
    (cons '() '())))

(define putq!
  (lambda (q v)
    (let ([p (cons v '())])
      (if (null? (car q))
          (begin
            (set-car! q p)
            (set-cdr! q p))
          (begin
            (set-cdr! (cdr q) p)
            (set-cdr! q p))))))

(define getq
  (lambda (q)
    (car (car q))))

(define delq!
  (lambda (q)
    (if (eq? (car q) (cdr q))
        (begin
          (set-car! q '())
          (set-cdr! q '()))
        (set-car! q (cdr (car q))))))

Exercise 2.9.7. (page 56)
When asked to print a cyclic structure, some implementations print a representation of the output that reflects
its cyclic structure. Other implementations do not detect the cycle and produce either no output or an infinite
stream of output. When length is passed a cyclic list, an exception is raised, likely with a message
indicating that the list is not proper. The definition of length on page 42 will, however, simply loop
indefinitely.

Exercise 2.9.8. (page 56)

(define race
  (lambda (hare tortoise)
    (if (pair? hare)
        (let ([hare (cdr hare)])
          (if (pair? hare)
              (and (not (eq? hare tortoise))
                   (race (cdr hare) (cdr tortoise)))
              (null? hare)))
        (null? hare))))

(define list?
  (lambda (x)
    (race x x)))

Exercise 3.1.1. (page 64)

(let ([x (memv 'a ls)]) (and x (memv 'b x))) 
  ((lambda (x) (and x (memv 'b x))) (memv 'a ls)) 
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  ((lambda (x) (if x (and (memv 'b x)) #f)) (memv 'a ls)) 
  ((lambda (x) (if x (memv 'b x) #f)) (memv 'a ls))

Exercise 3.1.2. (page 64)

(or (memv x '(a b c)) (list x)) 
  (let ((t (memv x '(a b c)))) (if t t (or (list x)))) 
  ((lambda (t) (if t t (or (list x)))) (memv x '(a b c))) 
  ((lambda (t) (if t t (list x))) (memv x '(a b c)))

Exercise 3.1.3. (page 64)
See page 97.

Exercise 3.1.4. (page 64)

(define-syntax when
  (syntax-rules ()
    [(_ e0 e1 e2 ...)
     (if e0 (begin e1 e2 ...))]))

(define-syntax unless
  (syntax-rules ()
    [(_ e0 e1 e2 ...)
     (when (not e0) e1 e2 ...)]))

Exercise 3.2.1. (page 72)
Tail-recursive: even? and odd?, race, fact in second definition of factorial, fib in second version
of fibonacci. Nontail-recursive: sum, factorial, fib in first version of fibonacci. Both: factor.

Exercise 3.2.2. (page 72)

(define factor
  (lambda (n)
    (letrec ([f (lambda (n i)
                  (cond
                    [(>= i n) (list n)]
                    [(integer? (/ n i))
                     (cons i (f (/ n i) i))]
                    [else (f n (+ i 1))]))])
      (f n 2))))

Exercise 3.2.3. (page 72)
Yes, but we need two named let expressions, one for even? and one for odd?.

(let even? ([x 20])
  (or (= x 0)
      (let odd? ([x (- x 1)])
        (and (not (= x 0))
             (even? (- x 1))))))

Exercise 3.2.4. (page 72)

(define fibcount1 0)
(define fibonacci1
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  (lambda (n)
    (let fib ([i n])
      (set! fibcount1 (+ fibcount1 1))
      (cond
        [(= i 0) 0]
        [(= i 1) 1]
        [else (+ (fib (- i 1)) (fib (- i 2)))]))))

(define fibcount2 0)
(define fibonacci2
  (lambda (n)
    (if (= n 0)
        0
        (let fib ([i n] [a1 1] [a2 0])
          (set! fibcount2 (+ fibcount2 1))
          (if (= i 1)
              a1
              (fib (- i 1) (+ a1 a2) a1))))))

The counts for (fibonacci 10) are 177 and 10, for (fibonacci 20) are 21891 and 20, and for
(fibonacci 30) are 2692537 and 30. While the number of calls made by the second is directly
proportional to the input, the number of calls made by the first grows rapidly (exponentially, in fact) as the
input value increases.

Exercise 3.2.5. (page 73)
See page 312.

Exercise 3.2.6. (page 73)
A call in the last subexpression of an or expression in tail position would not be a tail call with the modified
definition of or. For the even?/odd? example, the resulting definition of even? would no longer be
tail-recursive and for very large inputs might exhaust available space.

The expansion performed by this definition is incorrect in another way, which has to do with multiple return
values (Section 5.8): if the last subexpression returns multiple values, the or expression should return
multiple values, but with the incorrect definition, each subexpression appears on the right-hand side of a let,
which expects a single return value. The simpler and incorrect definition of and has the same problem.

Exercise 3.2.7. (page 73)
The first of the three versions of factor below directly addresses the identified problems by stopping at ,
avoiding the redundant division, and skipping the even factors after 2. Stopping at  probably yields the
biggest savings, followed by skipping even factors greater than 2. Avoiding the redundant division is less
important, since it occurs only when a factor is found.

(define factor
  (lambda (n)
    (let f ([n n] [i 2] [step 1])
      (if (> i (sqrt n))
          (list n)
          (let ([n/i (/ n i)])
            (if (integer? n/i)
                (cons i (f n/i i step))
                (f n (+ i step) 2)))))))

The second version replaces (> i (sqrt n)) with (> (* i i) n), since * is typically much faster

The Scheme Programming Language, 4th Edition

Answers to Selected Exercises 341



than sqrt.

(define factor
  (lambda (n)
    (let f ([n n] [i 2] [step 1])
      (if (> (* i i) n)
          (list n)
          (let ([n/i (/ n i)])
            (if (integer? n/i)
                (cons i (f n/i i step))
                (f n (+ i step) 2)))))))

The third version uses gcd (see page 179) to avoid most of the divisions, since gcd should be faster than /.

(define factor
  (lambda (n)
    (let f ([n n] [i 2] [step 1])
      (if (> (* i i) n)
          (list n)
          (if (= (gcd n i) 1)
              (f n (+ i step) 2)
              (cons i (f (/ n i) i step)))))))

To see the difference these changes make, time each version of factor, including the original, in your
Scheme system to see which performs better. Try a variety of inputs, including larger ones like
(+ (expt 2 100) 1).

Exercise 3.3.1. (page 77)

(let ([k.n (call/cc (lambda (k) (cons k 0)))])
  (let ([k (car k.n)] [n (cdr k.n)])
    (write n)
    (newline)
    (k (cons k (+ n 1)))))

Or with multiple values (see Section 5.8):

(call-with-values
  (lambda () (call/cc (lambda (k) (values k 0))))
  (lambda (k n)
    (write n)
    (newline)
    (k k (+ n 1))))

Exercise 3.3.2. (page 77)

(define product
  (lambda (ls)
    (if (null? ls)
        1
        (if (= (car ls) 0)
            0
            (let ([n (product (cdr ls))])
              (if (= n 0) 0 (* n (car ls))))))))
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Exercise 3.3.3. (page 77)
If one of the processes returns without calling pause, it returns to the call to pause that first caused it to
run, or to the original call to start if it was the first process in the list. Here is a reimplementation of the
system that allows a process to quit explicitly. If other processes are active, the lwp system continues to
run. Otherwise, control returns to the continuation of the original call to start.

(define lwp-list '())
(define lwp
  (lambda (thunk)
    (set! lwp-list (append lwp-list (list thunk)))))
(define start
  (lambda ()
    (call/cc
      (lambda (k)
        (set! quit-k k)
        (next)))))
(define next
  (lambda ()
    (let ([p (car lwp-list)])
      (set! lwp-list (cdr lwp-list))
      (p))))
(define pause
  (lambda ()
    (call/cc
      (lambda (k)
        (lwp (lambda () (k #f)))
        (next)))))
(define quit
  (lambda (v)
    (if (null? lwp-list)
        (quit-k v)
        (next))))

Exercise 3.3.4. (page 77)

(define lwp-queue (make-queue))
(define lwp
  (lambda (thunk)
    (putq! lwp-queue thunk)))
(define start
  (lambda ()
    (let ([p (getq lwp-queue)])
      (delq! lwp-queue)
      (p))))
(define pause
  (lambda ()
    (call/cc
      (lambda (k)
        (lwp (lambda () (k #f)))
        (start)))))

Exercise 3.4.1. (page 80)

(define reciprocal
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  (lambda (n success failure)
    (if (= n 0)
        (failure)
        (success (/ 1 n)))))

Exercise 3.4.2. (page 80)

(define retry #f)

(define factorial
  (lambda (x)
    (let f ([x x] [k (lambda (x) x)])
      (if (= x 0)
          (begin (set! retry k) (k 1))
          (f (- x 1) (lambda (y) (k (* x y))))))))

Exercise 3.4.3. (page 80)

(define map/k
  (lambda (p ls k)
    (if (null? ls)
        (k '())
        (p (car ls)
           (lambda (x)
             (map/k p (cdr ls)
               (lambda (ls)
                 (k (cons x ls)))))))))

(define reciprocals
  (lambda (ls)
    (map/k (lambda (x k) (if (= x 0) "zero found" (k (/ 1 x))))
           ls
           (lambda (x) x))))

Exercise 3.5.1. (page 85)

(define-syntax complain
  (syntax-rules ()
    [(_ ek msg expr) (ek (list msg expr))]))

Exercise 3.5.2. (page 85)

(define calc
  (lambda (expr)
    (call/cc
      (lambda (ek)
        (define do-calc
          (lambda (expr)
            (cond
              [(number? expr) expr]
              [(and (list? expr) (= (length expr) 3))
               (let ([op (car expr)] [args (cdr expr)])
                 (case op
                   [(add) (apply-op + args)]
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                   [(sub) (apply-op - args)]
                   [(mul) (apply-op * args)]
                   [(div) (apply-op / args)]
                   [else (complain "invalid operator" op)]))]
              [else (complain "invalid expression" expr)])))
        (define apply-op
          (lambda (op args)
            (op (do-calc (car args)) (do-calc (cadr args)))))
        (define complain
          (lambda (msg expr)
            (ek (list msg expr))))
        (do-calc expr)))))

Exercise 3.5.3. (page 85)

(define calc #f)
(let ()
  (define do-calc
    (lambda (expr)
      (cond
        [(number? expr) expr]
        [(and (list? expr) (= (length expr) 3))
         (let ([op (car expr)] [args (cdr expr)])
           (case op
             [(add) (apply-op + args)]
             [(sub) (apply-op - args)]
             [(mul) (apply-op * args)]
             [(div) (apply-op / args)]
             [else (complain "invalid operator" op)]))]
        [else (complain "invalid expression" expr)])))
  (define apply-op
    (lambda (op args)
      (op (do-calc (car args)) (do-calc (cadr args)))))
  (define complain
    (lambda (msg expr)
      (assertion-violation 'calc msg expr)))
  (set! calc
    (lambda (expr)
      (do-calc expr))))

Exercise 3.5.4. (page 85)
This adds sqrt, times (an alias for mul), and expt along with minus.

(let ()
  (define do-calc
    (lambda (ek expr)
      (cond
        [(number? expr) expr]
        [(and (list? expr) (= (length expr) 2))
         (let ([op (car expr)] [args (cdr expr)])
           (case op
             [(minus) (apply-op1 ek - args)]
             [(sqrt) (apply-op1 ek sqrt args)]
             [else (complain ek "invalid unary operator" op)]))]
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        [(and (list? expr) (= (length expr) 3))
         (let ([op (car expr)] [args (cdr expr)])
           (case op
             [(add) (apply-op2 ek + args)]
             [(sub) (apply-op2 ek - args)]
             [(mul times) (apply-op2 ek * args)]
             [(div) (apply-op2 ek / args)]
             [(expt) (apply-op2 ek expt args)]
             [else (complain ek "invalid binary operator" op)]))]
        [else (complain ek "invalid expression" expr)])))
  (define apply-op1
    (lambda (ek op args)
      (op (do-calc ek (car args)))))
  (define apply-op2
    (lambda (ek op args)
      (op (do-calc ek (car args)) (do-calc ek (cadr args)))))
  (define complain
    (lambda (ek msg expr)
      (ek (list msg expr))))
  (set! calc
    (lambda (expr)
      (call/cc
        (lambda (ek)
          (do-calc ek expr))))))

Exercise 3.6.1. (page 87)
This version of gpa returns x when all of the input letter grades are x.

(define-syntax gpa
  (syntax-rules ()
    [(_ g1 g2 ...)
     (let ([ls (map letter->number (remq 'x '(g1 g2 ...)))])
       (if (null? ls)
           'x
           (/ (apply + ls) (length ls))))]))

Exercise 3.6.2. (page 87)
After defining $distribution and distribution within the library as follows:

(define $distribution
  (lambda (ls)
    (let loop ([ls ls] [a 0] [b 0] [c 0] [d 0] [f 0])
      (if (null? ls)
          (list (list a 'a) (list b 'b) (list c 'c)
            (list d 'd) (list f 'f))
          (case (car ls)
            [(a) (loop (cdr ls) (+ a 1) b c d f)]
            [(b) (loop (cdr ls) a (+ b 1) c d f)]
            [(c) (loop (cdr ls) a b (+ c 1) d f)]
            [(d) (loop (cdr ls) a b c (+ d 1) f)]
            [(f) (loop (cdr ls) a b c d (+ f 1))]
           ; ignore x grades, per preceding exercise
            [(x) (loop (cdr ls) a b c d f)]
            [else (assertion-violation 'distribution
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                    "unrecognized grade letter"
                    (car ls))])))))
(define-syntax distribution
  (syntax-rules ()
    [(_ g1 g2 ...)
     ($distribution '(g1 g2 ...))]))

modify the export line to add distribution (but not $distribution).

Exercise 3.6.3. (page 87)
After defining histogram as follows:

(define histogram
  (lambda (port distr)
    (for-each
      (lambda (n g)
        (put-datum port g)
        (put-string port ": ")
        (let loop ([n n])
          (unless (= n 0)
            (put-char port #\*)
            (loop (- n 1))))
        (put-string port "\n"))
      (map car distr)
      (map cadr distr))))

modify the export line to add histogram. The solution uses for-each, which is described on page 118
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Formal Syntax
The formal grammars and accompanying text appearing here describe the written syntax of Scheme data
values, or datums. The grammars also effectively cover the written syntax of Scheme syntactic forms, since
every Scheme syntactic form has a representation as a Scheme datum. In particular, parenthesized syntactic
forms are written as lists, and identifiers (e.g., keywords and variables) are written as symbols. The high-level
structure of each syntactic form is described in detail by the entries marked "syntax" in Chapters 4 through 11,
and the syntactic forms are summarized in the Summary of Forms.

The written representation of a datum involves tokens, whitespace, and comments. Tokens are sequences of
one or more characters representing atomic datums or serving as punctuation marks. The tokens that represent
atomic datums are symbols, numbers, strings, booleans, and characters, while the tokens serving as
punctuation marks are open and close parentheses, open and close brackets, the open vector parenthesis #(,
the open bytevector parenthesis #vu8(, the dotted pair marker . (dot), the quotation marks ' and `, the
unquotation marks , and ,@, the syntax quotation marks #' and #`, and the syntax unquotation marks #,
and #,@.

Whitespace consists of space, tab, newline, form-feed, carriage-return, and next-line characters along with any
additional characters categorized as Zs, Zl, or Zp by the Unicode standard [30]. A newline character is also
called a linefeed character. Some whitespace characters or character sequences serve as line endings, which
are recognized as part of the syntax of line comments and strings. A line ending is a newline character, a
next-line character, a line-separator character, a carriage-return character followed by a newline character, a
carriage return followed by a next-line character, or a carriage return not followed by a newline or next-line
character. A different set of whitspace characters serve as intraline whitespace, which are recognized as part
of the syntax of strings. Intraline whitespace includes spaces, tabs, and any additional Unicode characters
whose general category is Zs. The sets of intraline whitespace characters and line endings are disjoint, and
there are other whitespace characters, such as form feed, that are not in either set.

Comments come in three flavors: line comments, block comments, and datum comments. A line comment
consists of a semicolon ( ; ) followed by any number of characters up to the next line ending or end of input.
A block comment consists of a #| prefix, any number of characters and nested block comments, and a |#
suffix. A datum comment consists of a #; prefix followed by any datum.

Symbols, numbers, characters, booleans, and the dotted pair marker ( . ) must be delimited by the end the
input, whitespace, the start of a comment, an open or close parenthesis, an open or close bracket, a string
quote ( " ), or a hash mark ( # ). Any token may be preceded or followed by any number of whitespace
characters and comments.

Case is significant in the syntax of characters, strings, and symbols except within a hex scalar value, where the
hexadecimal digits "a" through "f" may be written in either upper or lower case. (Hex scalar values are
hexadecimal numbers denoting Unicode scalar values.) Case is insignificant in the syntax of booleans and
numbers. For example, Hello is distinct from hello, #\A is distinct from #\a, and "String" is distinct
from "string", while #T is equivalent to #t, #E1E3 is equivalent to #e1e3, #X2aBc is equivalent to
#x2abc, and #\x3BA is equivalent to #\x3ba.

A conforming implementation of the Revised6 Report is not permitted to extend the syntax of datums, with
one exception: it is permitted to recognize any token starting with the prefix #! as a flag indicating certain
extensions are valid in the text following the flag. So, for example, an implementation might recognize the
flag #!braces and switch to a mode in which lists may be enclosed in braces as well as in parentheses and
brackets.

#!braces '{a b c}  (a b c)
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The flag #!r6rs may be used to declare that the subsequent text is written in R6RS syntax. It is good
practice to include #!r6rs at the start of any file containing a portable library or top-level program to
specify that R6RS syntax is being used, in the event that future reports extend the syntax in ways that are
incompatible with the text of the library or program. #!r6rs is otherwise treated as a comment.

In the grammars appearing below, <empty> stands for an empty sequence of characters. An item followed by
an asterisk ( * ) represents zero or more occurrences of the item, and an item followed by a raised plus sign
( + ) represents one or more occurrences. Spacing between items within a production appears for readability
only and should be treated as if it were not present.

Datums. A datum is a boolean, character, symbol, string, number, list, vector, or bytevector.

<datum> <boolean>
| <character>
| <symbol>
| <string>
| <number>
| <list>
| <vector>
| <bytevector>

Lists, vectors, and bytevectors are compound datums formed from groups of tokens possibly separated by
whitespace and comments. The others are single tokens.

Booleans. Boolean false is written #f. While all other values count as true, the canonical true value (and only
other value to be considered a boolean value by the boolean? predicate) is written #t.

<boolean> #t | #f
Case is not significant in the syntax of booleans, so these may also be written as #T and #F.

Characters. A character object is written as the prefix #\ followed by a single character, a character name,
or a sequence of characters specifying a Unicode scalar value.

<character> #\ <any character> | #\ <character name> | #\x <hex scalar value>
<character name> alarm | backspace | delete | esc |linefeed

| newline | page | return | space | tab | vtab
<hex scalar value> <digit 16>+

The named characters correspond to the Unicode characters alarm (Unicode scalar value 7, i.e., U+0007),
backspace (U+0008), delete (U+007F), esc (U+001B), linefeed (U+000A; same as newline), newline
(U+000A), page (U+000C), return (U+000D), space (U+0020), tab (U+0009) and vertical tab (U+000B).

A hex scalar value represents a Unicode scalar value n,  or . The <digit
16> nonterminal is defined under Numbers below.

A #\ prefix followed by a character name is always interpreted as a named character, e.g., #\page is treated
as #\page rather than #\p followed by the symbol age. Characters must also be delimited, as described
above, so that #\pager is treated as a syntax error rather than as the character #\p followed by the symbol
ager or the character #\page followed by the symbol r.

Case is significant in the syntax of character objects, except within a hex scalar value.

Strings. A string is written as a sequence of string elements enclosed in string quotes (double quotes). Any
character other than a string quote or backslash can appear as a string element. A string element can also
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consist of a backslash followed by a single character, a backslash followed by sequence of characters
specifying a Unicode scalar value, or a backslash followed by sequence of intraline whitespace characters that
includes a single line ending.

<string> " <string character>* "
<string element> <any character except " or \>

| \" | \\ | \a | \b | \f | \n | \r | \t | \v
| \x <hex scalar value> ;
| \ <intraline whitespace>* <line ending> <intraline whitespace>*

A string element consisting of a single character represents that character, except that any single character or
pair of characters representing a line ending represents a single newline character. A backslash followed by a
double quote represents a double quote, while a backslash followed by a backslash represents a backslash. A
backslash followed by a represents the alarm character (U+0007); by b, backspace (U+0008); by f, form feed
(U+000C); by n, newline (U+000A); by r, carriage return (U+000D); by t, tab (U+0009); and by v, vertical
tab (U+000B). A backslash followed by x, a hex scalar value, and a semi-colon ( ; ) represents the Unicode
character specified by the scalar value. The <hex scalar value> nonterminal is defined under Characters
above. Finally, a sequence of characters consisting of a backslash followed by intraline whitespace that
includes a single line ending represents no characters.

Case is significant in the syntax of strings, except within a hex scalar value.

Symbols. A symbol is written either as an "initial" character followed by a sequence of "subsequent"
characters or as a "peculiar symbol." Initial characters are letters, certain special characters, an additional set
of Unicode characters, or arbitrary characters specified by Unicode scalar values. Subsequent characters are
initial characters, digits, certain additional special characters, and a set of additional Unicode characters. The
peculiar symbols are +, -, ..., and any sequence of subsequent characters prefixed by ->.

<symbol> <initial> <subsequent>*
<initial> <letter> | ! | $ | % | & | * | / | : | < | = | > | ? | ~ | _ | ^

| <Unicode Lu, Ll, Lt, Lm, Lo, Mn, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co>
| \x <hex scalar value> ;

<subsequent> <initial> | <digit 10> | . | + | - | @ | <Unicode Nd, Mc, or Me>
<letter> a | b | ... | z | A | B | ... | Z
<Unicode Lu, Ll, Lt, Lm, Lo, Mn, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co> represents any character whose
Unicode scalar value is greater than 127 and whose Unicode category is one of the listed categories. <Unicode
Nd, Mc, or Me> represents any character whose Unicode category is one of the listed categories. The <hex
scalar value> nonterminal is defined under Characters above, and <digit 10> is defined under Numbers
below.

Case is significant in symbols.

Numbers. Numbers can appear in one of four radices: 2, 8, 10, and 16, with 10 the default. Several of the
productions below are parameterized by the radix, r, and each represents four productions, one for each of the
four possible radices. Numbers that contain radix points or exponents are constrained to appear in radix 10, so
<decimal r> is valid only when r is 10.

<number> <num 2> | <num 8> | <num 10> | <num 16>
<num r> <prefix r> <complex r>
<prefix r> <radix r> <exactness> | <exactness> <radix r>
<radix 2> #b

<radix 8> #o
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<radix 10> <empty> | #d
<radix 16> #x

<exactness> <empty> | #i | #e
<complex r> <real r> | <real r> @ <real r>

| <real r> + <imag r> | <real r> - <imag r>
| + <imag r> | - <imag r>

<real r> <sign> <ureal r> | +nan.0 | -nan.0 | +inf.0 | -inf.0
<imag r> i | <ureal r> i | inf.0 i | nan.0 i
<ureal r> <uinteger r> | <uinteger r> / <uinteger r> | <decimal r> <suffix>
<uinteger r> <digit r>+

<decimal 10> <uinteger 10> <suffix>
| . <digit 10>+ <suffix>
| <digit 10>+ . <digit 10>* <suffix>

<suffix> <exponent> <mantissa width>
<exponent> <empty> | <exponent marker> <sign> <digit 10>+

<exponent marker> e | s | f | d | l
<mantissa width> <empty> | | <digit 10>+

<sign> <empty> | + | -
<digit 2> 0 | 1
<digit 8> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
<digit 10> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit 16> <digit 10> | a | b | c | d | e | f
A number written as above is inexact if it is prefixed by #i or if it is not prefixed by #e and contains a
decimal point, nonempty exponent, or nonempty mantissa width. Otherwise, it is exact.

Case is not significant in the syntax of numbers.

Lists. Lists are compound datums formed from groups of tokens and possibly involving other datums,
including other lists. Lists are written as a sequence of datums within parentheses or brackets; as a nonempty
sequence of datums, dotted-pair marker ( . ), and single datum enclosed within parentheses or brackets; or as
an abbreviation.

<list> (<datum>*) | [<datum>*]
| (<datum>+ . <datum>) | [<datum>+ . <datum>]
| <abbreviation>

<abbreviation> ' <datum> | ` <datum> | , <datum> | ,@ <datum>
| #' <datum> | #` <datum> | #, <datum> | #,@ <datum>

If no dotted-pair marker appears in a list enclosed in parentheses or brackets, it is a proper list, and the datums
are the elements of the list, in the order given. If a dotted-pair marker appears, the initial elements of the list
are those before the marker, and the datum that follows the marker is the tail of the list. The dotted-pair
marker is typically used only when the datum that follows the marker is not itself a list. While any proper list
may be written without a dotted-pair marker, a proper list can be written in dotted-pair notation by placing a
list after the dotted-pair marker.

The abbreviations are equivalent to the corresponding two-element lists shown below. Once an abbreviation
has been read, the result is indistinguishable from its nonabbreviated form.

'<datum>  (quote <datum>)
`<datum>  (quasiquote <datum>)
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,<datum>  (unquote <datum>)
,@<datum>  (unquote-splicing <datum>)
#'<datum>  (syntax <datum>)
#`<datum>  (quasisyntax <datum>)
#,<datum>  (unsyntax <datum>)
#,@<datum>  (unsyntax-splicing <datum>)

Vectors. Vectors are compound datums formed from groups of tokens and possibly involving other datums,
including other vectors. A vector is written as an open vector parenthesis followed by a sequence of datums
and a close parenthesis.

<vector> #(<datum>*)

Bytevectors. Bytevectors are compound datums formed from groups of tokens, but the syntax does not
permit them to contain arbitrary nested datums. A bytevector is written as an open bytevector parenthesis
followed by a sequence of octets (unsigned 8-bit exact integers) and a close parenthesis.

<bytevector> #vu8(<octet>*)
<octet> <any <number> representing an exact integer n, 0 ≤ n ≤ 255>
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Summary of Forms
The table that follows summarizes the Scheme syntactic forms and procedures described in Chapters 4
through 11. It shows the category of the form and the page number where it is defined. The category states
whether the form describes a syntactic form or a procedure.

All page numbers appearing here refer to the printed version of this book and also serve as hypertext links to
the corresponding locations in the electronic version of this book.

Form Category Page

'obj syntax 141
`obj syntax 142
,obj syntax 142
,@obj syntax 142
=> syntax 112
_ syntax 297
... syntax 297
#'template syntax 300
#`template syntax 305
#,template syntax 305
#,@template syntax 305
&assertion syntax 366
&condition syntax 362
&error syntax 367
&i/o syntax 371
&i/o-decoding syntax 375
&i/o-encoding syntax 376
&i/o-file-already-exists syntax 374
&i/o-file-does-not-exist syntax 374
&i/o-file-is-read-only syntax 374
&i/o-file-protection syntax 373
&i/o-filename syntax 373
&i/o-invalid-position syntax 372
&i/o-port syntax 375
&i/o-read syntax 372
&i/o-write syntax 372
&implementation-restriction syntax 369
&irritants syntax 368
&lexical syntax 370
&message syntax 368
&no-infinities syntax 376
&no-nans syntax 377
&non-continuable syntax 369
&serious syntax 366
&syntax syntax 370
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&undefined syntax 371
&violation syntax 366
&warning syntax 367
&who syntax 369
(* num ...) procedure 172
(+ num ...) procedure 171
(- num) procedure 172
(- num1 num2 num3 ...) procedure 172
(/ num) procedure 172
(/ num1 num2 num3 ...) procedure 172
(< real1 real2 real3 ...) procedure 170
(<= real1 real2 real3 ...) procedure 170
(= num1 num2 num3 ...) procedure 170
(> real1 real2 real3 ...) procedure 170
(>= real1 real2 real3 ...) procedure 170
(abs real) procedure 178
(acos num) procedure 185
(and expr ...) syntax 110
(angle num) procedure 183
(append) procedure 160
(append list ... obj) procedure 160
(apply procedure obj ... list) procedure 107
(asin num) procedure 185
(assert expression) syntax 359
(assertion-violation who msg irritant ...) procedure 358
(assertion-violation? obj) procedure 366
(assoc obj alist) procedure 165
(assp procedure alist) procedure 166
(assq obj alist) procedure 165
(assv obj alist) procedure 165
(atan num) procedure 185
(atan real1 real2) procedure 185
(begin expr1 expr2 ...) syntax 108
(binary-port? obj) procedure 270
(bitwise-and exint ...) procedure 186
(bitwise-arithmetic-shift exint1 exint2) procedure 190
(bitwise-arithmetic-shift-left exint1 exint2) procedure 189
(bitwise-arithmetic-shift-right exint1 exint2) procedure 189
(bitwise-bit-count exint) procedure 187
(bitwise-bit-field exint1 exint2 exint3) procedure 189
(bitwise-bit-set? exint1 exint2) procedure 188
(bitwise-copy-bit exint1 exint2 exint3) procedure 188
(bitwise-copy-bit-field exint1 exint2 exint3 exint4) procedure 189
(bitwise-first-bit-set exint) procedure 187
(bitwise-if exint1 exint2 exint3) procedure 186
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(bitwise-ior exint ...) procedure 186
(bitwise-length exint) procedure 187
(bitwise-not exint) procedure 186
(bitwise-reverse-bit-field exint1 exint2 exint3) procedure 191
(bitwise-rotate-bit-field exint1 exint2 exint3 exint4) procedure 190
(bitwise-xor exint ...) procedure 186
(boolean=? boolean1 boolean2) procedure 243
(boolean? obj) procedure 150
(bound-identifier=? identifier1 identifier2) procedure 302
(buffer-mode symbol) syntax 261
(buffer-mode? obj) syntax 262
(bytevector->sint-list bytevector eness size) procedure 238
(bytevector->string bytevector transcoder) procedure 286
(bytevector->u8-list bytevector) procedure 232
(bytevector->uint-list bytevector eness size) procedure 238
(bytevector-copy bytevector) procedure 229
(bytevector-copy! src src-start dst dst-start n) procedure 230
(bytevector-fill! bytevector fill) procedure 229
(bytevector-ieee-double-native-ref bytevector n) procedure 239
(bytevector-ieee-double-native-set! bytevector n x) procedure 239
(bytevector-ieee-double-ref bytevector n eness) procedure 240
(bytevector-ieee-double-set! bytevector n x eness) procedure 240
(bytevector-ieee-single-native-ref bytevector n) procedure 239
(bytevector-ieee-single-native-set! bytevector n x) procedure 239
(bytevector-ieee-single-ref bytevector n eness) procedure 240
(bytevector-ieee-single-set! bytevector n x eness) procedure 240
(bytevector-length bytevector) procedure 229
(bytevector-s16-native-ref bytevector n) procedure 232
(bytevector-s16-native-set! bytevector n s16) procedure 233
(bytevector-s16-ref bytevector n eness) procedure 235
(bytevector-s16-set! bytevector n s16 eness) procedure 236
(bytevector-s32-native-ref bytevector n) procedure 232
(bytevector-s32-native-set! bytevector n s32) procedure 233
(bytevector-s32-ref bytevector n eness) procedure 235
(bytevector-s32-set! bytevector n s32 eness) procedure 236
(bytevector-s64-native-ref bytevector n) procedure 232
(bytevector-s64-native-set! bytevector n s64) procedure 233
(bytevector-s64-ref bytevector n eness) procedure 235
(bytevector-s64-set! bytevector n s64 eness) procedure 236
(bytevector-s8-ref bytevector n) procedure 231
(bytevector-s8-set! bytevector n s8) procedure 231
(bytevector-sint-ref bytevector n eness size) procedure 237
(bytevector-sint-set! bytevector n sint eness size) procedure 238
(bytevector-u16-native-ref bytevector n) procedure 232
(bytevector-u16-native-set! bytevector n u16) procedure 233
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(bytevector-u16-ref bytevector n eness) procedure 235
(bytevector-u16-set! bytevector n u16 eness) procedure 236
(bytevector-u32-native-ref bytevector n) procedure 232
(bytevector-u32-native-set! bytevector n u32) procedure 233
(bytevector-u32-ref bytevector n eness) procedure 235
(bytevector-u32-set! bytevector n u32 eness) procedure 236
(bytevector-u64-native-ref bytevector n) procedure 232
(bytevector-u64-native-set! bytevector n u64) procedure 233
(bytevector-u64-ref bytevector n eness) procedure 235
(bytevector-u64-set! bytevector n u64 eness) procedure 236
(bytevector-u8-ref bytevector n) procedure 230
(bytevector-u8-set! bytevector n u8) procedure 231
(bytevector-uint-ref bytevector n eness size) procedure 237
(bytevector-uint-set! bytevector n uint eness size) procedure 238
(bytevector=? bytevector1 bytevector2) procedure 229
(bytevector? obj) procedure 155
(caaaar pair) procedure 157
(caaadr pair) procedure 157
(caaar pair) procedure 157
(caadar pair) procedure 157
(caaddr pair) procedure 157
(caadr pair) procedure 157
(caar pair) procedure 157
(cadaar pair) procedure 157
(cadadr pair) procedure 157
(cadar pair) procedure 157
(caddar pair) procedure 157
(cadddr pair) procedure 157
(caddr pair) procedure 157
(cadr pair) procedure 157
(call-with-bytevector-output-port procedure) procedure 266
(call-with-bytevector-output-port procedure ?transcoder) procedure 266
(call-with-current-continuation procedure) procedure 123
(call-with-input-file path procedure) procedure 281
(call-with-output-file path procedure) procedure 282
(call-with-port port procedure) procedure 272
(call-with-string-output-port procedure) procedure 267
(call-with-values producer consumer) procedure 131
(call/cc procedure) procedure 123
(car pair) procedure 156
(case expr0 clause1 clause2 ...) syntax 113
(case-lambda clause ...) syntax 94
(cdaaar pair) procedure 157
(cdaadr pair) procedure 157
(cdaar pair) procedure 157
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(cdadar pair) procedure 157
(cdaddr pair) procedure 157
(cdadr pair) procedure 157
(cdar pair) procedure 157
(cddaar pair) procedure 157
(cddadr pair) procedure 157
(cddar pair) procedure 157
(cdddar pair) procedure 157
(cddddr pair) procedure 157
(cdddr pair) procedure 157
(cddr pair) procedure 157
(cdr pair) procedure 156
(ceiling real) procedure 177
(char->integer char) procedure 215
(char-alphabetic? char) procedure 213
(char-ci<=? char1 char2 char3 ...) procedure 212
(char-ci<? char1 char2 char3 ...) procedure 212
(char-ci=? char1 char2 char3 ...) procedure 212
(char-ci>=? char1 char2 char3 ...) procedure 212
(char-ci>? char1 char2 char3 ...) procedure 212
(char-downcase char) procedure 214
(char-foldcase char) procedure 215
(char-general-category char) procedure 214
(char-lower-case? char) procedure 213
(char-numeric? char) procedure 213
(char-title-case? char) procedure 213
(char-titlecase char) procedure 214
(char-upcase char) procedure 214
(char-upper-case? char) procedure 213
(char-whitespace? char) procedure 213
(char<=? char1 char2 char3 ...) procedure 212
(char<? char1 char2 char3 ...) procedure 212
(char=? char1 char2 char3 ...) procedure 212
(char>=? char1 char2 char3 ...) procedure 212
(char>? char1 char2 char3 ...) procedure 212
(char? obj) procedure 154
(close-input-port input-port) procedure 285
(close-output-port output-port) procedure 285
(close-port port) procedure 270
(command-line) procedure 350
(complex? obj) procedure 151
(cond clause1 clause2 ...) syntax 111
(condition condition ...) procedure 362
(condition-accessor rtd procedure) procedure 365
(condition-irritants condition) procedure 368
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(condition-message condition) procedure 368
(condition-predicate rtd) procedure 365
(condition-who condition) procedure 369
(condition? obj) procedure 362
(cons obj1 obj2) procedure 156
(cons* obj ... final-obj) procedure 158
constant syntax 141
(cos num) procedure 185
(current-error-port) procedure 263
(current-input-port) procedure 263
(current-output-port) procedure 263
(datum->syntax template-identifier obj) procedure 308
(define var expr) syntax 100
(define var) syntax 100
(define (var0 var1 ...) body1 body2 ...) syntax 100
(define (var0 . varr) body1 body2 ...) syntax 100
(define (var0 var1 var2 ... . varr) body1 body2 ...) syntax 100
(define-condition-type name parent constructor pred field ...) syntax 364
(define-enumeration name (symbol ...) constructor) syntax 250
(define-record-type record-name clause ...) syntax 328
(define-record-type (record-name constructor pred) clause ...) syntax 328
(define-syntax keyword expr) syntax 292
(delay expr) syntax 128
(delete-file path) procedure 286
(denominator rat) procedure 181
(display obj) procedure 285
(display obj textual-output-port) procedure 285
(div x1 x2) procedure 175
(div-and-mod x1 x2) procedure 175
(div0 x1 x2) procedure 176
(div0-and-mod0 x1 x2) procedure 176
(do ((var init update) ...) (test result ...) expr ...) syntax 115
(dynamic-wind in body out) procedure 124
else syntax 112
(endianness symbol) syntax 228
(enum-set->list enum-set) procedure 252
(enum-set-complement enum-set) procedure 254
(enum-set-constructor enum-set) procedure 251
(enum-set-difference enum-set1 enum-set2) procedure 253
(enum-set-indexer enum-set) procedure 254
(enum-set-intersection enum-set1 enum-set2) procedure 253
(enum-set-member? symbol enum-set) procedure 253
(enum-set-projection enum-set1 enum-set2) procedure 254
(enum-set-subset? enum-set1 enum-set2) procedure 252
(enum-set-union enum-set1 enum-set2) procedure 253
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(enum-set-universe enum-set) procedure 252
(enum-set=? enum-set1 enum-set2) procedure 252
(environment import-spec ...) procedure 137
(eof-object) procedure 273
(eof-object? obj) procedure 273
(eol-style symbol) syntax 259
(eq? obj1 obj2) procedure 143
(equal-hash obj) procedure 245
(equal? obj1 obj2) procedure 148
(eqv? obj1 obj2) procedure 146
(error who msg irritant ...) procedure 358
(error-handling-mode symbol) syntax 260
(error? obj) procedure 367
(eval obj environment) procedure 136
(even? int) procedure 174
(exact num) procedure 180
(exact->inexact num) procedure 181
(exact-integer-sqrt n) procedure 184
(exact? num) procedure 170
(exists procedure list1 list2 ...) procedure 119
(exit) procedure 350
(exit obj) procedure 350
(exp num) procedure 184
(expt num1 num2) procedure 179
fields syntax 331
(file-exists? path) procedure 286
(file-options symbol ...) syntax 261
(filter procedure list) procedure 164
(find procedure list) procedure 165
(finite? real) procedure 174
(fixnum->flonum fx) procedure 211
(fixnum-width) procedure 193
(fixnum? obj) procedure 193
(fl* fl ...) procedure 207
(fl+ fl ...) procedure 206
(fl- fl) procedure 206
(fl- fl1 fl2 fl3 ...) procedure 206
(fl/ fl) procedure 207
(fl/ fl1 fl2 fl3 ...) procedure 207
(fl<=? fl1 fl2 fl3 ...) procedure 203
(fl<? fl1 fl2 fl3 ...) procedure 203
(fl=? fl1 fl2 fl3 ...) procedure 203
(fl>=? fl1 fl2 fl3 ...) procedure 203
(fl>? fl1 fl2 fl3 ...) procedure 203
(flabs fl) procedure 209
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(flacos fl) procedure 210
(flasin fl) procedure 210
(flatan fl) procedure 210
(flatan fl1 fl2) procedure 210
(flceiling fl) procedure 208
(flcos fl) procedure 210
(fldenominator fl) procedure 209
(fldiv fl1 fl2) procedure 207
(fldiv-and-mod fl1 fl2) procedure 207
(fldiv0 fl1 fl2) procedure 208
(fldiv0-and-mod0 fl1 fl2) procedure 208
(fleven? fl-int) procedure 205
(flexp fl) procedure 209
(flexpt fl1 fl2) procedure 210
(flfinite? fl) procedure 205
(flfloor fl) procedure 208
(flinfinite? fl) procedure 205
(flinteger? fl) procedure 204
(fllog fl) procedure 209
(fllog fl1 fl2) procedure 209
(flmax fl1 fl2 ...) procedure 205
(flmin fl1 fl2 ...) procedure 205
(flmod fl1 fl2) procedure 207
(flmod0 fl1 fl2) procedure 208
(flnan? fl) procedure 205
(flnegative? fl) procedure 204
(flnumerator fl) procedure 209
(flodd? fl-int) procedure 205
(flonum? obj) procedure 203
(floor real) procedure 177
(flpositive? fl) procedure 204
(flround fl) procedure 208
(flsin fl) procedure 210
(flsqrt fl) procedure 210
(fltan fl) procedure 210
(fltruncate fl) procedure 208
(flush-output-port output-port) procedure 280
(flzero? fl) procedure 204
(fold-left procedure obj list1 list2 ...) procedure 120
(fold-right procedure obj list1 list2 ...) procedure 121
(for-all procedure list1 list2 ...) procedure 119
(for-each procedure list1 list2 ...) procedure 118
(force promise) procedure 128
(free-identifier=? identifier1 identifier2) procedure 302
(fx* fx1 fx2) procedure 195
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(fx*/carry fx1 fx2 fx3) procedure 197
(fx+ fx1 fx2) procedure 195
(fx+/carry fx1 fx2 fx3) procedure 197
(fx- fx) procedure 195
(fx- fx1 fx2) procedure 195
(fx-/carry fx1 fx2 fx3) procedure 197
(fx<=? fx1 fx2 fx3 ...) procedure 193
(fx<? fx1 fx2 fx3 ...) procedure 193
(fx=? fx1 fx2 fx3 ...) procedure 193
(fx>=? fx1 fx2 fx3 ...) procedure 193
(fx>? fx1 fx2 fx3 ...) procedure 193
(fxand fx ...) procedure 197
(fxarithmetic-shift fx1 fx2) procedure 201
(fxarithmetic-shift-left fx1 fx2) procedure 201
(fxarithmetic-shift-right fx1 fx2) procedure 201
(fxbit-count fx) procedure 198
(fxbit-field fx1 fx2 fx3) procedure 200
(fxbit-set? fx1 fx2) procedure 199
(fxcopy-bit fx1 fx2 fx3) procedure 200
(fxcopy-bit-field fx1 fx2 fx3 fx4) procedure 200
(fxdiv fx1 fx2) procedure 196
(fxdiv-and-mod fx1 fx2) procedure 196
(fxdiv0 fx1 fx2) procedure 196
(fxdiv0-and-mod0 fx1 fx2) procedure 196
(fxeven? fx) procedure 194
(fxfirst-bit-set fx) procedure 199
(fxif fx1 fx2 fx3) procedure 198
(fxior fx ...) procedure 197
(fxlength fx) procedure 198
(fxmax fx1 fx2 ...) procedure 195
(fxmin fx1 fx2 ...) procedure 195
(fxmod fx1 fx2) procedure 196
(fxmod0 fx1 fx2) procedure 196
(fxnegative? fx) procedure 194
(fxnot fx) procedure 197
(fxodd? fx) procedure 194
(fxpositive? fx) procedure 194
(fxreverse-bit-field fx1 fx2 fx3) procedure 202
(fxrotate-bit-field fx1 fx2 fx3 fx4) procedure 201
(fxxor fx ...) procedure 197
(fxzero? fx) procedure 194
(gcd int ...) procedure 179
(generate-temporaries list) procedure 310
(get-bytevector-all binary-input-port) procedure 275
(get-bytevector-n binary-input-port n) procedure 274
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(get-bytevector-n! binary-input-port bytevector start n) procedure 274
(get-bytevector-some binary-input-port) procedure 275
(get-char textual-input-port) procedure 275
(get-datum textual-input-port) procedure 278
(get-line textual-input-port) procedure 277
(get-string-all textual-input-port) procedure 277
(get-string-n textual-input-port n) procedure 276
(get-string-n! textual-input-port string start n) procedure 276
(get-u8 binary-input-port) procedure 274
(greatest-fixnum) procedure 193
(guard (var clause1 clause2 ...) b1 b2 ...) syntax 361
(hashtable-clear! hashtable) procedure 249
(hashtable-clear! hashtable size) procedure 249
(hashtable-contains? hashtable key) procedure 246
(hashtable-copy hashtable) procedure 248
(hashtable-copy hashtable mutable?) procedure 248
(hashtable-delete! hashtable key) procedure 248
(hashtable-entries hashtable) procedure 250
(hashtable-equivalence-function hashtable) procedure 245
(hashtable-hash-function hashtable) procedure 245
(hashtable-keys hashtable) procedure 249
(hashtable-mutable? hashtable) procedure 245
(hashtable-ref hashtable key default) procedure 246
(hashtable-set! hashtable key obj) procedure 246
(hashtable-size hashtable) procedure 248
(hashtable-update! hashtable key procedure default) procedure 247
(hashtable? obj) procedure 155
(i/o-decoding-error? obj) procedure 375
(i/o-encoding-error-char condition) procedure 376
(i/o-encoding-error? obj) procedure 376
(i/o-error-filename condition) procedure 373
(i/o-error-port condition) procedure 375
(i/o-error-position condition) procedure 372
(i/o-error? obj) procedure 371
(i/o-file-already-exists-error? obj) procedure 374
(i/o-file-does-not-exist-error? obj) procedure 374
(i/o-file-is-read-only-error? obj) procedure 374
(i/o-file-protection-error? obj) procedure 373
(i/o-filename-error? obj) procedure 373
(i/o-invalid-position-error? obj) procedure 372
(i/o-port-error? obj) procedure 375
(i/o-read-error? obj) procedure 372
(i/o-write-error? obj) procedure 372
(identifier-syntax tmpl) syntax 297
(identifier-syntax (id1 tmpl1) ((set! id2 e2) tmpl2)) syntax 297
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(identifier? obj) procedure 301
(if test consequent alternative) syntax 109
(if test consequent) syntax 109
(imag-part num) procedure 182
immutable syntax 331
(implementation-restriction-violation? obj) procedure 369
(inexact num) procedure 180
(inexact->exact num) procedure 181
(inexact? num) procedure 170
(infinite? real) procedure 174
(input-port? obj) procedure 270
(integer->char n) procedure 215
(integer-valued? obj) procedure 153
(integer? obj) procedure 151
(irritants-condition? obj) procedure 368
(lambda formals body1 body2 ...) syntax 92
(latin-1-codec) procedure 259
(lcm int ...) procedure 179
(least-fixnum) procedure 193
(length list) procedure 159
(let ((var expr) ...) body1 body2 ...) syntax 95
(let name ((var expr) ...) body1 body2 ...) syntax 114
(let* ((var expr) ...) body1 body2 ...) syntax 96
(let*-values ((formals expr) ...) body1 body2 ...) syntax 99
(let-syntax ((keyword expr) ...) form1 form2 ...) syntax 293
(let-values ((formals expr) ...) body1 body2 ...) syntax 99
(letrec ((var expr) ...) body1 body2 ...) syntax 97
(letrec* ((var expr) ...) body1 body2 ...) syntax 98
(letrec-syntax ((keyword expr) ...) form1 form2 ...) syntax 293
(lexical-violation? obj) procedure 370
(list obj ...) procedure 158
(list->string list) procedure 223
(list->vector list) procedure 226
(list-ref list n) procedure 159
(list-sort predicate list) procedure 167
(list-tail list n) procedure 160
(list? obj) procedure 158
(log num) procedure 184
(log num1 num2) procedure 184
(lookahead-char textual-input-port) procedure 275
(lookahead-u8 binary-input-port) procedure 274
(magnitude num) procedure 183
(make-assertion-violation) procedure 366
(make-bytevector n) procedure 228
(make-bytevector n fill) procedure 228
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(make-custom-binary-input-port id r! gp sp! close) procedure 267
(make-custom-binary-input/output-port id r! w! gp sp! close) procedure 267
(make-custom-binary-output-port id w! gp sp! close) procedure 267
(make-custom-textual-input-port id r! gp sp! close) procedure 268
(make-custom-textual-input/output-port id r! w! gp sp! close) procedure 268
(make-custom-textual-output-port id w! gp sp! close) procedure 268
(make-enumeration symbol-list) procedure 251
(make-eq-hashtable) procedure 243
(make-eq-hashtable size) procedure 243
(make-eqv-hashtable) procedure 244
(make-eqv-hashtable size) procedure 244
(make-error) procedure 367
(make-hashtable hash equiv?) procedure 244
(make-hashtable hash equiv? size) procedure 244
(make-i/o-decoding-error pobj) procedure 375
(make-i/o-encoding-error pobj cobj) procedure 376
(make-i/o-error) procedure 371
(make-i/o-file-already-exists-error filename) procedure 374
(make-i/o-file-does-not-exist-error filename) procedure 374
(make-i/o-file-is-read-only-error filename) procedure 374
(make-i/o-file-protection-error filename) procedure 373
(make-i/o-filename-error filename) procedure 373
(make-i/o-invalid-position-error position) procedure 372
(make-i/o-port-error pobj) procedure 375
(make-i/o-read-error) procedure 372
(make-i/o-write-error) procedure 372
(make-implementation-restriction-violation) procedure 369
(make-irritants-condition irritants) procedure 368
(make-lexical-violation) procedure 370
(make-message-condition message) procedure 368
(make-no-infinities-violation) procedure 376
(make-no-nans-violation) procedure 377
(make-non-continuable-violation) procedure 369
(make-polar real1 real2) procedure 183
(make-record-constructor-descriptor rtd parent-rcd protocol) procedure 332
(make-record-type-descriptor name parent uid s? o? fields) procedure 331
(make-rectangular real1 real2) procedure 182
(make-serious-condition) procedure 366
(make-string n) procedure 218
(make-string n char) procedure 218
(make-syntax-violation form subform) procedure 370
(make-transcoder codec) procedure 259
(make-transcoder codec eol-style) procedure 259
(make-transcoder codec eol-style error-handling-mode) procedure 259
(make-undefined-violation) procedure 371
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(make-variable-transformer procedure) procedure 306
(make-vector n) procedure 224
(make-vector n obj) procedure 224
(make-violation) procedure 366
(make-warning) procedure 367
(make-who-condition who) procedure 369
(map procedure list1 list2 ...) procedure 117
(max real1 real2 ...) procedure 178
(member obj list) procedure 161
(memp procedure list) procedure 163
(memq obj list) procedure 161
(memv obj list) procedure 161
(message-condition? obj) procedure 368
(min real1 real2 ...) procedure 178
(mod x1 x2) procedure 175
(mod0 x1 x2) procedure 176
(modulo int1 int2) procedure 175
mutable syntax 331
(nan? real) procedure 174
(native-endianness) procedure 228
(native-eol-style) procedure 260
(native-transcoder) procedure 259
(negative? real) procedure 173
(newline) procedure 285
(newline textual-output-port) procedure 285
(no-infinities-violation? obj) procedure 376
(no-nans-violation? obj) procedure 377
(non-continuable-violation? obj) procedure 369
nongenerative syntax 331
(not obj) procedure 110
(null-environment version) procedure 137
(null? obj) procedure 151
(number->string num) procedure 191
(number->string num radix) procedure 191
(number->string num radix precision) procedure 191
(number? obj) procedure 151
(numerator rat) procedure 181
(odd? int) procedure 174
opaque syntax 331
(open-bytevector-input-port bytevector) procedure 264
(open-bytevector-input-port bytevector ?transcoder) procedure 264
(open-bytevector-output-port) procedure 265
(open-bytevector-output-port ?transcoder) procedure 265
(open-file-input-port path) procedure 262
(open-file-input-port path options) procedure 262
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(open-file-input-port path options b-mode) procedure 262
(open-file-input-port path options b-mode ?transcoder) procedure 262
(open-file-input/output-port path) procedure 263
(open-file-input/output-port path options) procedure 263
(open-file-input/output-port path options b-mode) procedure 263
(open-file-input/output-port path options b-mode ?transcoder) procedure 263
(open-file-output-port path) procedure 262
(open-file-output-port path options) procedure 262
(open-file-output-port path options b-mode) procedure 262
(open-file-output-port path options b-mode ?transcoder) procedure 262
(open-input-file path) procedure 280
(open-output-file path) procedure 281
(open-string-input-port string) procedure 265
(open-string-output-port) procedure 266
(or expr ...) syntax 110
(output-port-buffer-mode port) procedure 273
(output-port? obj) procedure 270
(pair? obj) procedure 151
parent syntax 331
parent-rtd syntax 331
(partition procedure list) procedure 164
(peek-char) procedure 284
(peek-char textual-input-port) procedure 284
(port-eof? input-port) procedure 278
(port-has-port-position? port) procedure 271
(port-has-set-port-position!? port) procedure 272
(port-position port) procedure 271
(port-transcoder port) procedure 271
(port? obj) procedure 270
(positive? real) procedure 173
(expr0 expr1 ...) syntax 107
(procedure? obj) procedure 155
protocol syntax 331
(put-bytevector binary-output-port bytevector) procedure 279
(put-bytevector binary-output-port bytevector start) procedure 279
(put-bytevector binary-output-port bytevector start n) procedure 279
(put-char textual-output-port char) procedure 279
(put-datum textual-output-port obj) procedure 279
(put-string textual-output-port string) procedure 279
(put-string textual-output-port string start) procedure 279
(put-string textual-output-port string start n) procedure 279
(put-u8 binary-output-port octet) procedure 278
(quasiquote obj ...) syntax 142
(quasisyntax template ...) syntax 305
(quote obj) syntax 141
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(quotient int1 int2) procedure 175
(raise obj) procedure 357
(raise-continuable obj) procedure 357
(rational-valued? obj) procedure 153
(rational? obj) procedure 151
(rationalize real1 real2) procedure 181
(read) procedure 284
(read textual-input-port) procedure 284
(read-char) procedure 284
(read-char textual-input-port) procedure 284
(real->flonum real) procedure 211
(real-part num) procedure 182
(real-valued? obj) procedure 153
(real? obj) procedure 151
(record-accessor rtd idx) procedure 334
(record-constructor rcd) procedure 333
(record-constructor-descriptor record-name) syntax 333
(record-field-mutable? rtd idx) procedure 338
(record-mutator rtd idx) procedure 334
(record-predicate rtd) procedure 333
(record-rtd record) procedure 338
(record-type-descriptor record-name) syntax 333
(record-type-descriptor? obj) procedure 332
(record-type-field-names rtd) procedure 337
(record-type-generative? rtd) procedure 337
(record-type-name rtd) procedure 336
(record-type-opaque? rtd) procedure 337
(record-type-parent rtd) procedure 336
(record-type-sealed? rtd) procedure 337
(record-type-uid rtd) procedure 336
(record? obj) procedure 338
(remainder int1 int2) procedure 175
(remove obj list) procedure 163
(remp procedure list) procedure 163
(remq obj list) procedure 163
(remv obj list) procedure 163
(reverse list) procedure 161
(round real) procedure 178
(scheme-report-environment version) procedure 137
sealed syntax 331
(serious-condition? obj) procedure 366
(set! var expr) syntax 102
(set-car! pair obj) procedure 157
(set-cdr! pair obj) procedure 157
(set-port-position! port pos) procedure 272
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(simple-conditions condition) procedure 363
(sin num) procedure 185
(sint-list->bytevector list eness size) procedure 239
(sqrt num) procedure 183
(standard-error-port) procedure 264
(standard-input-port) procedure 264
(standard-output-port) procedure 264
(string char ...) procedure 218
(string->bytevector string transcoder) procedure 287
(string->list string) procedure 222
(string->number string) procedure 191
(string->number string radix) procedure 191
(string->symbol string) procedure 242
(string->utf16 string) procedure 287
(string->utf16 string endianness) procedure 287
(string->utf32 string) procedure 287
(string->utf32 string endianness) procedure 287
(string->utf8 string) procedure 287
(string-append string ...) procedure 219
(string-ci-hash string) procedure 245
(string-ci<=? string1 string2 string3 ...) procedure 217
(string-ci<? string1 string2 string3 ...) procedure 217
(string-ci=? string1 string2 string3 ...) procedure 217
(string-ci>=? string1 string2 string3 ...) procedure 217
(string-ci>? string1 string2 string3 ...) procedure 217
(string-copy string) procedure 219
(string-downcase string) procedure 221
(string-fill! string char) procedure 220
(string-foldcase string) procedure 221
(string-for-each procedure string1 string2 ...) procedure 122
(string-hash string) procedure 245
(string-length string) procedure 218
(string-normalize-nfc string) procedure 222
(string-normalize-nfd string) procedure 222
(string-normalize-nfkc string) procedure 222
(string-normalize-nfkd string) procedure 222
(string-ref string n) procedure 218
(string-set! string n char) procedure 219
(string-titlecase string) procedure 221
(string-upcase string) procedure 221
(string<=? string1 string2 string3 ...) procedure 216
(string<? string1 string2 string3 ...) procedure 216
(string=? string1 string2 string3 ...) procedure 216
(string>=? string1 string2 string3 ...) procedure 216
(string>? string1 string2 string3 ...) procedure 216
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(string? obj) procedure 154
(substring string start end) procedure 220
(symbol->string symbol) procedure 242
(symbol-hash symbol) procedure 245
(symbol=? symbol1 symbol2) procedure 242
(symbol? obj) procedure 154
(syntax template) syntax 300
(syntax->datum obj) procedure 308
(syntax-case expr (literal ...) clause ...) syntax 299
(syntax-rules (literal ...) clause ...) syntax 294
(syntax-violation who msg form) procedure 359
(syntax-violation who msg form subform) procedure 359
(syntax-violation-form condition) procedure 370
(syntax-violation-subform condition) procedure 370
(syntax-violation? obj) procedure 370
(tan num) procedure 185
(textual-port? obj) procedure 270
(transcoded-port binary-port transcoder) procedure 271
(transcoder-codec transcoder) procedure 259
(transcoder-eol-style transcoder) procedure 259
(transcoder-error-handling-mode transcoder) procedure 259
(truncate real) procedure 177
(u8-list->bytevector list) procedure 232
(uint-list->bytevector list eness size) procedure 239
(undefined-violation? obj) procedure 371
(unless test-expr expr1 expr2 ...) syntax 112
(unquote obj ...) syntax 142
(unquote-splicing obj ...) syntax 142
(unsyntax template ...) syntax 305
(unsyntax-splicing template ...) syntax 305
(utf-16-codec) procedure 259
(utf-8-codec) procedure 259
(utf16->string bytevector endianness) procedure 288
(utf16->string bytevector endianness endianness-mandatory?) procedure 288
(utf32->string bytevector endianness) procedure 288
(utf32->string bytevector endianness endianness-mandatory?) procedure 288
(utf8->string bytevector) procedure 287
(values obj ...) procedure 131
variable syntax 91
(vector obj ...) procedure 224
(vector->list vector) procedure 225
(vector-fill! vector obj) procedure 225
(vector-for-each procedure vector1 vector2 ...) procedure 122
(vector-length vector) procedure 224
(vector-map procedure vector1 vector1 ...) procedure 121
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(vector-ref vector n) procedure 224
(vector-set! vector n obj) procedure 225
(vector-sort predicate vector) procedure 226
(vector-sort! predicate vector) procedure 226
(vector? obj) procedure 154
(violation? obj) procedure 366
(warning? obj) procedure 367
(when test-expr expr1 expr2 ...) syntax 112
(who-condition? obj) procedure 369
(with-exception-handler procedure thunk) procedure 360
(with-input-from-file path thunk) procedure 283
(with-output-to-file path thunk) procedure 283
(with-syntax ((pattern expr) ...) body1 body2 ...) syntax 304
(write obj) procedure 284
(write obj textual-output-port) procedure 284
(write-char char) procedure 285
(write-char char textual-output-port) procedure 285
(zero? num) procedure 173
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Index
All page numbers appearing here refer to the printed version of this book and also serve as hypertext links to
the corresponding locations in the electronic version of this book.

! (exclamation point), 8
" (double quote), 216
#!r6rs, 456
#' (syntax), 300
#, (unsyntax), 305
#,@ (unsyntax-splicing), 305
#; (datum comment), 455
#\, 211
#` (quasisyntax), 305
#|...|# (block comment), 455
#b (binary), 169
#d (decimal), 169
#f, 7, 36, 143
#o (octal), 169
#t, 7, 36, 143
#x (hexadecimal), 169
&assertion, 366
&condition, 362
&error, 367
&i/o, 371
&i/o-decoding, 375
&i/o-encoding, 376
&i/o-file-already-exists, 374
&i/o-file-does-not-exist, 374
&i/o-file-is-read-only, 374
&i/o-file-protection, 373
&i/o-filename, 373
&i/o-invalid-position, 372
&i/o-port, 375
&i/o-read, 372
&i/o-write, 372
&implementation-restriction, 369
&irritants, 368
&lexical, 370
&message, 368
&no-infinities, 376
&no-nans, 377
&non-continuable, 369
&serious, 366
&syntax, 370
&undefined, 371
&violation, 366
&warning, 367
&who, 369
' (quote), 17, 22, 59, 141
(), 7, 19
*, 16, 172
+, 16, 171
, (unquote), 142
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,@ (unquote-splicing), 142
-, 16, 172
->, 8
. (dot), 19, 460
... (ellipsis), 61, 294, 297
/, 16, 172
; (comment), 7, 455
<, 170
<=, 170
=, 170
=>, 111, 112
>, 170
>=, 170
? (question mark), 8, 37
_ (underscore), 61, 296, 315
_ (underscore), 294, 297
` (quasiquote), 142
abs, 34, 178, 183
abstract objects, 53, 408
acos, 185
actual parameters, 27, 92
Algol 60, 6
and, 37, 62, 110
angle, 183
append, 46, 160
apply, 107
arbitrary precision, 167
asin, 185
assert, 359
assertion-violation, 358
assertion-violation?, 366
assignment, 102
assignments, 47, 102
assoc, 165
association list, 165, 166, 243, 404
assp, 166
assq, 165
assv, 165
atan, 185
atom?, 41
auxiliary keywords, 61, 294
base case, 41
be-like-begin, 313
begin, 51, 60, 101, 108
binary port, 257
binary trees, 155
binary-port?, 270
binding, 4
bitwise-and, 186
bitwise-arithmetic-shift, 190
bitwise-arithmetic-shift-left, 189
bitwise-arithmetic-shift-right, 189
bitwise-bit-count, 187
bitwise-bit-field, 189
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bitwise-bit-set?, 188
bitwise-copy-bit, 188
bitwise-copy-bit-field, 189
bitwise-first-bit-set, 187
bitwise-if, 186
bitwise-ior, 186
bitwise-length, 187
bitwise-not, 186
bitwise-reverse-bit-field, 191
bitwise-rotate-bit-field, 190
bitwise-xor, 186
block buffering, 258
block comment ( #|...|# ), 455
block structure, 4
boolean syntax, 457
boolean values, 7
boolean=?, 243
boolean?, 150
bound-identifier=?, 302
brackets ( [ ] ), 7, 155
break, 308
buffer modes, 258
buffer-mode, 261
buffer-mode?, 262
bytevector syntax, 461
bytevector->sint-list, 238
bytevector->string, 286
bytevector->u8-list, 232
bytevector->uint-list, 238
bytevector-copy, 229
bytevector-copy!, 230
bytevector-fill!, 229
bytevector-ieee-double-native-ref, 239
bytevector-ieee-double-native-set!, 239
bytevector-ieee-double-ref, 240
bytevector-ieee-double-set!, 240
bytevector-ieee-single-native-ref, 239
bytevector-ieee-single-native-set!, 239
bytevector-ieee-single-ref, 240
bytevector-ieee-single-set!, 240
bytevector-length, 229
bytevector-s16-native-ref, 232
bytevector-s16-native-set!, 233
bytevector-s16-ref, 235
bytevector-s16-set!, 236
bytevector-s32-native-ref, 232
bytevector-s32-native-set!, 233
bytevector-s32-ref, 235
bytevector-s32-set!, 236
bytevector-s64-native-ref, 232
bytevector-s64-native-set!, 233
bytevector-s64-ref, 235
bytevector-s64-set!, 236
bytevector-s8-ref, 231
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bytevector-s8-set!, 231
bytevector-sint-ref, 237
bytevector-sint-set!, 238
bytevector-u16-native-ref, 232
bytevector-u16-native-set!, 233
bytevector-u16-ref, 235
bytevector-u16-set!, 236
bytevector-u32-native-ref, 232
bytevector-u32-native-set!, 233
bytevector-u32-ref, 235
bytevector-u32-set!, 236
bytevector-u64-native-ref, 232
bytevector-u64-native-set!, 233
bytevector-u64-ref, 235
bytevector-u64-set!, 236
bytevector-u8-ref, 230
bytevector-u8-set!, 231
bytevector-uint-ref, 237
bytevector-uint-set!, 238
bytevector=?, 229
bytevector?, 155
C, 393
caaaar, 157
caaadr, 157
caaar, 157
caadar, 157
caaddr, 157
caadr, 157
caar, 157
caar, cadr, ..., cddddr, 34
cadaar, 157
cadadr, 157
cadar, 157
caddar, 157
cadddr, 157
caddr, 157
cadr, 31, 32, 34, 157
call-by-name, 408
call-by-value, 407
call-with-bytevector-output-port, 266
call-with-current-continuation, 123, 426
call-with-input-file, 281
call-with-output-file, 282
call-with-port, 272
call-with-string-output-port, 267
call-with-values, 130, 131
call/cc, 74, 122, 123, 126, 133, 425, 426
car, 18, 155, 156
case, 55, 113, 306
case-lambda, 94
cdaaar, 157
cdaadr, 157
cdaar, 157
cdadar, 157
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cdaddr, 157
cdadr, 157
cdar, 157
cddaar, 157
cddadr, 157
cddar, 157
cdddar, 157
cddddr, 157
cdddr, 157
cddr, 31, 34, 157
cdr, 18, 38, 155, 156
ceiling, 177
char->integer, 215
char-alphabetic?, 213
char-ci<=?, 212
char-ci<?, 212
char-ci=?, 212
char-ci>=?, 212
char-ci>?, 212
char-downcase, 214
char-foldcase, 215
char-general-category, 214
char-lower-case?, 213
char-numeric?, 213
char-title-case?, 213
char-titlecase, 214
char-upcase, 214
char-upper-case?, 213
char-whitespace?, 213
char<=?, 212
char<?, 212
char=?, 212
char>=?, 212
char>?, 212
char?, 154
character syntax, 457
characters, 211
Chez Scheme, ix, 42
child type, 325
circular lists, 156
close-input-port, 285
close-output-port, 285
close-port, 270
codec, 257
command-line, 350
comments, 7, 455
Common Lisp, 6
compiler, 4
complete, see engines
complex numbers, 167, 412
complex?, 151, 167
compose, 34
compound condition, 362
cond, 39, 44, 111, 304
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condition, 362
condition object, 361
condition type, 361
condition-accessor, 365
condition-irritants, 368
condition-message, 368
condition-predicate, 365
condition-who, 369
condition?, 362
conditionals, 109
conditions, 357
cons, 19, 156
cons cell, 155
cons*, 158
consing, 19
constant, 141
constants, 21, 141
continuation-passing style, 78, 418
continuations, 5, 73, 124, 421
control structures, 107
core syntactic forms, 4, 22, 59, 404
cos, 185
CPS, 78
current exception handler, 357
current-error-port, 263
current-input-port, 263
current-output-port, 263
cyclic lists, 56
d (double), 169
data, 141
datum comment ( #; ), 455
datum syntax, 455, 456
datum->syntax, 308, 317, 320
default protocol, 327
define, 30, 81, 100
define-condition-type, 364
define-enumeration, 250
define-integrable, 315
define-object, 408
define-record-type, 323, 328
define-structure, 318
define-syntax, 61, 291, 292, 389
defining syntactic extensions, 60
defun syntax, 33, 60
delay, 128
delayed evaluation, 408
delete-file, 286
delq!, 54
denominator, 181
describe-segment, 132
display, 285, 397
div, 175
div-and-mod, 175
div0, 176
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div0-and-mod0, 176
divisors, 115, 116
do, 115, 312
dot ( . ), 19, 460
dotted pair, 20, 155
double, 27, 33
double quotes, 216
double-any, 30
double-cons, 27, 33
doubler, 33
doubly recursive, 70
dxdy, 131
dynamic allocation, 3
dynamic-wind, 124
ellipsis ( ... ), 61, 294
else, 111, 112, 113
empty list, 7, 19
endianness, 228
engines, 421
enum-set->list, 252
enum-set-complement, 254
enum-set-constructor, 251
enum-set-difference, 253
enum-set-indexer, 254
enum-set-intersection, 253
enum-set-member?, 253
enum-set-projection, 254
enum-set-subset?, 252
enum-set-union, 253
enum-set-universe, 252
enum-set=?, 252
environment, 137
environment, 404
eof object, 257
eof-object, 273
eof-object?, 257, 273
eol style, 257
eol-style, 259
eq?, 143
equal-hash, 245
equal?, 148
equivalence predicates, 143
eqv?, 38, 146
error, 358
error handling mode, 258
error-handling-mode, 260
error?, 367
eval, 136
even?, 47, 66, 81, 174
exact, 180
exact->inexact, 181
exact-integer-sqrt, 184
exact?, 167, 170
exactness, 167, 180
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exactness preserving, 167
except import set, 346
exceptions, 9, 357
exclamation point ( ! ), 8
exists, 119
exit, 350
exp, 184
expansion, 59
expire, see engines
export, 345
export level, 345
expressions, 7
expt, 179
extended examples, 381
f (single), 169
factor, 71, 72, 73
factorial, 68, 75, 116
false, 7, 36
fast Fourier transform (FFT), 412
fenders, 299, 301
fibonacci, 69, 102, 116, 422
Fibonacci numbers, 69, 102
fields, 331
file, 257
file-exists?, 286
file-options, 261
filter, 164
find, 165
finite?, 174
first-class data values, 3
first-class procedures, 5
fixnum, 192
fixnum->flonum, 211
fixnum-width, 193
fixnum?, 193
fl*, 207
fl+, 206
fl-, 206
fl/, 207
fl<=?, 203
fl<?, 203
fl=?, 203
fl>=?, 203
fl>?, 203
flabs, 209
flacos, 210
flasin, 210
flatan, 210
flceiling, 208
flcos, 210
fldenominator, 209
fldiv, 207
fldiv-and-mod, 207
fldiv0, 208
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fldiv0-and-mod0, 208
fleven?, 205
flexp, 209
flexpt, 210
flfinite?, 205
flfloor, 208
flinfinite?, 205
flinteger?, 204
flip-flop, 102
fllog, 209
flmax, 205
flmin, 205
flmod, 207
flmod0, 208
flnan?, 205
flnegative?, 204
flnumerator, 209
floating point, 167
flodd?, 205
flonum, 202
flonum?, 203
floor, 177
flpositive?, 204
flround, 208
flsin, 210
flsqrt, 210
fltan, 210
fltruncate, 208
fluid binding, 125
flush-output-port, 280
flzero?, 204
fold-left, 120
fold-right, 121
folding, 120, 121
for-all, 119
for-each, 118
force, 128
formal parameters, 26, 29, 92
formatted output, 401
fprintf, 401
free variable, 28
free-identifier=?, 302
frequency, 393
fx*, 195
fx*/carry, 197
fx+, 195
fx+/carry, 197
fx-, 195
fx-/carry, 197
fx<=?, 193
fx<?, 193
fx=?, 193
fx>=?, 193
fx>?, 193
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fxand, 197
fxarithmetic-shift, 201
fxarithmetic-shift-left, 201
fxarithmetic-shift-right, 201
fxbit-count, 198
fxbit-field, 200
fxbit-set?, 199
fxcopy-bit, 200
fxcopy-bit-field, 200
fxdiv, 196
fxdiv-and-mod, 196
fxdiv0, 196
fxdiv0-and-mod0, 196
fxeven?, 194
fxfirst-bit-set, 199
fxif, 198
fxior, 197
fxlength, 198
fxmax, 195
fxmin, 195
fxmod, 196
fxmod0, 196
fxnegative?, 194
fxnot, 197
fxodd?, 194
fxpositive?, 194
fxreverse-bit-field, 202
fxrotate-bit-field, 201
fxxor, 197
fxzero?, 194
garbage collector, 3
gcd, 179
generate-temporaries, 310
generative, 324
get-bytevector-all, 275
get-bytevector-n, 274
get-bytevector-n!, 274
get-bytevector-some, 275
get-char, 275
get-datum, 278
get-line, 277
get-string-all, 277
get-string-n, 276
get-string-n!, 276
get-u8, 274
getq, 54
goodbye, 41
greatest-fixnum, 193
guard, 361
hare and tortoise, 56, 66
hashtable-clear!, 249
hashtable-contains?, 246
hashtable-copy, 248
hashtable-delete!, 248
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hashtable-entries, 250
hashtable-equivalence-function, 245
hashtable-hash-function, 245
hashtable-keys, 249
hashtable-mutable?, 245
hashtable-ref, 246
hashtable-set!, 246
hashtable-size, 248
hashtable-update!, 247
hashtable?, 155
hashtables, 243
i/o-decoding-error?, 375
i/o-encoding-error-char, 376
i/o-encoding-error?, 376
i/o-error-filename, 373
i/o-error-port, 375
i/o-error-position, 372
i/o-error?, 371
i/o-file-already-exists-error?, 374
i/o-file-does-not-exist-error?, 374
i/o-file-is-read-only-error?, 374
i/o-file-protection-error?, 373
i/o-filename-error?, 373
i/o-invalid-position-error?, 372
i/o-port-error?, 375
i/o-read-error?, 372
i/o-write-error?, 372
identifier-syntax, 291, 297, 307, 316, 317
identifier?, 301
identifiers, 6
if, 35, 36, 39, 51, 59, 109
imag-part, 182
immutability of exports, 349
immutable, 331
implementation-restriction-violation?, 369
implicit begin, 109
import, 345
import level, 345
import spec, 345, 346
improper list, 19, 155
include, 309
indirect exports, 349
inexact, 180
inexact->exact, 181
inexact?, 167, 170
infinite?, 174
inheritance, 412
inheritance in records, 325
input port, 257
input-port?, 270
integer->char, 215
integer-divide, 79
integer-valued?, 153
integer?, 151, 167
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integers, 167
integrable procedures, 315
internal definitions, 81, 92
internal state, 49
interpret, 404
interpreter, 4, 404
intraline whitespace, 455
irritants-condition?, 368
iteration, 5, 45, 68, 114, 115, 117, 118, 120, 121, 122
keywords, 4, 61, 291
l (long), 169
lambda, 26, 29, 59, 92, 93
lambda*, 94
latin-1, 257
latin-1-codec, 259
lazy, 51
lazy evaluation, 51, 127
lcm, 179
least-fixnum, 193
length, 42, 159
let, 23, 28, 65, 95, 114
let*, 64, 96
let*-values, 99, 134
let-bound variables, 23
let-syntax, 291, 293, 314
let-values, 99, 134, 310
letrec, 65, 81, 97, 310
letrec*, 98
letrec-syntax, 291, 293, 314
lexical scoping, 4, 5, 25, 63
lexical-violation?, 370
libraries, 343
library body, 348
library version, 344
library version reference, 347
light-weight threads, 421
line buffering, 258
line ending, 455
Lisp, ix, 6
lisp-cdr, 38
list, 20, 31, 32, 158
list constants, 7
list syntax, 460
list->string, 223
list->vector, 226
list-copy, 43
list-ref, 159
list-sort, 167, 387
list-tail, 160
list?, 56, 66, 67, 81, 158
lists, 17, 18, 155
literals, 294
load, 13
local variable bindings, 95
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log, 184
lookahead-char, 275
lookahead-u8, 274
loop, 308
looping, 5
macros, 291
magnitude, 178, 183
make-assertion-violation, 366
make-bytevector, 228
make-counter, 50, 54
make-custom-binary-input-port, 267
make-custom-binary-input/output-port, 267
make-custom-binary-output-port, 267
make-custom-textual-input-port, 268
make-custom-textual-input/output-port, 268
make-custom-textual-output-port, 268
make-enumeration, 251
make-eq-hashtable, 243
make-eqv-hashtable, 244
make-error, 367
make-hashtable, 244
make-i/o-decoding-error, 375
make-i/o-encoding-error, 376
make-i/o-error, 371
make-i/o-file-already-exists-error, 374
make-i/o-file-does-not-exist-error, 374
make-i/o-file-is-read-only-error, 374
make-i/o-file-protection-error, 373
make-i/o-filename-error, 373
make-i/o-invalid-position-error, 372
make-i/o-port-error, 375
make-i/o-read-error, 372
make-i/o-write-error, 372
make-implementation-restriction-violation, 369
make-irritants-condition, 368
make-lexical-violation, 370
make-list, 46, 94
make-message-condition, 368
make-no-infinities-violation, 376
make-no-nans-violation, 377
make-non-continuable-violation, 369
make-polar, 183
make-promise, 129
make-queue, 54
make-record-constructor-descriptor, 332
make-record-type-descriptor, 323, 331
make-record-type-descriptor, 331
make-rectangular, 182
make-serious-condition, 366
make-stack, 52, 55
make-string, 218
make-syntax-violation, 370
make-transcoder, 259
make-undefined-violation, 371
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make-variable-transformer, 291, 298, 306
make-vector, 224
make-violation, 366
make-warning, 367
make-who-condition, 369
map, 45, 47, 117, 392
map1, 46
mapping, 45, 117, 118, 121, 122
matrix multiplication, 381
max, 178
member, 161
memp, 163
memq, 161
memv, 43, 161
merge, 387
message-condition?, 368
messages, 52, 408
meta-circular interpreter, 404
method, 317
min, 178
mod, 175
mod0, 176
modulo, 175
mul, 382
multiple values, 9
multiprocessing, 421
mutable, 331
mutually recursive procedures, 66, 97
named let, 67, 71, 114
naming conventions, 8
nan?, 174
native-endianness, 228
native-eol-style, 260
native-transcoder, 259
negative?, 173
nested engines, 429
nested let expressions, 96
newline, 285
no-infinities-violation?, 376
no-nans-violation?, 377
non-continuable-violation?, 369
nondeterministic computations, 421, 424
nongenerative, 331
nongenerative, 324
nonlocal exits, 123, 124
not, 36, 110
null-environment, 137
null?, 37, 151
number syntax, 459
number->string, 191
number?, 38, 151
numbers, 16, 167
numerator, 181
object identity, 144
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object->string, 267
object-oriented programming, 317, 408
objects, 3
occur free, 28, 30
octet, 257
odd?, 47, 66, 81, 174
only import set, 346
opaque, 331
opaque record type, 330, 336
open-bytevector-input-port, 264
open-bytevector-output-port, 265
open-file-input-port, 262
open-file-input/output-port, 263
open-file-output-port, 262
open-input-file, 280
open-output-file, 281
open-string-input-port, 265
open-string-output-port, 266
operating system, 423, 429
operations on objects, 141
operator precedence, 16
optional arguments, 93
or, 36, 63, 110
order of evaluation, 22, 107
output port, 257
output-port-buffer-mode, 273
output-port?, 270
pair?, 38, 151
pairs, 19, 155
parent, 331
parent type, 325
parent-rtd, 331
partition, 164
pattern variable, 294
pattern variables, 61, 299
patterns, 294
peek-char, 284
Petite Chez Scheme, ix
pointers, 4
por (parallel-or), 424
port, 257
port-eof?, 278
port-has-port-position?, 271
port-has-set-port-position!?, 272
port-position, 271
port-transcoder, 271
port?, 270
positive?, 173
predicates, 8, 37, 143
prefix import set, 346
prefix notation, 15, 16
primitive procedures, 4
printf, 401
procedure application, 16, 17, 21, 27, 107
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procedure definition, 5, 31, 100
procedure?, 155
procedures, 26, 91, 92
product, 74, 80
proper list, 19, 56, 155
protocol, 331
protocol for records, 326, 332
put-bytevector, 279
put-char, 279
put-datum, 279, 397
put-string, 279
put-u8, 278
putq!, 54
quadratic-formula, 48
quasiquote ( ` ), 142
quasisyntax ( #` ), 305
question mark ( ? ), 8, 37
queue, 53
quote ( ' ), 17, 22, 59, 141
quotient, 175
raise, 357
raise-continuable, 357
rational numbers, 167
rational-valued?, 153
rational?, 151, 167
rationalize, 181
rcd, 332
read, 284
read-char, 284
real numbers, 167
real->flonum, 211
real-part, 182
real-valued?, 153
real?, 151, 167
rec, 311
reciprocal, 15, 37, 39, 80
record generativity, 324
record inheritance, 325
record uid, 325
record-accessor, 334
record-constructor, 333
record-constructor descriptor, 332
record-constructor-descriptor, 333
record-field-mutable?, 338
record-mutator, 334
record-predicate, 333
record-rtd, 338
record-type descriptor, 331
record-type-descriptor, 333
record-type-descriptor?, 332
record-type-field-names, 337
record-type-generative?, 337
record-type-name, 336
record-type-opaque?, 337
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record-type-parent, 336
record-type-sealed?, 337
record-type-uid, 336
record?, 338
records, 323
recursion, 5, 41, 65, 114
recursion step, 41
recursive procedure, 41
remainder, 175
remove, 163
remp, 163
remq, 163
remv, 44, 163
rename import set, 346
retry, 75, 80
reverse, 161
Revised Reports, ix, 3
round, 178
round-robin, 423
rtd, 331
s (short), 169
Scheme standard, ix
scheme-report-environment, 137
scope, 25
sealed, 331
sealed record type, 330
segment-length, 132
segment-slope, 132
semicolon ( ; ), 7, 455
sequence, 313
sequencing, 108
serious-condition?, 366
set!, 47, 59, 102
set-car!, 157
set-cdr!, 56, 157
set-of, 389
set-port-position!, 272
sets, 389
shadowing, 4, 25, 31
shhh, 50
shorter, 41, 47
shorter?, 47
side effects, 8, 108
simple condition, 362
simple-conditions, 363
sin, 185
sint-list->bytevector, 239
sort, 387
split, 133
sqrt, 183
square, 14
stack objects, 52
standard-error-port, 264
standard-input-port, 264
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standard-output-port, 264
streams, 128
string, 218
string syntax, 458
string->bytevector, 287
string->list, 222
string->number, 191
string->symbol, 242
string->utf16, 287
string->utf32, 287
string->utf8, 287
string-append, 219
string-ci-hash, 245
string-ci<=?, 217
string-ci<?, 217
string-ci=?, 217
string-ci>=?, 217
string-ci>?, 217
string-copy, 219
string-downcase, 221
string-fill!, 220
string-foldcase, 221
string-for-each, 122
string-hash, 245
string-length, 218
string-normalize-nfc, 222
string-normalize-nfd, 222
string-normalize-nfkc, 222
string-normalize-nfkd, 222
string-ref, 218
string-set!, 219
string-titlecase, 221
string-upcase, 221
string<=?, 216
string<?, 216
string=?, 216
string>=?, 216
string>?, 216
string?, 38, 154
strings, 14, 216
structured forms, 6
structures, 318
substring, 95, 220
sum, 65
symbol syntax, 458
symbol table, 241
symbol->string, 242
symbol-hash, 245
symbol=?, 242
symbol?, 38, 154
symbols, 18, 241
syntactic extensions, 5, 22, 59, 60, 291
syntactic forms, 18, 59, 291
syntax, 291
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syntax ( #' ), 300
syntax object, 298
syntax violation, 9
syntax->datum, 308
syntax-case, 291, 299
syntax-rules, 291, 294, 300, 389
syntax-violation, 359
syntax-violation-form, 370
syntax-violation-subform, 370
syntax-violation?, 370
tail call, 5, 68
tail recursion, 5, 68
tan, 185
tconc, 53
tell, 50
templates, 295
textual port, 257
textual-port?, 270
threads, 421
thunk, 51, 124
ticks, see engines
timed preemption, 421
timer interrupts, 425
tokens, 455
top-level definitions, 30, 101
top-level programs, 343
trace, 42
tracing, 42
transcoded-port, 271
transcoder, 257
transcoder-codec, 259
transcoder-eol-style, 259
transcoder-error-handling-mode, 259
transformer, 61
tree-copy, 44
true, 7, 36
truncate, 177
type predicates, 38
u8-list->bytevector, 232
uint-list->bytevector, 239
undefined-violation?, 371
underscore ( _ ), 61, 296, 315
underscore (_), 294
unification, 417
unify, 418
unless, 64, 112
unquote ( , ), 142
unquote-splicing ( ,@ ), 142
unspecified, 9
unsyntax ( #, ), 305
unsyntax-splicing ( #,@ ), 305
unwind-protect (in Lisp), 124
utf-16, 257
utf-16-codec, 259
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utf-8, 257
utf-8-codec, 259
utf16->string, 288
utf32->string, 288
utf8->string, 287
values, 130, 131
variable binding, 23, 91
variable reference, 91
variables, 4, 18, 23, 30, 47
vector, 224
vector syntax, 461
vector->list, 225
vector-fill!, 225
vector-for-each, 122
vector-length, 224
vector-map, 121
vector-ref, 224
vector-set!, 225
vector-sort, 226
vector-sort!, 226
vector?, 154
vectors, 55, 223, 383
violation?, 366
warning?, 367
when, 64, 112
whitespace, 455
whitespace characters, 7
who-condition?, 369
winders, see dynamic-wind
with-exception-handler, 360
with-input-from-file, 283
with-output-to-file, 283
with-syntax, 304
write, 284, 397
write-char, 285
x++, 316
zero?, 173
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