
The Little Schemer

F o u r t h E d i t i o n

Daniel P. Friedman and Matthias Felleisen

Foreword bf GenW J. s-.n.a

The Ten Commandments

The First Commandment

When recurring on a list of atoms, lat, ask
two questions about it: (null? lat) and else.
When recurring on a number, n, ask two
questions about it: (zero? n) and else.
When recurring on a list of S-expressions, l,
ask three question about it: (null? l), (atom?
(car l)), and else.

The Second Commandment

Use cons to build lists.

The Third Commandment

The Fifth Commandment

When building a value with + ,always use
0 for the value of the terminating line, for
adding 0 does not change the value of an
addition.

When building a value with x, always use
1 for the value of the terminating line, for
multiplying by 1 does not change the value
of a multiplication.

When building a value with cons, always
consider () for the value of the terminating
line.

When building a list, describe the first typi- The Sixth Commandment
cal element, and then cons it onto the natu­
ral recursion.

The Fourth Commandment

Always change at least one argument while
recurring. When recurring on a list of atoms,
lat, use (cdr lat). When recurring on a num­
ber, n, use (sub1 n). And when recurring on
a list of S-expressions, l, use (carl) and (cdr
l) if neither (null? l) nor (atom? (carl)) are
true.

It must be changed to be closer to termina­
tion. The changing argument must be tested
in the termination condition:

when using cdr, test termination with null?
and

when using sub1, test termination with
zero?.

Simplify only after the function is correct.

The Seventh Commandment

Recur on the subparts that are of the same
nature:

• On the sublists of a list.

• On the subexpressions of an arithmetic
expression.

The Eighth Commandment

Use help functions to abstract from represen­
tations.

The Ninth Commandment

Abstract common patterns with a new func­
tion.

The Tenth Commandment

Build functions to collect more than one
value at a time.

The Five Rules

The Law of Car

The primitive car is defined only for non­
empty lists.

The Law of Cdr

The primitive cdr is defined only for non­
empty lists. The cdr of any non-empty list
is always another list.

The Law of Cons

The primitive cons takes two arguments.
The second argument to cons must be a list.
The result is a list.

The Law of Null?

The primitive null? is defined only for lists.

The Law of Eq?

The primitive eq'l takes two arguments.
Each must be a non-numeric atom.

The Little Schemer

Fourth Edition

Daniel P. Friedman

Indiana Uni11ersity
Bloomington, Indiana

Matthias Felleisen

Rice Uni11ersity
Houston, Texas

Drawings by Duane Bibby

Foreword by Gerald J. Sussman

The MIT Press
Cambridge, Massachusetts
London, England

Original edition published as The Little LISPer . © 1986, 1974 by Scientific Research
Associates.

First MIT Press Edition, 1987.

© 1996 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set by the authors and was printed and bound in the United States
of America.

Library of Congress Cataloging-in-Publication Data

Friedman, Daniel P.
The little schemer / Daniel P. Friedman and Matthias Felleisen; drawings by

Duane Bibby; foreword by Gerald J. Sussman.-4 ed. , 1st MIT Press ed.
p. em.

Rev. ed. of: The little LISPer. 3rd ed. @1989.
Includes index.
ISBN 0-262-56099-2 (pbk: alk. paper)
1. Scheme (Computer program language) 2. LISP (Computer program language)

I. Felleisen, Matthias. II. Friedman, Daniel P. Little LISPer. III. Title.
QA76.73.S34F75 1996
005 .13'3-dc20 95-39853

CIP

To Mary, Helga, and our children

((Contents)
(Foreword ix)

(Preface xi)

((1. Toys) 2)
((2. Do It, Do It Again, and Again, and Again ...) 14)
((3. Cons the Magnificent) 32)
((4. Numbers Games) 58)
((5. *Oh My Gawd*: It's Full of Stars) 80)
((6. Shadows) 96)
((7. Friends and Relations) 110)
((8. Lambda the Ultimate) 124)
((9 and Again, and Again, and Again, ...) 148)
((10. What Is the Value of All of T his?) 174)
(Intermission 192)
(Index 194))

Foreword

This foreword appeared in the second and third editions of The Little
L ISPer. We reprint it here with the permission of the author.

In 1967 I took an introductory course in photography. Most of the students (including me) came
into that course hoping to learn how to be creative-to take pictures like the ones I admired
by artists such as Edward Weston. On the first day the teacher patiently explained the long
list of technical skills that he was going to teach us during the term. A key was Ansel Adams'
"Zone System" for previsualizing the print values (blackness in the final print) in a photograph
and how they derive from the light intensities in the scene. In support of this skill we had
to learn the use of exposure meters to measure light intensities and the use of exposure time
and development time to control the black level and the contrast in the image. This is in turn
supported by even lower level skills such as loading film, developing and printing, and mixing
chemicals. One must learn to ritualize the process of developing sensitive material so that one
gets consistent results over many years of work. The first laboratory session was devoted to
finding out that developer feels slippery and that fixer smells awful.

But what about creative composition? In order to be creative one must first gain control
of the medium. One can not even begin to think about organizing a great photograph without
having the skills to make it happen . In engineering, as in other creative arts, we must learn
to do analysis to support our efforts in synthesis. One cannot build a beautiful and functional
bridge without a knowledge of steel and dirt and considerable mathematical technique for using
this knowledge to compute the properties of structures. Similarly, one cannot build a beautiful
computer system without a deep understanding of how to "previsualize" the process generated
by the procedures one writes.

Some photographers choose to use black-and-white 8x10 plates while others choose 35mm
slides. Each has its advantages and disadvantages. Like photography, programming requires a
choice of medium. Lisp is the medium of choice for people who enjoy free style and flexibility.
Lisp was initially conceived as a theoretical vehicle for recursion theory and for symbolic
algebra. It has developed into a uniquely powerful and flexible family of software development
tools, providing wrap-around support for the rapid-prototyping of software systems. As with
other languages, Lisp provides the glue for using a vast library of canned parts, produced
by members of the user community. In Lisp, procedures are first-class data, to be passed as
arguments, returned as values, and stored in data structures . This flexibility is valuable, but
most importantly, it provides mechanisms for formalizing, naming, and saving the idioms-the
common patterns of usage that are essential to engineering design . In addition , Lisp programs
can easily manipulate the representations of Lisp programs-a feature that has encouraged the
development of a vast structure of program synthesis and analysis tools, such as cross-referencers.

The Little LISPer is a unique approach to developing the skills underlying creative program­
ming in Lisp. It painlessly packages , with considerable wit , much of the drill and practice that
is necessary to learn the skills of constructing recursive processes and manipulating recursive
data-structures. For the student of Lisp programming, The Little L ISPer can perform the same
service that Hanon's finger exercises or Czerny's piano studies perform for the student of piano.

Foreword

Gerald J . Sussman
Cambridge, Massachusetts

ix

Preface

To celebrate the twentieth anniversary of Scheme we revised The Little LISPer a
third time, gave it the more accurate title The Little Schemer, and wrote a sequel :
The Seasoned Schemer.

Programs accept data and produce data. Designing a program requires a thorough understand­
ing of data; a good program reflects the shape of the data it deals with. Most collections of data,
and hence most programs, are recursive. Recursion is the act of defining an object or solving a
problem in terms of itself.

The goal of this book is to teach the reader to think recursively. Our first task is to decide
which language to use to communicate this concept . There are three obvious choices: a natural
language, such as English; formal mathematics; or a programming language. Natural languages
are ambiguous, imprecise, and sometimes awkwardly verbose. These are all virtues for general
communication, but something of a drawback for communicating concisely as precise a concept
as recursion. The language of mathematics is the opposite of natural language: it can express
powerful formal ideas with only a few symbols. Unfortunately, the language of mathematics
is often cryptic and barely accessible without special training. The marriage of technology
and mathematics presents us with a third , almost ideal choice: a programming language. We
believe that programming languages are the best way to convey the concept of recursion. They
share with mathematics the ability to give a formal meaning to a set of symbols. But unlike
mathematics, programming languages can be directly experienced-you can take the programs in
this book, observe their behavior, modify them, and experience the effect of these modifications .

Perhaps the best programming language for teaching recursion is Scheme. Scheme is
inherently symbolic-the programmer does not have to think about the relationship between the
symbols of his own language and the representations in the computer. Recursion is Scheme's nat­
ural computational mechanism; the primary programming activity is the creation of (potentially)
recursive definitions. Scheme implementations are predominantly interactive-the programmer
can immediately participate in and observe the behavior of his programs. And, perhaps most
importantly for our lessons at the end of this book, there is a direct correspondence between
the structure of Scheme programs and the data those programs manipulate.

Although Scheme can be described quite formally, understanding Scheme does not require
a particularly mathematical inclination. In fact , The Little Schemer is based on lecture notes
from a two-week "quickie" introduction to Scheme for students with no previous programming
experience and an admitted dislike for anything mathematical . Many of these students were
preparing for careers in public affairs. It is our belief that writing programs recursively in Scheme
is essentially simple pattern recognition. Since our only concern is recursive programming, our
treatment is limited to the whys and wherefores of just a few Scheme features: car, cdr, cons,
eq? , null? , zero? , addl, subl, number?, and, or, quote, lambda, define, and cond. Indeed, our
language is an idealized Scheme.

The Little Schemer and The Seasoned Schemer will not introduce you to the practical
world of programming, but a mastery of the concepts in these books provides a start toward
understanding the nature of computation.

Preface xi

What You Need to Know to Read This Book

The reader must be comfortable reading English , recognizing numbers, and counting.

Acknowledgments

We are indebted to many people for their contributions and assistance throughout the devel­
opment of the second and third editions of this book. We thank Bruce Duba, Kent Dybvig,
Chris Haynes, Eugene Kohlbecker , Richard Salter, George Springer, Mitch Wand, and David S .
Wise for countless discussions that influenced our thinking while conceiving this book. Ghassan
Abbas, Charles Baker, David Boyer, Mike Dunn, Terry Falkenberg, Rob Friedman, John Gateley,
Mayer Goldberg, Iqbal Khan , Julia Lawall, Jon Mendelsohn, John Nienart , Jeffrey D. Perotti,
Ed Robertson , Anne Shpuntoff, Erich Smythe, Guy Steele, Todd Stein , and Larry Weisselberg
provided many important comments on the drafts of the book. We especially want to thank Bob
Filman for being such a thorough and uncompromising critic through several readings. Finally
we wish to acknowledge Nancy Garrett, Peg Fletcher, and Bob Filman for contributing to the
design and 'IEXery.

The fourth and latest edition greatly benefited from Dorai Sitaram's incredibly clever Scheme
typesetting program SLl\TE]X. Kent Dybvig's Chez Scheme made programming in Scheme a
most pleasant experience. We gratefully acknowledge criticisms and suggestions from Shelaswau
Bushnell, Richard Cobbe, David Combs, Peter Drake, Kent Dybvig, Rob Friedman, Steve Ganz,
Chris Haynes , Erik Hilsdale, Eugene Kohlbecker , Shriram Krishnamurthi, Julia Lawall, Suzanne
Menzel Collin McCurdy, John Nienart , Jon Rossie, Jonathan Sobel , George Springer, Guy Steele,
John David Stone, Vikram Subramaniam, Mitch Wand, and Melissa Wingard-Phillips.

Guidelines for the Reader

Do not rush through this book. Read carefully; valuable hints are scattered throughout the
text . Do not read the book in fewer than three sittings. Read systematically. If you do not fully
understand one chapter, you will understand the next one even less. The questions are ordered
by increasing difficulty; it will be hard to answer later ones if you cannot solve the earlier ones.

The book is a dialogue between you and us about interesting examples of Scheme programs.
If you can , try the examples while you read. Schemes are readily available. While there are
minor syntactic variations between different implementations of Scheme (primarily the spelling of
particular names and the domain of specific functions) , Scheme is basically the same throughout
the world. To work with Scheme, you will need to define atom?, subl, and addl. which we
introduced in The Little Schemer:

(define atom?

(lambda (x)
(and (not (pair? x)) (not (null? x)))))

To find out whether your Scheme has the correct definition of atom?, try (atom? (quote ()))
and make sure it returns #f. In fact , the material is also suited for modern Lisps such as
Common Lisp. To work with Lisp, you will also have to add the function atom?:

xii

(defun atom? (x)
(not (listp x)))

Preface

Moreover, you may need to modify the programs slightly. Typically, the material requires
only a few changes. Suggestions about how to try the programs in the book are provided in
the framenotes. Framenotes preceded by "S:" concern Scheme, those by "L:" concern Common
Lisp.

In chapter 4 we develop basic arithmetic from three operators : add1 , sub1 , and zero ?. Since
Scheme does not provide add1 and sub1 , you must define them using the built-in primitives for
addition and subtraction. Therefore, to avoid a circularity, our basic arithmetic addition and
subtraction must be written using different symbols: + and - , respectively.

We do not give any formal definitions in this book. We believe that you can form your
own definitions and will thus remember them and understand them better than if we had
written each one for you. But be sure you know and understand the Laws and Commandments
thoroughly before passing them by. The key to learning Scheme is "pattern recognition ." The
Commandments point out the patterns that you will have already seen . Early in the book,
some concepts are narrowed for simplicity; later, they are expanded and qualified. You should
also know that , while everything in the book is Scheme, Scheme itself is more general and
incorporates more than we could intelligibly cover in an introductory text . After you have
mastered this book, you can read and understand more advanced and comprehensive books on
Scheme.

We use a few notational conventions throughout the text , primarily changes in typeface
for different classes of symbols. Variables and the names of primitive operations are in i talic.
Basic data, including numbers and representations of truth and falsehood, is set in sans serif.
Keywords, i .e. , define, lambda, cond, else, and, or, and quote, are in boldface. When you
try the programs, you may ignore the typefaces but not the related framenotes. To highlight
this role of typefaces, the programs in framenotes are set in a typewriter face. The typeface
distinctions can be safely ignored until chapter 10, where we treat programs as data.

Finally, Webster defines "punctuation" as the act of punctuating; specifically, the act ,
practice, or system of using standardized marks in writing and printing to separate sentences
or sentence elements or to make the meaning clearer. We have taken this definition literally
and have abandoned some familiar uses of punctuation in order to make the meaning clearer.
Specifically, we have dropped the use of punctuation in the left-hand column whenever the item
that precedes such punctuation is a term in our programming language.

Food appears in many of our examples for two reasons . First , food is easier to visualize
than abstract symbols. (This is not a good book to read while dieting.) We hope the choice of
food will help you understand the examples and concepts we use. Second, we want to provide
you with a little distraction. We know how frustrating the subject matter can be, and a little
distraction will help you keep your sanity.

You are now ready to start . Good luck! We hope you will enjoy the challenges waiting for
you on the following pages.

Preface

Bon appetit !

Daniel P. Friedman
Matthias Felleisen

xiii

The Little Schemer

Is it true that this is an atom?
atom1

1 L, S: (quote atom) or 'atom
"L:" and "S:" are described in the preface.

Is it true that this is an atom?
tu rkey

Is it true that this is an atom?
1492

Is it true that this is an atom?
u

Is it true that this is an atom?
•abc$

Is it true that this is a list?
(atom)1

1 L, S: (quote (atom)) or ' (atom)

Is it true that this is a list?
(atom tu rkey or)

Toys

Yes,
because atom is a string of characters
beginning with the letter a .

Yes,
because tu rkey is a string of characters
beginning with a letter.

Yes ,
because 1492 is a string of digits.

Yes ,
because u is a string of one character,
which is a letter.

Yes ,
because •abc$ is a string of characters
beginning with a letter or special character
other than a left " (" or right ")"
parenthesis.

Yes ,
because (atom) is an atom enclosed by
parentheses.

Yes,
because it is a collection of atoms enclosed
by parentheses.

3

Is it true that this is a list?
(atom tu rkey) or

Is it true that this is a list?
((atom tu rkey) or)

Is it true that this is an S-expression?
xyz

Is it true that this is an S-expression?
(x y z)

Is it true that this is an S-expression?
((x y) z)

Is it true that this is a list?
(how are you doing so far)

How many S-expressions are in the list
(how are you doing so far)

and what are they?

Is it true that this is a list?
(((how) are) ((you) (doing so)) far)

How many S-expressions are in the list
(((how) are) ((you) (doing so)) far)

and what are they?

4

No,
because these are actually two
S-expressions not enclosed by parentheses.
The first one is a list containing two
atoms, and the second one is an atom.

Yes,
because the two S-expressions are now
enclosed by parentheses.

Yes ,
because all atoms are S-expressions.

Yes ,
because it is a list .

Yes ,
because all lists are S-expressions.

Yes ,
because i t i s a collection of S-expressions
enclosed by parentheses.

Six,
how, are, you , doing, so, and far.

Yes ,
because i t i s a collection of S-expressions
enclosed by parentheses.

Three,
((how) are) , ((you) (doing so)) , and far.

Chapter 1

Is it true that this is a list?
()

Yes,
because it contains zero S-expressions
enclosed by parentheses . This special
S-expression is called the null (or empty)
list .

Is it true that this is an atom? No,
()

Is it true that this is a list?
(() () () ())

What is the car of l
where l is the argument

(a b c)

What is the car of l
where

l is ((a b c) x y z)

What is the car of l
where l is hotdog

What is the car of l
where l is ()

Toys

because () is just a list .

Yes,

a,

because it is a collection of S-expressions
enclosed by parentheses.

because a is the first atom of this list .

(a b c) ,
because (a b c) i s the first S-expression of
this non-empty list .

No answer.
You cannot ask for the car of an atom.

No answer. 1
You cannot ask for the car of the empty
list .

1 L: nil

The Law of Car
The primitive car is defined
only for non-empty lists.

5

What is the car of l
where

l is (((hotdogs)) (and) (pickle) rel ish)

What is (car l)
where

l is (((hotdogs)) (and) (pickle) rel ish)

What is (car (car l))
where

l is (((hotdogs)) (and))

What i s the cdr of l
where

l is (a b c)

Note: "cdr" is pronounced "could-er."

What is the cdr of l
where

l is ((a b c) x y z)

What is the cdr of l
where

l is (hamburger)

What is (cdr l)
where

l is ((x) t r)

What is (cdr a)
where

a is hotdogs

6

((hotdogs)) ,
read as:

"The list of the list of hotdogs. "
((hotdogs)) is the first S-expression of l .

((hotdogs)) ,
because (car l) is another way to ask for
"the car of the list l."

(hotdogs) .

(b c) ,
because (b c) is the list l without (car l) .

(x y z) .

() .

(t r) ,
because (cdr l) is just another way to ask
for "the cdr of the list l . "

No answer.
You cannot ask for the cdr of an atom.

Chapter 1

What is (cdr l)
where l is ()

No answer. 1
You cannot ask for the cdr of the null list .

1 L: nil

The Law of Cdr
The primitive cdr is defined only for
non-empty lists. The cdr of any non­
empty list is always another list.

What is (car (cdr l))
where

l is ((b) (x y) ((c)))

What is (cdr (cdr l))
where

l is ((b) (x y) ((c)))

What is (cdr (car l))
where

l is (a (b (c)) d)

What does car take as an argument?

What does cdr take as an argument?

What is the cons of the atom a and the list l
where a is peanut
and

l is (butter and je l ly)
This can also be written "(cons a l)" .

Read: "cons the atom a onto the list l."

Toys

(x y) ,
because ((x y) ((c))) is (cdr l), and (x y) is
the car of (cdr l) .

(((c))) ,
because ((x y) ((c))) is (cdr l) , and (((c)))
is the cdr of (cdr l) .

No answer,
since (car l) is an atom, and cdr does not
take an atom as an argument; see The Law
of Cdr.

It takes any non-empty list .

It takes any non-empty list .

(peanut butter and je l ly) ,
because cons adds an atom to the front of
a list .

7

What is the cons of s and l
where s is (banana and)
and

l is (peanut butter and jel ly)

What is (cons s l)
where

s is ((he lp) th is)
and

l is (is very ((hard) to learn))

What does cons take as its arguments?

What is (cons s l)
where

s is (a b (c))
and

l is ()

What is (cons s l)
where s is a
and l is ()

What is (cons s l)
where

s is ((a b c))
and

l is b

What is (cons s l)
where s is a
and l is b

8

((banana and) peanut butter and jelly) ,
because cons adds any S-expression to the
front of a list .

(((he lp) this) is very ((hard) to learn)) .

cons takes two arguments:
the first one is any S-expression;
the second one is any list .

((a b (c))) ,
because () is a list .

(a) .

No answer, 1
since the second argument l must be a list .

1 In practice, (cona a /3) works for all values a and /3, and
(car (cona a /3)) =a
(cdr (cona a /3)} = /3.

No answer.
Why?

Chapter 1

The Law of Cons
The primitive cons takes two arguments.
The second argument to cons must be a
list. The result is a list.

What is (cons s (car l))
where s is a
and

l is ((b) c d)

What i s (cons s (CJJ.r l))
where s is a
and

l is ((b) c d)

Is i t true that the list l i s the null list
where l is ()

What is (null?1 (quote ()))

1 L : null

Is (null? l) true or false
where

l is (a b c)

Toys

(a b) .
Why?

(a c d) .
Why?

Yes,
because it is the list composed of zero
S-expressions.

This question can also be written:
(null? l) .

True,
because (quote ()) 1 is a notation for the
null list .

1 L: Also 0 and • ().

S: Also •().

False,
because l is a non-empty list .

9

Is (null? a) true or false
where

a is spaghetti

No answer/
because you cannot ask null? of an atom.

1 In practice, (null? a) is false for everything, except the
empty list.

The Law of Null?
The primitive null ? is de­
fined only for lists.

Is it true or false that s is an atom
where s is Harry

Is (atom ?1 s) true or false
where

s is Harry

1 L: (defun atom? (x)
(not (listp x)))

S: (define atom?
(lambda (x)

(and (not (pair? x)) (not (null? x)))))

Is (atom ? s) true or false
where

s is (Harry had a heap of apples)

How many arguments does atom? take and
what are they?

10

True,
because Harry is a string of characters
beginning with a letter.

True,
because (atom ? s) is just another way to
ask "Is s is an atom?"

False,
since s is a list.

It takes one argument . The argument can be
any S-expression.

Chapter 1

Is (atom? (car l)) true or false
where

l is (Harry had a heap of apples)

Is (atom ? (cdr l)) true or false
where

l is (Harry had a heap of apples)

Is (atom? (cdr l)) true or false
where

l is (Harry)

Is (atom? (car (cdr l))) true or false
where

l is (swing low sweet cherry oat)

Is (atom? (car (cdr l))) true or false
where

l is (swing (low sweet) cherry oat)

True or false: a1 and a2 are the same atom
where a1 is Harry
and

a2 is Harry

Is (eq?1 a1 a2) true or false
where a1 is Harry
and

a2 is Harry

1 L: eq

Is (eq? a1 a2) true or false
where a1 is margarine
and

a2 is butter

Toys

True,
because (car l) is Harry, and Harry is an
atom.

False.

False,
because the list () is not an atom.

True,
because (cdr l) is (low sweet cherry oat) ,
and (car (cdr l)) i s low, which i s an atom.

False,
since (cdr l) is ((low sweet) cherry oat) , and
(car (cdr l)) is (low sweet) , which is a list .

True,
because a1 is the atom Harry and a2 is the
atom Harry.

True,
because (eq? a1 a2) is just another way to
ask, "Are a1 and a2 the same
non-numeric atom?"

False,
since a1 and a2 are different atoms.

1 1

How many arguments does eq? take and
what are they?

Is (eq? l1 l2) true or false
where l1 is ()
and

l2 is (strawberry)

Is (eq? n1 n2) true or false
where n1 is 6
and

n2 is 7

It takes two arguments. Both of them must
be non-numeric atoms.

No answer, 1
() and (strawberry) are lists.

1 In practice, lists m83' be arguments of eq?. Two lists are
eq? if they are the same list.

No answer, 1
6 and 7 are numbers.

1 In practice, some numbers may be arguments of eq?.

The Law of Eq?

The primitive eq? takes two ar­
guments. Each must be a non­
numeric atom.

True, Is (eq? (car l) a) true or false
where

l is (Mary had a l ittle lamb chop)
and

because (car l) is the atom Mary, and the
argument a is also the atom Mary.

a is Mary

Is (eq? (cdr l) a) true or false
where

l is (sou red mi lk)
and

a is mi lk

12

No answer.
See The Laws of Eq? and Cdr.

Chapter 1

Is (eq? (car l) (car (cdr l))) true or false
where

l is (beans beans we need jelly beans)

True,
because it compares the first and second
atoms in the list .

==>Now go make yourself a peanut butter and jelly sandwich. ¢=

This space reserved for

JELLY STAINS!

13

�))�
�m��m ��
�t;D��� ��m���

True or false: (lat ? l)
where

l is (Jack Sprat could eat no chicken fat)

True or false: (lat ? l)
where

l is ((Jack) Sprat cou ld eat no chicken fat)

True or false: (lat? l)
where

l is (Jack (Sprat cou ld) eat no chicken fat)

True or false: (lat? l)
where l is ()

True or false: a lat is a list of atoms.

Write the function lat ? using some, but not
necessarily all , of the following functions:

car cdr cons null? atom ? and eq?

True,
because each S-expression in l is an atom.

False,
since (car l) is a list .

False,
since one of the S-expressions in l is a list .

True,
because it does not contain a list .

True!
Every lat is a list of atoms!

You were not expected to be able to do this
yet , because you are still missing some
ingredients. Go on to the next question .
Good luck.

Are you rested?

Do It, Do It Again, and Again, and Again . . . 15

(define lat ?1
(lambda (l)

(cond
((null? l) #t)
((atom ? (car l)) (lat ? (cdr l)))
(else #f))))

What i s the value of (lat ? l)
where

l is the argument (bacon and eggs)

1 L: (defun 1at? (1}
(cond

((null 1} t}
((atom? (car 1} } (lat? (cdr 1} } }
(t nil} } }

How do we determine the answer # t for the
application

(lat ? l)

What is the first question asked by (lat ? l)

What is the meaning of the cond-line
((null? l) #t)

where
l is (bacon and eggs)

What is the next question?

16

#t .
The application (lat? l)
where

l is (bacon and eggs)
has the value #t -true-because l is a lat .

You were not expected to know this one
either. The answer is determined by
answering the questions asked by latf

Hint : Write down the definition of the
function lat? and refer to it for the next
group of questions.

(null? l)
Note:

(cond . . .) asks questions;
(lambda . . .) creates a function; and
(define . . .) gives it a name.

(null? l) asks if the argument l is the null
list . If it is, the value of the application is
true. If it is not , we ask the next question.
In this case, l is not the null list, so we ask
the next question.

(atom ? (car l)) .

Chapter 2

What is the meaning of the line
((atom ? (car l)) (lat? (cdr l)))

where
l is (bacon and eggs)

What is the meaning of
(lat? (cdr l))

Now what is the argument l for lat?

What is the next question?

What is the meaning of the line
((null? l) #t)

where
l is now (and eggs)

What is the next question?

What is the meaning of the line
((atom? (car l)) (lat? (cdr l)))

where
l is (and eggs)

What is the meaning of
(lat? (cdr l))

Do It, Do It Again, and Again, and Again . . .

(atom ? (car l)) asks if the first S-expression
of the list l is an atom. If (car l) is an atom,
we want to know if the rest of l is also
composed only of atoms. If (car l) is not an
atom, we ask the next question. In this case,
(car l) is an atom, so the value of the
function is the value of (lat ? (cdr l)) .

(lat ? (cdr l)) finds out i f the rest of the list l
is composed only of atoms, by referring to
the function with a new argument .

Now the argument l is (cdr l) , which is
(and eggs) .

(null? l) .

(null? l) asks if the argument l i s the null
list . If it is, the value of the application is
#t . If it is not , we ask the next question. In
this case, l is not the null list , so we ask the
next question.

(atom ? (car l)) .

(atom ? (car l)) asks i f (car l) i s an atom. If
it is an atom, the value of the application is
(lat ? (cdr l)) . If not , we ask the next
question . In this case, (car l) is an atom, so
we want to find out if the rest of the list l is
composed only of atoms.

(lat ? (cdr l)) finds out if the rest of l is
composed only of atoms, by referring again
to the function lat ?, but this time, with the
argument (cdr l) , which is (eggs) .

17

What is the next question?

What is the meaning of the line
((null? l) #t)

where
l is now (eggs)

What is the next question?

What is the meaning of the line
((atom? (car l)) (lat ? (cdr l)))

where
l is now (eggs)

What is the meaning of (lat ? (cdr l))

Now, what is the argument for lat ?

What is the meaning of the line
((null? l) #t)

where
l is now ()

Do you remember the question about
(lat ? l)

18

(null? l) .

(null? l) asks i f the argument l i s the null
list . If it is, the value of the application is
#t -true. If it is not , move to the next
question. In this case, l is not null, so we ask
the next question.

(atom ? (car l)) .

(atom ? (car l)) asks i f (car l) i s an atom. If
it is, the value of the application is
(lat? (cdr l)) . If (car l) is not an atom, ask
the next question. In this case, (car l) is an
atom, so once again we look at (lat? (cdr l)) .

(lat ? (cdr l)) finds out if the rest of the list l
is composed only of atoms, by referring to
the function lat ?, with l becoming the value
of (cdr l) .

() .

(null? l) asks if the argument l is the null
list . If it is, the value of the application is
the value of #t . If not , we ask the next
question. In this case, () is the null list . So,
the value of the application (lat? l)
where

l is (bacon and eggs) , is #t -true.

Probably not . The application (lat? l) has
the value #t if the list l is a list of atoms
where

l is (bacon and eggs) .

Chapter 2

Can you describe what the function lat? does
in your own words?

This is the function lat ? again:

(define lat ?
(lambda (l)

(cond
((null? l) #t)
((atom ? (car l)) (lat ? (cdr l)))
(else #f))))

What is the value of (lat? l)
where

l is now (bacon (and eggs))

What is the first question?

What is the meaning of the line
((null? l) #t)

where
l is (bacon (and eggs))

What is the next question?

What is the meaning of the line
((atom ? (car l)) (lat ? (cdr l)))

where
l is (bacon (and eggs))

Do It, Do It Again, and Again, and Again ...

Here are our words :
"lat ? looks at each S-expression in a list , in
turn, and asks if each S-expression is an
atom, until it runs out of S-expressions . If
it runs out without encountering a list , the
value is #t . If it finds a list , the value is
#f-false."

To see how we could arrive at a value of
"false," consider the next few questions.

#f,
since the list l contains an S-expression
that is a list .

(null? l) .

(null? l) asks i f l is the null list . I f i t i s , the
value is #t . If l is not null, move to the next
question. In this case, it is not null, so we
ask the next question.

(atom ? (car l)) .

(atom ? (car l)) asks i f (car l) i s an atom. If
it is, the value is (lat ? (cdr l)) . If it is not ,
we ask the next question. In this case,
(car l) is an atom, so we want to check if the
rest of the list l is composed only of atoms.

19

What is the meaning of
(lat ? (cdr l))

What is the meaning of the line
((null? l) #t)

where
l is now ((and eggs))

What i s the next question?

What is the meaning of the line
((atom ? (car l)) (lat? (cdr l)))

where
l is now ((and eggs))

What is the next question?

What is the meaning of the question else

Is else true?

else

Why is else the last question?

Why do we not need to ask any more
questions?

What is the meaning of the line
(else #f)

20

(lat ? (cdr l)) checks to see if the rest of the
list l is composed only of atoms, by referring
to lat ? with l replaced by (cdr l) .

(null? l) asks if l i s the null list. If i t i s null,
the value is #t . If it is not null , we ask the
next question. In this case, l is not null , so
move to the next question.

(atom ? (car l)) .

(atom ? (car l)) asks if (car l) i s an atom. If
it is, the value is (lat ? (cdr l)) . If it is not ,
we move to the next question. In this case,
(car l) is not an atom, so we ask the next
question .

else.

else asks if else is true.

Yes, because the question else is always true!

Of course.

Because we do not need to ask any more
questions.

Because a list can be empty, can have an
atom in the first position, or can have a list
in the first position .

else asks if else is true. If else is true-as it
always is-then the answer is #f-false.

Chapter 2

What is
)))

Can you describe how we determined the
value #f for

(lat? l)
where

l is (bacon (and eggs))

Is (or (null? ll) (atom ? l2)) true or false
where l1 is ()
and

l2 is (d e f g)

Is (or (null? l1) (null? l2)) true or false
where

l1 is (a b c)
and

l2 is ()

Is (or (null? l1 } (null? l2)) true or false
where

l1 is (a b c)
and

l2 is (atom)

What does (or ...) do?

Do It, Do It Again, and Again, and Again . ..

These are the closing or matching
parentheses of (cond . . . , (lambda . . . , and
(define . . . , which appear at the beginning
of a function definition.

Here is one way to say it :
"(lat? l) looks at each item in its argument
to see if it is an atom. If it runs out of
items before it finds a list , the value of
(lat ? l) is #t . If it finds a list , as it did in
the example (bacon (and eggs)) , the value
of (lat ? l) is #f. "

True,
because (null? l1) is true where l1 is () .

True,
because (null? l2) is true where l2 is () .

False,
because neither (null? l1) nor (null? l2) is
true where

l1 is (a b c)
and

l2 is (atom) .

(or . . .) asks two questions, one at a time. If
the first one is true it stops and answers true.
Otherwise it asks the second question and
answers with whatever the second question
answers.

21

Is it true or false that a is a member of lat
where a is tea
and

lat is (coffee tea or m i l k)

Is (member? a lat) true or false
where a is poached
and

lat is (fried eggs and scrambled eggs)

This is the function member?

(define member?
(lambda (a lat)

(cond
((null? lat) #f)
(else (or (eq? (car lat) a)

(member? a (cdr lat)))))))

What i s the value of (member? a lat)
where a is meat
and

lat is (mashed potatoes and meat gravy)

How do we determine the value #t for the
above application?

What is the first question asked by
(member? a lat)

22

True,
because one of the atoms of the lat ,

(coffee tea or mi lk)
is the same as the atom a-tea .

False,
since a is not one of the atoms of the lat .

#t ,
because the atom meat is one of the atoms
of lat ,

(mashed potatoes and meat gravy) .

The value is determined by asking the
questions about (member? a lat) .

Hint : Write down the definition of the
function member? and refer to it while you
work on the next group of questions.

(null? lat) .
This i s also the first question asked by lat?.

Chapter 2

The First Commandment

(preliminary)

Always ask null ? as the first question in expressing
any function.

What is the meaning of the line
((null? lat) #f)

where
lat is (mashed potatoes and meat gravy)

What is the next question?

Why is else the next question?

Is else really a question?

What is the meaning of the line
(else (or (eq? (car lat) a)

(member? a (cdr lat))))

True or false:
(or (eq? (car lat) a)

(member? a (cdr lat)))
where a is meat
and

lat is (mashed potatoes and meat gravy)

Do It, Do It Again, and Again, and Again . . .

(null? lat) asks if lat is the null list . If it is,
the value is #f, since the atom meat was not
found in lat. If not , we ask the next question.
In this case, it is not null, so we ask the next
question.

else.

Because we do not need to ask any more
questions.

Yes, else is a question whose value is always
true.

Now that we know that lat is not null?, we
have to find out whether the car of lat is the
same atom as a, or whether a is somewhere
in the rest of lat. The answer

(or (eq? (car lat) a)
(member? a (cdr lat)))

does this.

We will find out by looking at each question
in turn.

23

Is (eq? (car lat) a) true or false
where a is meat
and

lat is (mashed potatoes and meat gravy)

What is the second question of (or ...)

Now what are the arguments of member?

What is the next question?

Is (null ? lat) true or false
where

lat is (potatoes and meat gravy)

What do we do now?

What is the next question?

What is the meaning of
(or (eq? (car lat) a)

(member? a (cdr lat)))

Is a eq? to the car of lat

24

False,
because meat is not eq? to mashed ,
the car of

(mashed potatoes and meat gravy) .

(member? a (cdr lat)) .
This refers to the function with the
argument lat replaced by (cdr lat) .

a i s meat
and

lat is now (cdr lat) , specifically
(potatoes and meat gravy) .

(null? lat) .
Remember The First Commandment .

#f-false.

Ask the next question.

else.

(or (eq? (car lat) a)
(member? a (cdr lat)))

finds out if a is eq? to the car of lat or if a is
a member of the cdr of lat by referring to the
function.

No, because a is meat and the car of lat is
potatoes.

Chapter 2

So what do we do next?

Now, what are the arguments of member?

What is the next question?

What do we do now?

What is the next question?

What is the value of
(or (eq? (car lat) a)

(member? a (cdr lat)))

Why?

What do we do now?

We ask (member? a (cdr lat)) .

a i s meat, and
lat is (and meat gravy) .

(null? lat) .

Ask the next question , since (null? lat) is
false.

else.

The value of (member? a (cdr lat)) .

Because (eq? (car lat) a) i s false.

Recur-refer to the function with new
arguments.

What are the new arguments? a is meat, and
lat is (meat gravy) .

What is the next question? (null? lat) .

What do we do now? Since (null? lat) is false, ask the next
question.

What is the next question? else.

Do It, Do It Again, and Again, and Again . . . 25

What is the value of
(or (eq? (car lat) a)

(�e�ber? a (cdr lat)))

What is the value of the application
(�e�ber? a lat)

where a is meat
and

lat is (meat gravy)

What is the value of the application
(�e�ber? a lat)

where a is meat
and

lat is (and meat gravy)

What is the value of the application
(�e�ber? a lat)

where a is meat
and

lat is (potatoes and meat gravy)

What is the value of the application
(�e�ber? a lat)

where a is meat
and

lat is (mashed potatoes and meat gravy)

Just to make sure you have it right , let 's
quickly run through it again . What is the
value of (�e�ber? a lat)
where

a is meat
and

lat is (mashed potatoes and meat gravy)

(null? lat)

26

#t ,
because (car lat) , which is meat, and a,
which is meat , are the same atom.
Therefore, (or ...) answers with #t .

#t ,
because we have found that meat is a
member of

(meat gravy) .

#t ,
because meat is also a member of the lat

(and meat gravy) .

#t ,
because meat is also a member of the lat

(potatoes and meat gravy).

#t ,
because meat is also a member of the lat

(mashed potatoes and meat gravy).
Of course, this is our original lat.

#t.
Hint : Write down the definition of the
function �e�ber? and its arguments and
refer to them as you go through the next
group of questions.

No. Move to the next line.

Chapter 2

else Yes.

(or (eq? (car lat) a) Perhaps.

(member? a (cdr lat)))

(eq? (car lat) a) No. Ask the next question.

What next? Recur with a and (cdr lat)
where a is meat
and

(cdr lat) is (potatoes and meat gravy) .

(null? lat) No. Move to the next line.

else Yes, but (eq? (car lat) a) is false.
Recur with a and (cdr lat)
where a is meat
and

(cdr lat) is (and meat gravy) .

(null? lat) No. Move to the next line.

else Yes, but (eq? (car lat) a) is false.
Recur with a and (cdr lat)
where a is meat
and

(cdr lat) is (meat gravy) .

(null? lat) No. Move to the next line.

(eq? (car lat) a) Yes, the value is #t .

Do It, Do It Again, and Again, and Again . . . 27

(or (eqP (car lat) a)
(memberP a (cdr lat)))

What is the value of (memberP a lat)
where a is meat
and

lat is (meat gravy)

What is the value of (memberP a lat)
where a is meat
and

lat is (and meat gravy)

What is the value of (member? a lat)
where a is meat
and

lat is (potatoes and meat gravy)

What is the value of (memberP a lat)
where a is meat
and

lat is (mashed potatoes and meat gravy)

What is the value of (memberP a lat)
where a is l iver
and

lat is (bagels and lox)

Let 's work out why it is #f. What 's the first
question member? asks?

(null? lat)

28

#t .

#t .

#t .

#t .

#t .

#f.

(null? lat) .

No. Move to the next line.

Chapter 2

else

(null? lat)

else

(null? lat)

else

(null? lat)

What is the value of (member? a lat)
where a is l iver
and

lat is ()

What is the value of
(or (eq? (car lat) a)

(member? a (cdr lat)))
where

a is l iver
and

lat is (lox)

Do It, Do It Again, and Again, and Again . . .

Yes, but (eq? (car lat) a) is false.
Recur with a and (cdr lat)
where a is l iver
and

(cdr lat) is (and lox) .

No. Move to the next line.

Yes , but (eq? (car lat) a) is false.
Recur with a and (cdr lat)
where a is l iver
and

(cdr lat) is (lox) .

No. Move to the next line.

Yes , but (eq? (car lat) a) is still false.
Recur with a and (cdr lat)
where a is l iver
and

(cdr lat) is () .

Yes.

#f.

#f.

29

What is the value of (member? a lat)
where a is l iver
and

lat is (lox)

What is the value of
(or (eq? (car lat) a)

(member? a (cdr lat)))
where

a is l iver
and

lat is (and lox)

What is the value of (member? a lat)
where a is l iver
and

lat is (and lox)

What is the value of
(or (eq? (car lat) a)

(member? a (cdr lat)))
where

a is l iver
and

lat is (bagels and lox)

What is the value of (member? a lat)
where a is l iver
and

lat is (bagels and lox)

30

#f.

#f.

#f.

#f.

#f.

Chapter 2

Do you believe all this? Then you may rest!

This space for doodling

Do It, Do It Again, and Again, and Again . . . 31

What is (rember a lat)
where a is mint
and

lat is (lamb chops and mint jelly)

(rember a lat)
where a is mint
and

lat is (lamb chops and
mint flavored mint jel ly)

(rember a lat)
where a is toast
and

lat is (bacon lettuce and tomato)

(rember a lat)
where a is cup
and

lat is (coffee cup tea cup and hick cup)

What does (rember a lat) do?

What steps should we use to do this?

And if (null? lat) is true?

What do we know if (null? lat) is not true?

Is there any other question we should ask
about the lat?

Cons the Magnificent

(lamb chops and jel ly)
"Rember" stands for remove a mem ber.

(lamb chops and flavored mint jel ly) .

(bacon lettuce and tomato) .

(coffee tea cup and hick cup) .

It takes an atom and a lat as i ts arguments,
and makes a new lat with the first occurrence
of the atom in the old lat removed.

First we will test (null? lat)-The First
Commandment .

Return () .

We know that there must be at least one
atom in the lat .

No. Either a lat is empty or it contains at
least one atom.

33

What do we do if we know that the lat
contains at least one atom?

How do we ask questions?

How do we ask if a is the same as (car lat)

What would be the value of (rember a lat) if
a were the same as (car lat)

What do we do if a i s not the same as
(car lat)

How do we remove the first occurrence of a
in the rest of lat

Is there any other question we should ask?

Now, let 's write down what we have so far:

(define rember
(lambda (a lat)

(cond
((null? lat) (quote ()))
(else (cond

((eq ? (car lat) a) (cdr lat))
(else (rember a

(cdr lat))))))))

What is the value of (rember a lat) where
a is bacon

and
lat is (bacon lettuce and tomato)

34

We ask whether a is equal to (car lat).

By using
(cond

(---
(__ _

(eq? (car lat) a).

(cdr lat).

---)
---)) .

We want to keep (car lat), but also find out
if a is somewhere in the rest of the lat .

(rember a (cdr lat)).

No.

(l ettuce and tomato) .
Hint : Write down the function rember and
its arguments , and refer to them as you go
through the next sequence of questions.

Chapter 3

Now, let 's see if this function works. What is
the first question?

What do we do now?

else

What next?

(eq? (car lat) a)

Is this the correct value?

But did we really use a good example?

What does rember do?

What do we do now?

What is the value of (rember a lat)
where a is and
and

lat is (bacon lettuce and tomato)

Cons the Magnificent

(null? lat) .

Move to the next line and ask the next
question.

Yes.

Ask the next question.

Yes , so the value is (cdr lat) . In this case, it
is the list

(l ettuce and tomato) .

Yes, because it is the original list without the
atom bacon.

Who knows? But the proof of the pudding is
in the eating, so let 's try another example.

It takes an atom and a lat as its arguments,
and makes a new lat with the first occurrence
of the atom in the old lat removed.

We compare each atom of the lat with the
atom a, and if the comparison fails we build
a list that begins with the atom we just
compared.

(bacon lettuce tomato) .

35

Let us see if our function rember works.
What is the first question asked by rember

What do we do now?

else

(eq? (car lat) a)

What is the meaning of
(else (rember a (cdr lat)))

(null? lat)

else

(eq ? (car lat) a)

What is the meaning of
(rember a (cdr lat))

(null? lat)

else

36

(null? lat) .

Move to the next line, and ask the next
question.

Okay, so ask the next question.

No, so move to the next line.

else asks if else is true-as it always is-and
the rest of the line says to recur with a and
(cdr lat) , where

a is and
and

(cdr lat) is (lettuce and tomato) .

No, so move to the next line.

Sure.

No, so move to the next line.

Recur
where

a is and
and

(cdr lat) is (and tomato) .

No, so move to the next line, and ask the
next question.

Of course.

Chapter 3

(eq? (car lat) a)

So what is the result?

Is this correct?

What did we do wrong?

How can we keep from losing the atoms
bacon and lettuce

Yes.

(cdr l at)-(tomato) .

No, since (tomato) is not the list
(bacon lettuce and tomato)

with just a-and-removed.

We dropped and , but we also lost all the
atoms preceding and .

We use Cons the Magnificent . Remember
cons , from chapter 1?

The Second Commandment

Use cons to build lists.

Let 's see what happens when we use cons

(define rember
(lambda (a lat)

(cond
((n·ull? lat) (quote ()))
(else (cond

((eq? (car lat) a) (cdr lat))
(else (cons (car lat)

(rember a
(cdr lat)))))))))

What i s the value of (rember a lat)
where a is and
and

lat is (bacon lettuce and tomato)

Cons the Magnificent

(bacon lettuce tomato) .
Hint : Make a copy of this function with
cons and the arguments a and lat so you
can refer to it for the following questions.

37

What is the first question?

What do we do now?

else

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

(rember a
(cdr lat)))

where
a is and

and
lat is (bacon lettuce and tomato)

What is the meaning of (rember a (cdr lat))

(null? lat)

else

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

(rember a
(cdr lat)))

38

(null? lat) .

Ask the next question.

Yes , of course.

No, so move to the next line.

It says to cons the car of lat-bacon-onto
the value of

(rember a (cdr lat)) .
But since we don 't know the value of
(rember a (cdr lat)) yet , we must find it
before we can cons (car lat) onto it.

This refers to the function with lat replaced
by (cdr lat)-(lettuce and tomato) .

No, so move to the next line.

Yes , ask the next question.

No, so move to the next line.

It says to cons the car of lat-lettuce-onto
the value of

(rember a (cdr lat)) .
But since we don 't know the value of
(rember a (cdr lat)) yet , we must find it
before we can cons (car lat) onto it .

Chapter 3

What is the meaning of (rember a (cdr lat))

(null? lat)

else

(eq? (car lat) a)

What is the value of the line
((eq? (car lat) a) (cdr lat))

Are we finished?

We now have a value for
(rember a (cdr lat))

where a i s and
and

(cdr lat) is (and tomato)
This value is (tomato)
What next?

What is the result when we cons lettuce onto
(tomato)

What does (lettuce tomato) represent?

Cons the Magnificent

This refers to the function with lat replaced
by (cdr lat) , that is, (and tomato) .

No, so ask the next question.

Still .

Yes .

(cdr lat)-(tomato) .

Certainly not ! We know what (rember a lat)
is when lat is (and tomato) , but we don't yet
know what it is when lat is

(l ettuce and tomato)
or

(bacon lettuce and tomato) .

Recall that we wanted to cons lettuce onto
the value of (rember a (cdr lat))
where

a was and and (cdr lat) was (and tomato) .
Now that we have this value, which is
(tomato) , we can cons l ettuce onto it .

(l ettuce tomato) .

It represents the value of
(cons (car lat)

(rember a
(cdr lat))) ,

when
lat is (l ettuce and tomato)

and
(rember a (cdr lat)) is (tomato) .

39

Are we finished yet?

We now have a value for (rember a (cdr lat))
where a is and
and

(cdr lat) is (l ettuce and tomato)
This value is (l ettuce tomato)
This is not the final value, so what must we
do again?

What is the result when we cons bacon onto
(l ettuce tomato)

What does (bacon lettuce tomato) represent?t

t Lunch?

Are we finished yet?

Can you put in your own words how we
determined the final value

(bacon lettuce tomato)

40

Not quite. So far we know what
(rember a lat) is when

lat is (lettuce and tomato) ,
but we don't yet know what it is when

lat is (bacon lettuce and tomato) .

Recall that , at one time, we wanted to cons
bacon onto the value of (rember a (cdr lat)) ,
where

a was and
and

(cdr lat) was (l ettuce and tomato) .
Now that we have this value, which is

(l ettuce tomato) ,
we can cons bacon onto it .

(bacon lettuce tomato) .

It represents the value of
(cons (car lat)

(rember a (cdr lat))) ,
when

lat is (bacon lettuce and tomato)
and

(rember a (cdr lat)) is (lettuce tomato) .

Yes.

In our words:
"The function rember checked each atom of
the lat , one at a time, to see if it was the
same as the atom and. If the car was not
the same as the atom, we saved it to be
consed to the final value later. When
rember found the atom and, it dropped it,
and consed the previous atoms back onto
the rest of the lat ."

Chapter 3

Can you rewrite rember so that it reflects the
above description?

Do you think this is simpler?

So why don't we simplify right away?

Let 's see if the new rember is the same as the
old one. What is the value of the application

(rember a lat)
where a is and
and

lat is (bacon lettuce and tomato)

(null? lat)

(eq? (car lat) a)

else

What is the meaning of
(cons (car lat)

(rember a (cdr lat)))

Cons the Magnificent

Yes, we can simplify it.

(define rember
(lambda (a lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) a) (cdr lat))
(else (cons (car lat)

(rember a (cdr lat)))))))

Functions like rember can always be
simplified in this manner.

Because then a function 's structure does not
coincide with its argument 's structure.

(bacon lettuce tomato) .
Hint : Write down the function rember and
its arguments and refer to them as you go
through the next sequence of questions.

No.

No.

Yes , so the value is
(cons (car lat)

(rember a (cdr lat))) .

This says to refer to the function rember but
with the argument lat replaced by (cdr lat) ,
and that after we arrive at a value for
(rember a (cdr lat)) we must cons
(car lat)-bacon-onto it.

41

(null? lat)

(eq? (car lat) a)

else

What is the meaning of
(cons (car lat)

(rember a (cdr lat)))

(null? lat)

(eq? (car lat) a)

What is the value of the line
((eq? (car lat) a) (cdr lat))

Now what?

Now what?

Now that we have completed rember
try this example: (rember a lat)
where a is sauce
and

lat is (soy sauce and tomato sauce)

42

No.

No.

Yes, so the value is
(cons (car lat)

(rember a (cdr lat))) .

This says we recur using the function
rember, with the argument lat replaced by
(cdr lat) , and that after we arrive at a value
for (rember a (cdr lat)) , we must cons
(car lat)-lettuce-onto it .

No.

Yes.

It is (cdr lat)-(tomato) .

Now cons (car lat)-lettuce-onto (tomato) .

Now cons (car lat)--bacon-onto
(l ettuce tomato) .

(rember a lat) is (soy and tomato sauce) .

Chapter 3

What is (firsts l)
where

l is ((apple peach pumpkin)
(plum pear cherry)
(grape raisi n pea)
(bean carrot eggplant))

What is (firsts l)
where

l is ((a b) (c d) (e f))

What is (firsts l)
where l is ()

What i s (firsts l)
where

l is ((five p lums)
(four)
(e leven green oranges))

What is (firsts l)
where

l is (((five p lums) four)
(eleven green oranges)
((no) more))

In your own words, what does (firsts l) do?

Cons the Magnificent

(apple p l um grape bean) .

(a c e) .

() .

(five four e leven) .

((five p lums) e leven (no)) .

We tried the following:
"The function firsts takes one argument , a
list , which is either a null list or contains
only non-empty lists. It builds another list
composed of the first S-expression of each
internal list ."

43

See if you can write the function firsts
Remember the Commandments!

Why
(define firsts

(lambda (l)
. . .))

Why (cond . . .)

Why ((null? l) . . .)

Why (else

Why (else

Why (cons

Why (firsts (cdr l))

Why)))

44

This much is easy:

(define firsts
(lambda (l)

(cond
((null? l) . . .)
(else (cons . . . (firsts (cdr l)))))))

Because we always state the function name,
(lambda, and the argument (s) of the
function .

Because we need to ask questions about the
actual arguments.

The First Commandment .

Because we only have two questions to ask
about the list l: either it is the null list , or it
contains at least one non-empty list .

See above. And because the last question is
always else.

Because we are building a list-The Second
Commandment .

Because we can only look at one S-expression
at a time. To look at the rest, we must recur.

Because these are the matching parentheses
for (cond, (lambda, and (define, and they
always appear at the end of a function
definition.

Chapter 3

Keeping in mind the definition of (firsts l)
what is a typical element of the value
of (firsts l)
where

l is ((a b) (c d) (e f))

What is another typical element?

Consider the function seconds
What would be a typical element of the value
of (seconds l)
where

l is ((a b) (c d) (e f))

How do we describe a typical element for
(firsts l)

When we find a typical element of (firsts l)
what do we do with it?

a .

c , or even e .

b , d , or f.

As the car of an element of l-(car (car l)) .
See chapter 1 .

cons i t onto the recursion-(firsts (cdr l)) .

The Third Commandment
When building a list, describe the first typical ele­
ment, and then cons it onto the natural recursion.

With The Third Commandment , we can now
fill in more of the function firsts
What does the last line look like now?

Cons the Magnificent

(else (cons (car (car l)) (firsts (cdr l)))) .
----------- ___________..

typical
element

natural
recursion

45

What does (firsts l) do

(define firsts
(lambda (l)

(cond
((null? l) . . .)
(else (cons (car (car l))

(firsts (cdr l)))))))

where l is ((a b) (c d) (e f))

(null? l) where l is ((a b) (c d) (e f))

What is the meaning of
(cons (car (car l))

(firsts (cdr l)))

(null? l) where l is ((c d) (e f))

What is the meaning of
(cons (car (car l))

(firsts (cdr l)))

(null? l) where l is ((e f))

What is the meaning of
(cons (car (car l))

(firsts (cdr l)))

(null? l)

Now, what is the value of the line
((null? l) . . .)

46

Nothing yet . We are still missing one
important ingredient in our recipe. The first
line ((null ? l) . . .) needs a value for the case
where l is the null list . We can, however,
proceed without it for now.

No, so move to the next line.

It saves (car (car l)) to cons onto
(firsts (cdr l)) . To find (firsts (cdr l)) , we
refer to the function with the new argument
(cdr l) .

No, so move to the next line.

Save (car (car l)) , and recur with
(firsts (cdr l)) .

No, so move to the next line.

Save (car (car l)) , and recur with
(firsts (cdr l)) .

Yes.

There is no value; something is missing.

Chapter 3

What do we need to cons atoms onto?

For the purpose of consing, what value can
we give when (null? l) is true?

With () as a value, we now have three cons
steps to go back and pick up. We need to:

I. either
1. cons e onto ()
2. cons c onto the value of 1
3. cons a onto the value of 2

II. or
1 . cons a onto the value of 2
2. cons c onto the value of 3
3. cons e onto ()

Ill or
cons a onto

the cons of c onto
the cons of e onto

()

In any case, what is the value of (firsts l)

With which of the three alternatives do you
feel most comfortable?

What is (insertR new old lat)
where

new is topping
old is fudge

and
lat is (ice cream with fudge for dessert)

(insertR new old lat)
where

new is ja lapeno
old is and

and
lat is (tacos tamales and sa lsa)

Cons the Magnificent

A list .
Remember The Law of Cons.

Since the final value must be a list , we
cannot use #t or #f. Let 's try (quote ()) .

(a c e) .

Correct ! Now you should use that one.

(ice cream with fudge topping for dessert) .

(tacos tama les and ja lapeno sa lsa) .

47

(insertR new old lat)
where

new is e
old is d

and
lat is (a b c d f g d h)

In your own words, what does
(insertR new old lat) do?

See if you can write the first three lines of
the function insertR

Which argument changes when we recur with
insertR

How many questions can we ask about the
lat?

Which questions do we ask?

What do we know if (null? lat) is not true?

Which questions do we ask about the first
element?

48

(a b c d e f g d h) .

In our words:
"It takes three arguments: the atoms new
and old , and a lat . The function insertR
builds a lat with new inserted to the right
of the first occurrence of old . "

(define insertR
(lambda (new old lat)

(cond . . .)))

lat , because we can only look at one of its
atoms at a time.

Two.
A lat is either the null list or a non-empty
list of atoms.

First , we ask (null? lat) . Second, we ask
else, because else is always the last question.

We know that lat has at least one element .

First , we ask (eq? (car lat) old) . Then we
ask else, because there are no other
interesting cases.

Chapter 3

Now see if you can write the whole function
inserlR

(define inserlR
(lambda (new old lat)

(cond
< --­
(else

(cond
< --­

< ---

---)
__))))))

What i s the value of the application
(inserlR new old lat)

that we just determined
where

new is topping
old is fudge

and
lat is (ice cream with fudge for dessert)

So far this is the same as rember
What do we do in inserlR when
(eq? (car lat) old) is true?

How is this done?

Now we have

(define inserlR
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else (cond

((eq? (car lat) old)
(cons new (cdr lat)))

(else (cons (car lat)

Cons the Magnificent

(inserlR new old
(cdr lat)))))))))

Here is our first attempt .

(define inserlR
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else

(cond
((eq? (car lat) old) (cdr lat))
(else (cons (car lat)

(inserlR new old
(cdr lat)))))))))

(ice cream with for dessert) .

When (car lat) i s the same as old, we want
to insert new to the right .

Let 's try consing new onto (cdr lat) .

Yes.

49

So what is (insertR new old lat) now
where

new is topping
old is fudge

and
lat is (ice cream with fudge for dessert)

Is this the list we wanted?

What still needs to be done?

How can we include old before new

Now let 's write the rest of the function
insertR

50

(ice cream with topping for dessert) .

No, we have only replaced fudge with topping.

Somehow we need to include the atom that is
the same as old before the atom new.

Try consing old onto (cons new (cdr lat)) .

(define insertR
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else (cond

((eq? (car lat) old)
(cons old

(cons new (cdr lat))))
(else (cons (car lat)

(insertR new old
(cdr lat)))))))))

When new i s topping, old i s fudge, and lat is
(ice cream with fudge for dessert) , the value of
the application, (insertR new old lat) , is

(ice cream with fudge topping for dessert) .
If you got this right , have one.

Chapter 3

Now try insertL
Hint : insertL inserts the atom new to the
left of the first occurrence of the atom old
in lat

Did you think of a different way to do it?

Now try subst
Hint : (subst new old lat) replaces the first
occurrence of old in the lat with new
For example,
where

new is topping
old is fudge

and
lat is (ice cream with fudge for dessert)

the value is
(ice cream with topping for dessert)

Now you have the idea.

Cons the Magnificent

This much is easy, right?

(define insertL
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else (cond

For example,

((eq? (car lat) old)
(cons new

(cons old (cdr lat))))
(else (cons (car lat)

(insertL new old
(cdr lat)))))))))

((eq? (car lat) old)
(cons new (cons old (cdr lat))))

could have been
((eq? (car lat) old)
(cons new lat))

since (cons old (cdr lat)) where old i s eq? to
(car lat) is the same as lat.

Obviously,

(define subst
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else (cond

((eq? (car lat) old)
(cons new (cdr lat)))

(else (cons (car lat)
(subst new old

(cdr lat)))))))))

This i s the same as one of our incorrect
attempts at insertR.

51

Go cons a piece of cake onto your mouth.

Now try subst2
Hint :

(subst2 new o1 o2 lat)
replaces either the first occurrence of o1 or
the first occurrence of o2 by new
For example,
where

new is vani l la
o1 is chocolate
o2 is banana

and
lat is (banana ice cream

with chocolate topping)
the value is

(vani l la ice cream
with chocolate topping)

Did you think of a better way?

(define subst2
(lambda (new o1 o2 lat)

(cond
((num' lat) (quote ()))
(else (cond

((eq� (car lat) o1)
(cons new (cdr lat)))

((eq� (car lat) o2)
(cons new (cdr lat)))

(else (cons (car lat)
(subst2 new o1 o2

(cdr lat)))))))))

Replace the two eq� lines about the (car lat)
by

((or (eq� (car lat) o1) (eq� (car lat) o2))
(cons new (cdr lat))) .

If you got the last function, go and repeat the cake-consing.

Do you recall what rember does?

52

The function rember looks at each atom of a
lat to see if it is the same as the atom a. If it
is not , rember saves the atom and proceeds.
When it finds the first occurrence of a, it
stops and gives the value (cdr lat) , or the
rest of the lat , so that the value returned is
the original lat , with only that occurrence of
a removed.

Chapter 3

Write the function multirember which gives
as its final value the lat with all occurrences
of a removed.

(define multirember
(lambda (a lat)

(cond
(__ _

(else
(cond

(---

(__ _

___)
--))))))

Hint : What do we want as the value when
(eq? (car lat) a) is true?

Consider the example
where a is cup
and

lat is (coffee cup tea cup and hick cup)

Can you see how multirember works?

(null? lat)

else

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

(multirember a
(cdr lat)))

(null? lat)

Cons the Magnificent

(define multirember
(lambda (a lat)

(cond
((null? lat) (quote ()))
(else

(cond
((eq? (car lat) a)
(multirember a (cdr lat)))

(else (cons (car lat)
(multirember a

(cdr lat)))))))))

After the first occurrence of a , we now
recur with (multirember a (cdr lat)) , in
order to remove the other occurrences.

The value of the application is
(coffee tea and hick) .

Possibly not , so we will go through the steps
necessary to arrive at the value

(coffee tea and hick) .

No, so move to the next line.

Yes.

No, so move to the next line.

Save (car lat)-coffee-to be consed onto
the value of (multirember a (cdr lat)) later.
Now determine

(multirember a (cdr lat)) .

No, so move to the next line.

53

else

(eq? (car lat) a)

(null? lat)

else

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

(multirember a
(cdr lat)))

(null? lat)

else

(eq? (car lat) a)

(null? lat)

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

54

(multirember a
(cdr lat)))

Naturally.

Yes , so forget (car lat) , and determine
(multirember a (cdr lat)) .

No, so move to the next line.

Yes!

No, so move to the next line.

Save (car lat)-tea-to be consed onto the
value of (multirember a (cdr lat)) later. Now
detennine

(multirember a (cdr lat)) .

No, so move to the next line.

Okay, move on.

Yes, so forget (car lat) , and determine
(multirember a (cdr lat)) .

No, so move to the next line.

No, so move to the next line.

Save (car lat)-and-to be consed onto the
value of (multirember a (cdr lat)) later. Now
determine

(multirember a (cdr lat)) .

Chapter 3

(null? lat)

(eq? (car lat) a)

What is the meaning of
(cons (car lat)

(multirember a
(cdr lat)))

(null? lat)

(eq? (car lat) a)

(null? lat)

Are we finished?

What do we do next?

What do we do next?

What do we do next?

What do we do next?

Are we finished now?

Cons the Magnificent

No, so move to the next line.

No, so move to the next line.

Save (car lat)-hick-to be consed onto the
value of (multirember a (cdr lat)) later . Now
determine

(multirember a (cdr lat)) .

No, so move to the next line.

Yes , so forget (car lat) , and determine
(multirember a (cdr lat)) .

Yes, so the value i s () .

No, we still have several conses to pick up.

We cons the most recent (car lat) we
have-hick--onto () .

We cons and onto (hick) .

We cons tea onto (and hick) .

We cons coffee onto (tea and hick) .

Yes .

55

Now write the function multiinsertR

(define multiinsertR
(lambda (new old lat)

(cond
(--­

(else
(cond

()
())))))

Is this function defined correctly?

(define multiinsertL
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else

(cond
((eq? (car lat) old)
(cons new

(cons old
(multiinsertL new old

lat))))
(else (cons (car lat)

(multiinsertL new old
(cdr lat)))))))))

Was the terminal condition ever reached?

56

(define multiinsertR
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else

(cond
((eq? (car lat) old)
(cons (car lat)

(cons new
(multiinsertR new old

(cdr lat)))))
(else (cons (car lat)

(multiinsertR new old
(cdr lat)))))))))

It would also be correct to use old in place
of (car lat) because we know that

(eq ? (car lat) old) .

Not quite. To find out why, go through
(multiinsertL new old lat)

where
new is fried
old is fish

and
lat is (ch ips and fish or fish and fried) .

No, because we never get past the first
occurrence of old.

Chapter 3

Now, try to write the function multiinsertL
again:

(define multiinsertL
(lambda (new old lat)

(cond
< --­
(else

(cond
()
())))))

(define multiinsertL
(lambda (new old lat)

(cond
((null? lat) (quote ()))
(else

(cond
((eq? (car lat) old}
(cons new

(cons old
(multiinsertL new old

(cdr lat)))))
(else (cons (car lat)

(multiinsertL new old
(cdr lat)))))))))

The Fourth Commandment

(preliminary)

Always change at least one argument while recurring. It
must be changed to be closer to termination. The changing
argument must be tested in the termination condition:

when using cdr, test termination with null?.

Now write the function multisubst

(define multisubst
(lambda (new old lat)

(cond
< ---
(else

(cond
< --­
< ---

---)
__))))))

(define multisubst
{lambda (new old lat)

(cond
((null? lat) (quote ()))
(else (cond

((eq? (car lat) old}
(cons new

(multisubst new old
(cdr lat))))

(else (cons (car lat)
(multisubst new old

(cdr lat)))))))))

Cons the Magnificent 57

-9�--�

Is 14 an atom?

Is (atom? n) true or false
where

n is 14

Is -3 a number?

Is 3. 14159 a number?

Are -3 and 3. 14159 numbers?

What is (add1 1 n)
where n is 67

1 L: 1+

S: (define add1
Cl1111bda (n}

(+ n 1 } } } }

What i s (add1 67)

What is (sub1 1 n)
where n is 5

1 L: 1-

S: (define aub1
Cl1111bda (n}

(- n 1 } } } }

Numbers Games

Yes, because all numbers are atoms.

True, because 14 is an atom.

Yes,
but we do not consider negative numbers.

Yes ,
but we consider only whole numbers.

Yes ,
but the only numbers we use are the
nonnegative integers (i .e. , 0 , 1, 2, 3, 4, . . .) .

68.

Also 68,
because we don't need to say "where n is
67" when the argument is a number.

4.

59

What is (sub1 0}

Is (zero ?1 0} true or false?

1 L: zerop

Is (zero ? 1492} true or false?

What is (+ 46 12}

Try to write the function +
Hint : It uses zero ? add1 1 and sub1 1

1 Remember to use our definitions for add1 and eub 1 .

But didn 't we just violate The First
Commandment?

If zero P is like null?
is add1 like cons

60

No answer. 1

1 (subl n) , where n i s 0 , h as n o answer because we consider
only nonnegative numbers. In practice, this result is -1.

True.

False.

58.

(define + 1
(lambda (n m)

(cond
((zero ? m) n)
(else (add1 (+ n (sub1 m)))))))

Wasn't that easy?

1 L, S: This is like +. Write it as o+ (see preface) .

Yes, but we can treat zero ? like null? since
zero ? asks if a number is empty and null?
asks if a list is empty.

Yes! cons builds lists and add1 builds
numbers.

Chapter 4

What is (- 14 3)

What is (- 17 9)

What is (- 18 25)

Try to write the function -
Hint : Use sub1

Can you describe how (- n m) works?

Is this a tup?
(2 11 3 79 47 6)

Is this a tup?
(8 55 5 555)

Is this a tup?
(1 2 8 apple 4 3)

Is this a tup?
(3 (7 4) 13 9)

Numbers Games

1 1 .

8.

No answer. There are no negative numbers .

How about this:

(define - 1
(lambda (n m)

(cond
((zero ? m) n)
(else (sub1 (- n (sub1 m)))))))

1 L, S : This i s like - . Write i t as o - (see preface) .

It takes two numbers as arguments, and
reduces the second until it hits zero. It
subtracts one from the result as many times
as it did to cause the second one to reach
zero.

Yes : tup is short for tuple.

Yes , of course, it is also a list of numbers.

No, it is just a list of atoms.

No, because it is not a list of numbers.
(7 4) is not a number.

61

Is this a tup?
()

What is (addtup tup)
where

tup is (3 5 2 8)

What is (addtup tup)
where

tup is (15 6 7 12 3)

What does addtup do?

What is the natural way to build numbers
from a list?

When building lists with cons
the value of the terminal condition is ()
What should be the value of the terminal
condition when building numbers with +

What is the natural terminal condition for a
list?

What is the natural terminal condition for a
tup?

When we build a number from a list of
numbers , what should the terminal condition
line look like?

What is the terminal condition line of
addtup

62

Yes, it is a list of zero numbers. This special
case is the empty tup.

18 .

43.

It builds a number by totaling all the
numbers in its argument.

Use + in place of cons : + builds numbers in
the same way as cons builds lists.

0.

(null? l) .

(null? tup) .

((null? tup) 0) , just as ((null? l) (quote ()))
is often the terminal condition line for lists.

((null? tup) 0) .

Chapter 4

How is a lat defined?

How is a tup defined?

What is used in the natural recursion on a
list?

What is used in the natural recursion on a
tup?

Why?

How many questions do we need to ask
about a list?

How many questions do we need to ask
about a tup?

How is a number defined?

What is the natural terminal condition for
numbers?

What is the natural recursion on a number?

How many questions do we need to ask
about a number?

Numbers Games

It is either an empty list , or it contains an
atom, (car lat) , and a rest, (cdr lat) , that is
also a lat .

It is either an empty list , or it contains a
number and a rest that is also a tup.

(cdr lat) .

(cdr tup) .

Because the rest of a non-empty list i s a list
and the rest of a non-empty tup is a tup.

Two.

Two, because it is either empty or it is a
number and a rest, which is again a tup.

It is either zero or it is one added to a rest,
where rest is again a number.

(zero ? n) .

(sub1 n) .

Two.

63

The First Commandment

(first revision)

When recurring on a list of atoms, lat , ask two questions
about it: (null ? lat) and else.
When recurring on a number, n, ask two questions about
it: (zero ? n) and else.

What does cons do?

What does addtup do?

What is the terminal condition line of
addtup

What is the natural recursion for addtup

What does addtup use to build a number?

Fill in the dots in the following definition :

(define addtup
(lambda (tup)

(cond
((null? tup) 0)
(else . . .))))

What i s (x 5 3)

What is (x 13 4)

64

It builds lists.

It builds a number by totaling all the
numbers in a tup.

((null? tup) 0) .

(addtup (cdr tup)) .

It uses + , because + builds numbers, too!

Here is what we filled in:
(+ (car tup) (addtup (cdr tup))) .
Notice the similarity between this line, and
the last line of the function rember:

(cons (car lat) (rember a (cdr lat))) .

15 .

52 .

Chapter 4

What does (x n m) do?

What is the terminal condition line for x

Since (zero P m) is the terminal condition, m
must eventually be reduced to zero. What
function is used to do this?

It builds up a number by adding n up m
times.

((zero P m) 0) , because n x 0 = 0.

sub1 .

The Fourth Commandment

(first revision)

Always change at least one argument while recurring. It
must be changed to be closer to termination. The changing
argument must be tested in the termination condition:

when using cdr, test termination with null? and
when using sub1 , test termination with zero ?.

What is another name for (x n (sub1 m)) in
this case?

Try to write the function x

Numbers Games

It's the natural recursion for x .

(define x 1

(lambda (n m)
(cond

((zero P m) 0)
(else (+ n (x n (sub1 m)))))))

1 L, S: This i s like • .

65

What is (x 12 3)

(zero ? m)

What is the meaning of
(+ n (x n (sub1 m)))

What are the new arguments of
(x n m)

(zero ? m)

What is the meaning of
(+ n (x n (sub1 m)))

What are the new arguments of
(x n m)

(zero ? m)

What is the meaning of
(+ n (x n (sub1 m)))

What is the value of the line
((zero ? m) 0)

Are we finished yet?

66

36,
but let 's follow through the function one
time to see how we get this value.

No.

It adds n (where n = 12) to the natural
recursion. If x is correct then

(x 12 (sub1 3))
should be 24.

n is 12, and m is 2 .

No.

It adds n (where n = 12) to (x n (sub1 m)) .

n is 12 , and m is 1 .

No.

It adds n (where n = 12) to (x n (sub1 m)) .

0, because (zero ? m) is now true.

No.

Chapter 4

Why not?

What is the value of the original application?

Because we still have three +es to pick up.

Add 12 to 12 to 12 to 0 yielding 36,
Notice that n has been +ed m times .

(x 12 3) = 12 + (x 12 2)
= 12 + 12 + (x 12 1)

Argue, using equations, that x is the
conventional multiplication of nonnegative
integers, where n is 12 and m is 3. = 12 + 12 + 12 + (X 12 0)

= 12 + 12 + 12 + 0,

Again, why is 0 the value for the terminal
condition line in x

which is as we expected. This technique
works for all recursive functions, not just
those that use numbers. You can use this
approach to write functions as well as to
argue their correctness .

Because 0 will not affect + . That is,
n + O = n.

The Fifth Commandment

When building a value with + , always use 0 for the value of the
terminating line, for adding 0 does not change the value of an
addition.

When building a value with x , always use 1 for the value of the
terminating line, for multiplying by 1 does not change the value
of a multiplication.

When building a value with cons , always consider () for the value
of the terminating line.

What is (tup+ tup1 tup2)
where

tup1 is (3 6 9 1 1 4)
and

tup2 is (8 5 2 0 7)

Numbers Games

(1 1 1 1 1 1 1 1 1 1) .

67

What is (tup+ tup1 tup2)
where

tup1 is (2 3)
and

tup2 is (4 6)

What does (tup+ tup1 tup2) do?

What is unusual about tup+

If you recur on one tup how many questions
do you have to ask?

When recurring on two tups, how many
questions need to be asked about the tups?

Do you mean the questions
(and (null'? tup1) (null'? tup2))
(null'? tup1)
(null'? tup2)

and
else

Can the first tup be () at the same time as
the second is other than ()

Does this mean
(and (null'? tup1) (null'? tup2))

and
else

are the only questions we need to ask?

68

(6 9) .

It adds the first number of tup1 to the first
number of tup2, then it adds the second
number of tup1 to the second number of
tup2, and so on, building a tup of the
answers, for tups of the same length.

It looks at each element of two tups at the
same time, or in other words, it recurs on
two tups.

Two, they are (null? tup) and else.

Four: if the first tup is empty or non-empty,
and if the second tup is empty or non-empty.

Yes.

No, because the tups must have the same
length.

Yes ,
because (null'? tup1) is true exactly when
(null'? tup2) is true.

Cbapter 4

Write the function tup+

What are the arguments of + in the last line?

What are the arguments of cons in the last
line?

What is (tup+ tup1 tup2)
where

tup1 is (3 7)
and

tup2 is (4 6)

(null? tup1)

(cons
(+ (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))

Why does the natural recursion include the
cdr of both arguments?

(null? tup1)
where

tup1 is now (7)
and

tup2 is now (6)

Numbers Games

(define tup+
(lambda (tup1 tup2)

(cond
((and (null? tup1) (null? tup2))
(quote ()))

(else
(cons (+ (car tup1) (car tup2))

(tup+
(cdr tup1) (cdr tup2)))))))

(car tup1) and (car tup2) .

(+ (car tup1) (car tup2)) and
(tup+ (cdr tup1) (cdr tup2)) .

(7 13).
But let 's see how it works .

No.

cons 7 onto the natural recursion:
(tup+ (cdr tup1) (cdr tup2)) .

Because the typical element of the final value
uses the car of both tups, so now we are
ready to consider the rest of both tups.

No.

69

(cons
(+ (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))

(null? tup1)

Then , what must be the value?

What is the value of the application?

What problem arises when we want
(tup+ tup1 tup2)
where

tup1 is (3 7)
and

tup2 is (4 6 8 1)

Can we still write tup+ even if the tups are
not the same length?

What new terminal condition line can we
add to get the correct final value?

What is (tup+ tup1 tup2)
where

tup1 is (3 7 8 1)
and

tup2 is (4 6)

What do we need to include in our function?

What does the second new line look like?

70

cons 13 onto the natural recursion.

Yes .

() , because (null? tup2) must be true.

(7 13) . That is, the cons of 7 onto the cons
of 13 onto () .

No answer, since tup1 will become null
before tup2.

See The First Commandment : We did not
ask all the necessary questions!

But, we would like the final value to be
(7 13 8 1) .

Yes!

Add
((null? tup1) tup2) .

No answer, since tup2 will become null
before tup1.

See The First Commandment : We did not
ask all the necessary questions!

We need to ask two more questions:
(null? tup1) and (null? tup2) .

((null? tup2) tup1) .

Chapter 4

Here is a definition of tup+ that works for
any two tups:

(define tup+
(lambda (tup1 tup2)

(cond
((and (null? tup1) (null? tup2))
(quote ()))

((null? tup1) tup2)
((null? tup2) tup1)
(else

(cons (-11- (car tup1) (car tup2))
(tup+

(cdr tup 1) (cdr tup2)))))))

Can you simplify it?

(define tup+
(lambda (tup1 tup2)

(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else

(cons (+ (car tup1) (car tup2))
(tup+

(cdr tup1) (cdr tup2)))))))

Does the order of the two terminal conditions No.
matter?

Is else the last question?

What is (> 12 133)

What is (> 120 11)

On how many numbers do we have to recur?

How do we recur?

When do we recur?

How many questions do we have to ask
about n and m

Numbers Games

Yes, because either (null? tup1) or
(null? tup2) is true if either one of them does
not contain at least one number .

#f-false.

#t -true.

Two, n and m.

With (sub1 n) and (sub1 m) .

When we know neither number is equal to 0.

Three: (zero ? n), (zero ? m) , and else.

71

Can you write the function > now using
zero ? and sub1

Is the way we wrote (> n m) correct?

(zero ? 3)

(zero ? 3)

What is the meaning of
(> (sub1 n) (sub1 m))

(zero ? 2)

(zero ? 2)

What is the meaning of
(> (sub1 n) (sub1 m))

(zero ? 1)

(zero ? 1)

What is the meaning of
(> (sub1 n) (sub1 m))

72

How about

(define >
(lambda (n m)

(cond
((zero ? m) #t)
((zero ? n) #f)
(else (> (sub1 n) (sub1 m))))))

No, try i t for the case where n and m are the
same number. Let n and m be 3.

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments reduced by
one.

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments closer to
zero by one.

No, so move to the next question.

No, so move to the next question.

Recur, but with both arguments reduced by
one.

Chapter 4

(zero ? 0) Yes, so the value of (> n m) is #t .

Is this correct? No, because 3 is not greater than 3.

Does the order of the two terminal conditions Think about it .
matter?

Does the order of the two terminal conditions Try it out !
matter?

Does the order of the two previous answers
matter?

How can we change the function > to take
care of this subtle problem?

What is (< 4 6)

(< 8 3)

(< 6 6)

Now try to write <

Numbers Games

Yes. Think first , then try.

Switch the zero ? lines :

(define >
(lambda (n m)

#t .

#f.

#f.

(cond
((zero ? n) #f)
((zero ? m) #t)
(else (> (sub1 n) (sub1 m))))))

(define <
(lambda (n m)

(cond
((zero ? m) #f)
((zero ? n) #t)
(else (< (sub1 n) (sub1 m))))))

73

Here is the definition of =

(define =
(lambda (n m)

(cond
((zero ? m) (zero ? n))
((zero ? n) #f)
(else (= (sub1 n) (sub1 m))))))

Rewrite = using < and >

Does this mean we have two different
functions for testing equality of atoms?

(t 1 1)

(t 2 3)

(t 5 3)

Now write the function t
Hint : See the The First and Fifth
Commandments.

What is a good name for this function?

(define ???
(lambda (n m)

(cond
((< n m) 0)
(else (add1 (??? (- n m) m))))))

74

(define =
(lambda (n m)

(cond
((> n m) #f)
((< n m) #f)
(else #t))))

Yes, they are = for atoms that are numbers
and eq? for the others.

1 .

8.

125 .

(define t1
(lambda (n m)

(cond
((zero ? m) 1)
(else (x n (t n (sub1 m)))))))

1 L, S: This i s like expt .

We have never seen this kind of definition
before; the natural recursion also looks
strange.

Chapter 4

What does the first question check?

And what happens in the second line?

So what does the function do?

And what do we call this?

What is (+ 15 4)

How do we get there?

It determines whether the first argument is
less than the second one.

We recur with a first argument from which
we subtract the second argument . When the
function returns, we add 1 to the result .

It counts how many times the second
argument fits into the first one.

Division.

(define +1
(lambda (n m)

(cond
((< n m) O)
(else (add1 (+ (- n m) m))))))

1 L: (defun quotient (n m}
(values (truncate (/ n m} } } }

S : This is like quotient .

Easy, it is 3.

Easy, too:

(+ 15 4) = 1 + (+ 11 4)

1 + (1 + (+ 7 4))

1 + (1 + (1 + (+ 3 4)))

= 1 + (1 + (1 + 0)) .

Wouldn't a (ham and cheese on rye) be good right now?

Don't forget the mustard !

Numbers Games 75

What is the value of (length lat)
where

lat is (hotdogs with mustard sauerkraut
and pickles)

What is (length lat)
where

lat is (ham and cheese on rye)

Now try to write the function length

What is (pick n lat)
where n is 4
and

lat is (lasagna spaghetti raviol i
macaroni meatba l l)

What is (pick 0 lat)
where lat is (a)

Try to write the function pick

What is (rem pick n lat)
where n is 3
and

lat is (hotdogs with hot mustard)

76

6.

5 .

(define length
(lambda (lat)

(cond
((null? lat) 0)
(else (add1 (length (cdr lat)))))))

macaroni .

No answer.

(define pick
(lambda (n lat)

(cond
((zero ? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))

(hotdogs with mustard) .

Chapter 4

Now try to write rempick

Is (number?1 a) true or false
where a is tomato

1 L: numberp

Is (number? 76) true or false?

Can you write number? which is true if its
argument is a numeric atom and false if it is
anthing else?

Now using number? write the function
no-nums which gives as a final value a lat
obtained by removing all the numbers from
the lat . For example,
where

lat is (5 pears 6 prunes 9 dates)
the value of (no-nums lat) is

(pears prunes dates)

Numbers Games

(define rem pick
(lambda (n lat)

(cond

False.

True.

((zero ? (sub1 n)) (cdr lat))
(else (cons (car lat)

(rempick (sub1 n)
(cdr lat)))))))

No: number?, like add1 , sub1 , zero ?, car ,
cdr , cons , null?, eq?, and atom ?, is a
primitive function.

(define no-nums
(lambda (lat)

(cond
((null? lat) (quote ()))
(else (cond

((number? (car lat))
(no-nums (cdr lat)))

(else (cons (car lat)
(no-nums

(cdr lat)))))))))

77

Now write all-nums which extracts a tup
from a lat using all the numbers in the lat .

Write the function eqan ? which is true if its
two arguments (a1 and a2) are the same
atom. Remember to use = for numbers and
eq? for all other atoms.

Can we assume that all functions written
using eq? can be generalized by replacing eq?
by eqan ?

Now write the function occur which counts
the number of times an atom a appears in a
lat

(define occur
(lambda (a lat)

(cond

78

< ---
(else

(cond
< --­
< ---

---)
__))))))

(define all-nums
(lambda (lat)

(cond
((null? lat) (quote ()))
(else

(cond
((number? (car lat))
(cons (car lat)

(all-nums (cdr lat))))
(else (all-nums (cdr lat))))))))

(define eqan ?
(lambda (a1 a2)

(cond
((and (number? a1) (number? a2))
(= a1 a2))

((or (number? a1) (number? a2))
#f)

(else (eq? a1 a2)))))

Yes, except , of course, for eqan ? itself.

(define occur
(lambda (a lat)

(cond
((null? lat) 0)
(else

(cond
((eq? (car lat) a)
(add1 (occur a (cdr lat))))

(else (occur a (cdr lat))))))))

Chapter 4

Write the function one ? where (one ? n) is #t
if n is 1 and #f (i .e. , false) otherwise.

Guess how we can further simplify this
function, making it a one-liner.

Now rewrite the function rempick that
removes the nth atom from a lat. For
example,
where

n is 3
and

lat is (lemon meringue sa lty pie)
the value of (rem pick n lat) is

(lemon meringue pie)
Use the function one ? in your answer.

Numbers Games

(define one ?
(lambda (n)

(cond
((zero ? n) #f)
(else (zero ? (sub1 n))))))

or

(define one ?
(lambda (n)

(cond
(else (= n 1)))))

By removing the (cond . . .) clause:

(define one ?
(lambda (n)

(= n 1)))

(define rempick
(lambda (n lat)

(cond
((one ? n) (cdr lat))
(else (cons (car lat)

(rempick (sub1 n)
(cdr lat)))))))

79

�'

�-·

What is (rember* a l}
where a is cup
and

l is ((coffee) cup ((tea) cup)
(and (hick} } cup)

"rember*" is pronounced "rember-star."

What is (rember* a l}
where a is sauce
and

l is (((tomato sauce))
((bean) sauce)
(and ((flying)) sauce))

Now write rember*t

Here is the skeleton:

(define rember*
(lambda (a l}

(cond
(--­

(--­

(---

--- >
--- >
__))))

t
" . . . * " m akes u s think "oh my gawd."

(lat? l}
where

l is (((tomato sauce))
((bean) sauce)
(and ((flying)) sauce))

Oh My Gawd: It 's Full of Stars

((coffee) ((tea)) (and (hick)) } .

(((tomato))
((bean))
(and ((flying)))) .

(define rember*
(lambda (a l}

(cond
((null? l} (quote ()))
((atom? (car l}}
(cond

((eq? (car l} a)
(rember* a (cdr l)))

(else (cons (car l)
(rember* a (cdr l)) })))

(else (cons (rember* a (car l } }
(rember* a (cdr l)) }))))

Using arguments from one of our previous
examples , follow through this to see how it
works. Notice that now we are recurring
down the car of the list , instead of just the
cdr of the list .

#f.

81

Is (car l) an atom
where

l is (((tomato sauce))
((bean) sauce)
(and ((flying)) sauce))

What is (insertR * new old l)
where

new is roast
old is chuck

and
l is ((how much (wood))

cou ld
((a (wood) chuck))
(((chuck)))
(i f (a) ((wood chuck)))
could chuck wood)

Now write the function insertR * which
inserts the atom new to the right of old
regardless of where old occurs.

(define insertR *
(lambda (new old l)

(cond
()
()
())))

How are insertR * and rember* similar?

82

No.

((how much (wood))
cou ld
((a (wood) chuck roast))
(((chuck roast)))
(i f (a) ((wood chuck roast)))
cou ld chuck roast wood) .

(define insertR *
(lambda (new old l)

(cond
((null? l) (quote ()))
((atom ? (car l))
(cond

((eq? (car l) old)
(cons old

(cons new
(insertR * new old

(cdr l)))))
(else (cons (car l)

(insertR * new old
(cdr l))))))

(else (cons (insertR * new old
(car l))

(insertR * new old
(cdr l)))))))

Each function asks three questions.

Chapter 5

The First Commandment

(final version)

When recurring on a list of atoms, lat , ask two questions
about it: (null? lat) and else.
When recurring on a number, n, ask two questions about
it: (zero ? n) and else.
When recurring on a list of S-expressions, l , ask three
question about it: (null? l) , (atom ? (car l)) , and else.

How are insertR * and rember* similar? Each function recurs on the car of its
argument when it finds out that the
argument 's car is a list .

How are rember* and multirember different?

How are insertR * and rember* similar?

How are all *-functions similar?

Why?

Ob My Gawd: It 's Full of Stars

The function multirember does not recur
with the car. The function rember* recurs
with the car as well as with the cdr. It
recurs with the car when it finds out that
the car is a list .

They both recur with the car , whenever the
car is a list , as well as with the cdr.

They all ask three questions and recur with
the car as well as with the cdr, whenever the
car is a list.

Because all *-functions work on lists that are
either

- empty,
- an atom consed onto a list , or
- a list consed onto a list .

83

The Fourth Commandment

(final version)

Always change at least one argument while recurring.
When recurring on a list of atoms, lat , use (cdr lat) . When
recurring on a number, n, use (sub1 n) . And when recur­
ring on a list of S-expressions, l , use (car l) and (cdr l) if
neither (null ? l) nor (atom ? (car l)) are true.

It must be changed to be closer to termination. The chang­
ing argument must be tested in the termination condition:

when using cdr , test termination with null ? and

when using sub1 , test termination with zero ?.

(occursomething a l)
where

5 .

a i s banana
and

l is ((banana)
(sp l i t ((((banana ice)))

(cream (banana))
sherbet))

(banana)
(bread)
(banana brandy))

What is a better name for
occursomething

84

occur* .

Chapter 5

Write occur*

(define occur*
(lambda (a l)

(cond
< --­
< --­
(---

(subst* new old l)
where

new is orange
old is banana

and
l is ((banana)

___)
___)
__))))

(spl it ((((banana ice)))
(cream (banana))
sherbet))

(banana)
(bread)
(banana brandy))

Write subst*

(define subst*
(lambda (new old l)

(cond
< --­
< --­
< ---

___)
___)
__))))

Oh My Gawd: It 's Full of Stars

(define occur*
(lambda (a l)

(cond
((null? l) 0)
((atom ? (car l))
(cond

((eq? (car l) a)
(add1 (occur* a (cdr l))))

(else (occur* a (cdr l)))))
(else (+ (occur* a (car l))

(occur* a (cdr l)))))))

((orange)
(split ((((orange ice)))

(cream (orange))
sherbet))

(orange)
(bread)
(orange brandy)) .

(define subst*
(lambda (new old l)

(cond
((null? l) (quote ()))
((atom ? (car l))
(cond

((eq? (car l) old)
(cons new

(subst * new old (cdr l))))
(else (cons (car l)

(subst* new old
(cdr l))))))

(else
(cons (subst* new old (car l))

(subst* new old (cdr l)))))))

85

What is (insertL * new old l)
where

new is peeker
old is chuck

and
l is ((how much (wood))

cou ld
((a (wood) chuck))
(((chuck)))
(i f (a) ((wood chuck)))
cou ld chuck wood)

Write insertL *

(define insertL *
(lambda (new old l)

(cond
(---

(__ _

(---

(member* a l)
where a is ch ips
and

---)
___)
__))))

l is ((potato) (chips ((with) fish) (chips)))

86

((how much (wood))
cou ld
((a (wood) peeker chuck))
(((peeker chuck)))
(i f (a) ((wood peeker chuck)))
cou ld peeker chuck wood) .

(define insertL *
(lambda (new old l)

(cond
((null? l) (quote ()))
((atom? (car l))
(cond

((eq? (car l) old)
(cons new

(cons old
(insertL * new old

(cdr l)))))
(else (cons (car l)

(insertL * new old
(cdr l))))))

(else (cons (insertL * new old
(car l))

(insertL * new old
(cdr l)))))))

#t , because the atom chips appears in the
list l.

Chapter 5

Write member*

(define member*
(lambda (a l)

(cond
(---

(__ _

(---

___)

---)
__))))

What i s (member* a l)
where

a is chips
and

l is ((potato) (chips ((with) fish) (chips)))

Which chips did i t find?

What is (leftmost l)
where

l is ((potato) (ch ips ((with) fish) (chips)))

What i s (leftmost l)
where

l is (((hot) (tuna (and))) cheese)

What is (leftmost l)
where

l is (((() four)) 17 (seventeen))

What i s (leftmost (quote ()))

Can you describe what leftmost does?

Oh My Gawd: It 's Fun of Stars

(define member*
(lambda (a l)

(cond

#t .

((null? l) #f)
((atom ? (car l))
(or (eq? (car l) a)

(member* a (cdr l))))
(else (or (member* a (car l))

(member* a (cdr l)))))))

((potato) (chips ((with) fish) (chips))) .

potato.

hot .

No answer.

No answer.

Here is our description :
"The function leftmost finds the leftmost
atom in a non-empty list of S-expressions
that does not contain the empty list ."

87

Is leftmost a *-function?

Does leftmost need to ask questions about all
three possible cases?

Now see if you can write the function
leftmost

(define leftmost
(lambda (l)

(cond
< --­

< ---

---)
__))))

Do you remember what (or . ..) does?

What is
(and (atom ? (car l))

(eq? (car l) x))
where

x is pizza
and

l is (mozzare l la pizza)

Why is it false?

88

It works on lists of S-expressions, but it only
recurs on the car.

No, it only needs to ask two questions. We
agreed that leftmost works on non-empty
lists that don 't contain empty lists.

(define leftmost
(lambda (l)

(cond
((atom ? (car l)) (car l))
(else (leftmost (car l))))))

(or . . .) asks questions one at a time until it
finds one that is true. Then (or .. .) stops,
making its value true. If it cannot find a true
argument , the value of (or . . .) is false.

#f.

Since (and . . .) asks (atom? (car l)) , which
is true, it then asks (eq? (car l) x) , which is
false; hence it is #f.

Chapter 5

What is
(and (atom? (car l))

(eq? (car l) x))
where

x is pizza
and

l is ((mozzare l la mushroom) pizza)

Why is it false?

Give an example for x and l where
(and (atom? (car l))

(eq? (car l) x))
is true.

Put in your own words what (and . . .) does.

True or false: it is possible that one of the
arguments of (and . . .) and (or . . .) is not
considered? 1

1 (cond . . .) also has the property of not considering all of
its arguments. Because of this property, however, neither
(and . . .) nor (or . . .) can be deft ned as functions in terms
of (cond . . .) , though both (and . . .) and (or . . .) can be
expressed as abbreviations of (cond . . .)-expressions:

(and tt {3) = (cond (tt {3) (else #f))
and

(or tt {3) = (cond (tt #t) (else {3))

(eqlist? l1 l2)
where

l1 is (strawberry ice cream)
and

l2 is (strawberry ice cream)

Oh My Gawd: It 's Full of Stars

#f.

Since (and . . .) asks (atom ? (car l)) , and
(car l) is not an atom; so it is #f.

Here's one:
x is pizza

and
l is (pizza (tastes good)) .

We put it in our words :
"(and . . .) asks questions one at a time
until it finds one whose value is false. Then
(and . . .) stops with false. If none of the
expressions are false, (and . . .) is true."

True, because (and . . .) stops if the first
argument has the value #f, and (or . . .)
stops if the first argument has the value #t .

#t .

89

(eqlist? l1 l2)
where

l1 is (strawberry ice cream)
and

l2 is (strawberry cream ice)

(eqlist ? l1 l2)
where

l1 is (banana ((spl it)))
and

l2 is ((banana) (spl i t))

(eqlist? l1 l2)
where

l1 is (beef ((sausage)) (and (soda)))
and

l2 is (beef ((sa lam i)) (and (soda)))

(eqlist ? l1 l2)
where

l1 is (beef ((sausage)) (and (soda)))
and

l2 is (beef ((sausage)) (and (soda)))

What is eqlist ?

How many questions will eqlist? have to ask
about its arguments?

Can you explain why there are nine
questions?

90

#f.

#f.

#f, but almost #t .

#t . That 's better.

It is a function that determines if two lists
are equal.

Nine.

Here are our words:
"Each argument may be either

- empty,
- an atom consed onto a list , or
- a list consed onto a list .

For example, at the same time as the first
argument may be the empty list , the
second argument could be the empty list or
have an atom or a list in the car position."

Chapter 5

Write eqlist? using eqan ?

Is it okay to ask (atom ? (car l2)) in the
second question?

And why is the third question (null? l1)

True or false: if the first argument is ()
eqlist? responds with #t in only one case.

Oh My Gawd: It 's Full of Stars

(define eqlist ?
(lambda (l1 l2)

(cond
((and (null? l1) (null? l2)) #t)
((and (null? l1) (atom ? (car l2)))
#f)

((null? l1) #f)
((and (atom ? (car l1)) (null? l2))
#f)

((and (atom ? (car l1))
(atom ? (car l2)))

(and (eqan ? (car l1) (car l2))
(eqlist ? (cdr l 1) (cdr l2))))

((atom ? (car l1)) #f)
((null? l2) #f)
((atom ? (car l2)) #f)
(else

(and (eqlist ? (car l1) (car l2))
(eqlist ? (cdr l1) (cdr l2)))))))

Yes, because we know that the second list
cannot be empty. Otherwise the first
question would have been true.

At that point , we know that when the first
argument is empty, the second argument is
neither the empty list nor a list with an atom
as the first element . If (null? l1) is true now,
the second argument must be a list whose
first element is also a list.

True.
For (eqlist ? (quote ()) l2) to be true, l2
must also be the empty list.

91

Does this mean that the questions
(and (null? 11) (null? l2))

and
(or (null? 11) (null? 12))

suffice to determine the answer in the first
three cases?

Rewrite eqlist ?

What i s an S-expression?

How many questions does equal? ask to
determine whether two S-expressions are the
same?

Write equal?

92

Yes. If the first question is true, eqlist?
responds with #t ; otherwise, the answer is
#f.

(define eqlist ?
(lambda (l1 12)

(cond
((and (null? 11) (null? 12)) #t)
((or (null? 11) (null? 12)) #f)
((and (atom? (car l1))

(atom? (car 12)))
(and (eqan? (car 11) (car 12))

(eqlist? (cdr 11) (cdr 12))))
((or (atom? (car l1))

(atom? (car 12)))
#f)

(else
(and (eqlist? (car 11) (car 12))

(eqlist? (cdr 11) (cdr l2)))))))

An S-expression is either an atom or a
(possibly empty) list of S-expressions.

Four. The first argument may be an atom or
a list of S-expressions at the same time as
the second argument may be an atom or a
list of S-expresssions.

(define equal?
(lambda (s1 s2)

(cond
((and (atom ? s1) (atom ? s2))
(eqan ? s1 s2))

((atom ? s1) #f)
((atom? s2) #f)
(else (eqlist? s1 s2)))))

Chapter 5

Why is the second question (atom ? s1)

And why is the third question (atom ? s2)

Can we summarize the second question and
the third question as

(or (atom? s1) (atom? s2))

Simplify equal?

Does equal? ask enough questions?

Now, rewrite eqlist? using equal?

Ob My Gawd: It 's Full of Stars

If it is true, we know that the first argument
is an atom and the second argument is a list .

By the time we ask the third question we
know that the first argument is not an atom.
So all we need to know in order to
distinguish between the two remaining cases
is whether or not the second argument is an
atom. The first argument must be a list.

Yes , we can!

(define equal?
(lambda (s1 s2)

(cond

Yes.

((and (atom ? s1) (atom ? s2))
(eqan ? s1 s2))

((or (atom ? s1) (atom ? s2))
#f)

(else (eqlist ? s1 s2)))))

The questions cover all four possible cases.

(define eqlist?
(lambda (l 1 l2)

(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else

(and (equal? (car l1) (car l2))
(eqlist ? (cdr l 1) (cdr l2)))))))

93

The Sixth Commandment

Simplify only after the function is correct.

Here is rember after we replace lat by a list l
of S-expressions and a by any S-expression.

(define rember
(lambda (s l)

(cond
((null? l) (quote ()))
((atom ? (car l))
(cond

((equal? (car l) s) (cdr l))
(else (cons (car l)

(rember s (cdr l))))))
(else (cond

((equal? (car l) s) (cdr l))
(else (cons (car l)

(rember s
(cdr l)))))))))

Can we simplify it?

And how does that differ?

Is rember a "star" function now?

Why not?

Can rember be further simplified?

94

Obviously!

(define rember
(lambda (s l)

(cond
((null? l) (quote ()))
(else (cond

((equal? (car l) s) (cdr l))
(else (cons (car l)

(rember s
(cdr l)))))))))

The function rember now removes the first
matching S-expression s in l, instead of the
first matching atom a in lat.

No.

Because rember recurs with the cdr of l only.

Yes , the inner (cond . . .) asks questions that
the outer (cond . . .) could ask!

Chapter 5

Do it !

Does this new definition look simpler?

And does it work just as well?

Simplify insertL *

When functions are correct and
well-designed, we can think about them
easily.

Can all functions that use eq? and = be
generalized by replacing eq'l and = by the
function equal?

Oh My Gawd: It 's Full of Stars

(define rember
(lambda (s l)

(cond
((null? l) (quote ()))
((equal? (car l) s) (cdr l))
(else (cons (car l)

(rember s (cdr l)))))))

Yes, i t does !

Yes , because we knew that all the cases and
all the recursions were right before we
simplified.

We can't . Before we can ask (eq'l (car l) old)
we need to know that (car l) is an atom.

And that saved us this time from getting it
wrong.

Not quite; this won't work for eqan ?, but will
work for all others. In fact , disregarding the
trivial example of eqan 'l, that is exactly what
we shall assume.

95

(])EO
�dl�l@)

Is 1 an arithmetic expression?

Is 3 an arithmetic expression?

Is 1 + 3 an arithmetic expression?

Is 1 + 3 x 4 an arithmetic expression?

Is cookie an arithmetic expression?

And, what about 3 t y + 5

What is an arithmetic expression in your
words?

What is (quote a)

What is (quote +)

What does (quote x) stand for?

Is (eqP (quote a) 11) true or false
where 11 is a

Is (eqP x 11) true or false
where x is a
and

11 is a

Shadows

Yes.

Yes , of course.

Yes !

Definitely.

Yes. Are you almost ready for one?

Yes.

In ours:
"For the purpose of this chapter, an
arithmetic expression is either an atom
(including numbers) , or two arithmetic
expressions combined by + , x , or t."

a .

The atom + , not the operation -11- .

The atom x , not the operation x .

True.

That 's the same question again. And the
answer is still true.

97

Is (n + 3) an arithmetic expression?

Could we think of (n + 3) as an arithmetic
expression?

What would you call (n + 3)

Why is (n + 3) a good representation?

True or false: (numbered? x)
where x is 1

How do you represent 3 + 4 x 5

True or false: (numbered ? y)
where y is (3 + (4 t 5))

True or false: (numbered? z)
where z is (2 x sausage)

What is numbered?

98

Not really, since there are parentheses
around n + 3. Our definition of arithmetic
expression does not mention parentheses.

Yes , if we keep in mind that the parentheses
are not really there.

We call it a representation for n + 3.

Because
1. (n + 3) is an S-expression.

It can therefore serve as an argument for a
function.

2. It structurally resembles n + 3.

True.

(3 + (4 X 5)) .

True.

False, because sausage is not a number.

It is a function that determines whether a
representation of an arithmetic expression
contains only numbers besides the + , x ,
and t.

Chapter 6

Now can you write a skeleton for numbered?

What is the first question?

What is (eq? (car (cdr aexp)) (quote +))

Can you guess the third one?

And you must know the fourth one.

Should we ask another question about aexp

Why do we ask four, instead of two,
questions about arithmetic expressions?
After all , arithmetic expressions like (1 + 3)
are lats.

Shadows

(define numbered?
(lambda (aexp)

(cond
(--

(__ _

(--­

(---

is a good guess.

(atom ? aexp) .

---)

---)

---)
__))))

It i s the second question.

(eq ? (car (cdr aexp)) (quote x)) is perfect .

(eq? (car (cdr aexp)) (quote t)) , of course.

No! So we could replace the previous
question by else.

Because we consider (1 + 3) as a
representation of an arithmetic expression in
list form, not as a list itself. And, an
arithmetic expression is either a number, or
two arithmetic expressions combined by +,
x , or t.

99

Now you can almost write numbered?

Why do we ask (number? aexp) when we
know that aexp is an atom?

What do we need to know if the aexp consists
of two arithmetic expressions combined by +

In which position is the first subexpression?

In which position is the second
subexpression?

So what do we need to ask?

What is the second answer?

100

Here is our proposal:

(define numbered?
(lambda (aexp)

(cond
((atom ? aexp) (number? aexp))
((eq? (car (cdr aexp)) (quote +))
. . .)

((eq? (car (cdr aexp)) (quote x))
. . .)

((eq? (car (cdr aexp)) (quote t))
. . .))))

Because we want to know if all arithmetic
expressions that are atoms are numbers.

We need to find out whether the two
subexpressions are numbered.

It is the car of aexp.

It is the car of the cdr of the cdr of aexp.

(numbered? (car aexp)) and
(numbered ? (car (cdr (cdr aexp)))) .

Both must be true.

(and (numbered ? (car aexp))
(numbered? (car (cdr (cdr aexp)))))

Chapter 6

Try numbered? again.

Since aexp was already understood to be an
arithmetic expression, could we have written
numbered? in a simpler way?

Why can we simplify?

What is (value u)
where u is 13

(value x)
where

x is (1 + 3)

Shadows

(define numbered?
(lambda (aexp)

(cond
((atom ? aexp) (number? aexp))
((eq? (car (cdr aexp)) (quote +))
(and (numbered? (car aexp))

(numbered?
(car (cdr (cdr aexp))))))

((eq? (car (cdr aexp)) (quote x))
(and (numbered? (car aexp))

(numbered?
(car (cdr (cdr aexp))))))

((eq? (car (cdr aexp)) (quote t))
(and (numbered? (car aexp))

(numbered?
(car (cdr (cdr aexp)))))))))

Yes:

(define numbered ?
(lambda (aexp)

(cond
((atom ? aexp) (number? aexp))
(else

(and (numbered? (car aexp))
(numbered ?

(car (cdr (cdr aexp)))))))))

Because we know we've got the function
right .

13.

4.

101

(value y)
where

y is (1 + (3 t 4))

(value z)
where z is cookie

(value nexp) returns what we think is the
natural value of a numbered arithmetic
expression.

82.

No answer.

We hope.

How many questions does value ask about Four.
nexp

Now, let 's attempt to write value

What is the natural value of an arithmetic
expression that is a number?

What is the natural value of an arithmetic
expression that consists of two arithmetic
expressions combined by +

Can you think of a way to get the value of
the two subexpressions in (1 + (3 x 4))

102

(define value
(lambda (nexp)

(cond
((atom ? nexp) . . .)
((eq? (car (cdr nexp)) (quote +))
. . .)

((eq? (car (cdr nexp)) (quote x))
. . .)

(else . . .))))

It i s just that number.

If we had the natural value of the two
subexpressions, we could just add up the two
values.

Of course, by applying value to 1 , and
applying value to (3 x 4) .

Chapter 6

And in general? By recurring with value on the
subexpressions.

The Seventh Commandment
Recur on the subparts that are of the same nature:

• On the sublists of a list.

• On the subexpressions of an arithmetic expression.

Give value another try.

Can you think of a different representation of
arithmetic expressions?

Could (3 4 +) represent 3 + 4

Could (+ 3 4)

Or (p lus 3 4)

Shadows

(define value
(lambda (nexp)

(cond
((atom? nexp) nexp)
((eq? (car (cdr nexp)) (quote +))
(+ (value (car nexp))

(value (car (cdr (cdr nexp))))))
((eq? (car (cdr nexp)) (quote x))
(x (value (car nexp))

(value (car (cdr (cdr nexp))))))
(else

(t (value (car nexp))
(value

(car (cdr (cdr nexp)))))))))

There are several of them.

Yes .

Yes.

Yes.

103

Is (+ (x 3 6) (t 8 2)) a representation of an
arithmetic expression?

Try to write the function value for a new
kind of arithmetic expression that is either:

- a number

- a list of the atom + followed by
two arithmetic expressions,

- a list of the atom x followed by
two arithmetic expressions, or

- a list of the atom t followed by
two arithmetic expressions.

You guessed it.

Let 's try an example.

(atom ? nexp)
where

nexp is (+ 1 3)

(eq? (car nexp) (quote +))
where

nexp is (+ 1 3)

And now recur.

What is (cdr nexp)
where

nexp is (+ 1 3)

104

Yes.

What about

(define value
(lambda (nexp)

(cond
((atom ? nexp) nexp)
((eq? (car nexp) (quote +))
(-11- (value (cdr nexp))

(value (cdr (cdr nexp)))))
((eq? (car nexp) (quote x))
(x (value (cdr nexp))

(value (cdr (cdr nexp)))))
(else

(t (value (cdr nexp))
(value (cdr (cdr nexp))))))))

It ' s wrong.

(+ 1 3) .

No.

Yes.

Yes.

(1 3) .

Chapter 6

(1 3) is not our representation of an
arithmetic expression.

How can we get the first subexpression of a
representation of an arithmetic expression?

Is (cdr (cdr nexp)) an arithmetic expression
where

nexp is (+ 1 3)

Again, we were thinking of the list (+ 1 3)
instead of the representation of an arithmetic
expression.

What do we mean if we say the car of the
cdr of nexp

Let 's write a function 1st-sub-exp for
arithmetic expressions.

Why do we ask else

Can we get by without (cond . . .) if we
don't need to ask questions?

Shadows

No, we violated The Seventh Commandment .
(1 3) is not a subpart that is a representation
of an arithmetic expression! We obviously
recurred on a list . But remember, not all lists
are representations of arithmetic expressions.
We have to recur on subexpressions.

By taking the car of the cdr .

No, the cdr of the cdr is (3) , and (3) is not
an arithmetic expression .

Taking the car of the cdr of the cdr gets us
back on the right track.

The first subexpression of the representation
of an arithmetic expression.

(define 1st-sub-exp
(lambda (aexp)

(cond
(else (car (cdr aexp))))))

Because the first question i s also the last
question .

Yes, remember one-liners from chapter 4.

(define 1st-sub-exp
(lambda (aexp)

(car (cdr aexp))))

105

Write 2nd-sub-exp for arithmetic expressions .

Finally, let 's replace (car nexp) by
(operator nexp)

Now write value again.

Can we use this value function for the first
representation of arithmetic expressions in
this chapter?

Do it !

106

(define 2nd-sub-exp
(lambda (aexp)

(car (cdr (cdr aexp)))))

(define operator
(lambda (aexp)

(car aexp)))

(define value
(lambda (nexp)

(cond
((atom ? nexp) nexp)
((eq? (operator nexp) (quote +))
(+ (value (1 st-sub-exp nexp))

(value (2nd-sub-exp nexp))))
((eq? (operator nexp) (quote x))
(x (value (1 st-sub-exp nexp))

(value (2nd-sub-exp nexp))))
(else

(t (value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))

Yes , by changing 1st-sub-exp and operator.

(define 1st-sub-exp
(lambda (aexp)

(car aexp)))

(define operator
(lambda (aexp)

(car (cdr aexp))))

Chapter 6

Wasn't this easy? Yes , because we used help functions to hide
the representation .

The Eighth Commandment

Use help functions to abstract from representations.

Have we seen representations before?

For what entities have we used
representations?

Numbers are representations?

What else could we have used?

Do you remember how many primitives we
need for numbers?

Let 's try another representation for numbers.
How shall we represent zero now?

How is one represented?

How is two represented?

Shadows

Yes, we just did not tell you that they were
representations.

Truth-values ! Numbers!

Yes. For example 4 stands for the concept
four. We chose that symbol because we are
accustomed to arabic representations.

(() () () ()) would have served just as well .
What about ((((())))) ? How about (I V)?

Four: number?, zero ?, add1 , and sub1 .

() is our choice.

(()) .

(() ()) .

107

Got it? What 's three?

Write a function to test for zero.

Can you write a function that is like add1

What about sub1

Is this correct?

What is (zub1 n) where n is ()

Rewrite + using this representation.

Has the definition of + changed?

108

Three is (() () ()) .

(define sero ?
(lambda (n)

(null? n)))

(define edd1
(lambda (n)

(cons (quote ()) n)))

(define zub1
(lambda (n)

(cdr n)))

Let 's see.

No answer, but that 's fine.
- Recall The Law of Cdr.

(define +
(lambda (n m)

(cond
((sero ? m) n)
(else (edd1 (+ n (zub1 m)))))))

Yes and no. It changed, but only slightly.

Chapter 6

Recall lat ?

Do you remember what the value of (lat ? ls)
is where ls is (1 2 3)

What is (1 2 3) with our new numbers?

What is (lat? ls) where
ls is ((()) (() ()) (() () ()))

Is that bad?

Shadows

Easy:

(define lat ?
(lambda (l)

(cond
((null? l) #t)
((atom ? (car l)) (lat? (cdr l)))
(else #f))))

But why did you ask?

#t , of course.

((()) (() ()) (() () ())) .

It is very false.

You must beware of shadows.

109

�
lUhi]� � �f!�- "���

Is this a set?
(apple peaches apple p lum)

True or false: (set ? lat)
where

lat is (apples peaches pears p lums)

How about (set ? lat)
where

lat is ()

Try to write set ?

Simplify IJet ?

Does this work for the example
(apple 3 pear 4 9 apple 3 4}

Were you surprised to see the function
member? appear in the definition of set ?

Friends and Relations

No, since apple appears more than once.

#t , because no atom appears more than
once.

#t , because no atom appears more than
once.

(define set ?
(lambda (lat)

(cond
((null? lat) #t)
(else

(cond
((member? (car lat) (cdr lat))
#f)

(else (set ? (cdr lat))))))))

(define set ?
(lambda (lat)

(cond
((null? lat) #t)
((member? (car lat) (cdr lat)) #f)
(else (set? (cdr lat))))))

Yes, since member? i s now written using
equal? instead of eq?.

You should not be, because we have written
member? already, and now we can use it
whenever we want .

1 1 1

What is (makeset lat)
where

lat is (apple peach pear peach
p lum apple lemon peach)

Try to write makeset using member?

Are you surprised to see how short this is?

Using the previous definition , what is the
result of (makeset lat)
where

lat is (apple peach pear peach
p lum apple lemon peach)

Try to write makeset using multirember

What is the result of (makeset lat) using this
second definition
where

lat is (apple peach pear peach
p lum apple lemon peach)

112

(apple peach pear p l um lemon) .

(define makeset
(lambda (lat)

(cond
((null? lat) (quote ()))
((member? (car lat) (cdr lat))
(makeset (cdr lat)))

(else (cons (car lat)
(makeset (cdr lat)))))))

We hope so. But don't be afraid: it 's right .

(pear p lum apple lemon peach) .

(define makeset
(lambda (lat)

(cond
((null? lat) (quote ()))
(else (cons (car lat)

(makeset
(multirember (car lat)

(cdr lat))))))))

(app le peach pear p lum lemon) .

Chapter 7

Describe in your own words how the second
definition of makeset works.

Does the second makeset work for the
example

(apple 3 pear 4 9 apple 3 4)

What is (subset? set1 set2)
where

set1 is (5 chicken wings)
and

set2 is (5 hamburgers
2 pieces fried chicken and
l ight duckl ing wings)

What is (subset? set1 set2)
where

set1 is (4 pounds of horseradish)
and

set2 is (four pounds chicken and
5 ounces horseradish)

Write subset?

Friends and Relations

Here are our words:
"The function makeset remembers to cons
the first atom in the lat onto the result of
the natural recursion, after removing all
occurrences of the first atom from the rest
of the lat ."

Yes , since multirember is now written using
equal? instead of eq?.

#t , because each atom in set1 is also in set2.

#f.

(define subset?
(lambda (set1 set2)

(cond
((null? set1) #t)
(else (cond

((member? (car set1) set2)
(subset? (cdr set1) set2))

(else #f))))))

1 13

Can you write a shorter version of subset ?

Try to write subset ? with (and . . .)

What is (eqset ? set1 set2)
where

set1 is (6 large chickens with wings)
and

set2 is (6 chickens with large wings)

Write eqset ?

Can you write eqset ? with only one
cond-line?

1 14

(define subset?
(lambda (set1 set2)

(cond
((null? set1) #t)
((member? (car set1) set2 }
(subset ? (cdr set1) set2))

(else #f))))

(define subset ?
(lambda (set1 set2)

(cond
((null? set1) #t)
(else

(and (member? (car set1) set2)
(subset ? (cdr set1) set2))))))

#t .

(define eqset ?
(lambda (set1 set2)

(cond
((subset ? set1 set2)
(subset? set2 set1))

(else #f))))

(define eqset ?
(lambda (set1 set2)

(cond
(else (and (subset? set1 set2)

(subset? set2 set1))))))

Chapter 7

Write the one-liner.

What is (intersect? set1 set2)
where

set1 is (stewed tomatoes and macaroni)
and

set2 is (macaroni and cheese)

Define the function intersect?

Write the shorter version.

Try writing intersect? with (or . . .)

Friends and Relations

(define eqset?
(lambda (set1 set2)

#t ,

(and (subset ? set1 set2)
(subset ? set2 set1))))

because at least one atom in set1 is in
set2 .

(define intersect?
(lambda (set1 set2)

(cond
((null? set1) #f)
(else

(cond
((member? (car set1) set2) #t)
(else (intersect ?

(cdr set1) set2)))))))

(define intersect?
(lambda (set1 set2)

(cond
((null? set1) #f)
((member? (car set1) set2) #t)
(else (intersect? (cdr set1) set2)))))

(define intersect ?
(lambda (set1 set2)

(cond
((null? set1) #f)
(else (or (member? (car set1) set2)

(intersect?
(cdr set1) set2))))))

Compare subset? and intersect ?.

115

What is (intersect set1 set2)
where

set1 is (stewed tomatoes and macaroni)
and

set2 is (macaroni and cheese)

Now you can write the short version of
intersect

What is (union set1 set2)
where

set1 is (stewed tomatoes and
macaroni casserole)

and
set2 is (macaroni and cheese)

Write union

1 16

(and macaroni) .

(define intersect
(lambda (set1 set2)

(cond
((null? set1) (quote ()))
((member? (car set1) set2)
(cons (car set1)

(intersect (cdr set1) set2)))
(else (intersect (cdr set1) set2)))))

(stewed tomatoes casserole macaroni
and cheese)

(define union
(lambda (set1 set2)

(cond
((null? set1) set2)
((member? (car set1) set2)
(union (cdr set1) set2))

(else (cons (car set1)
(union (cdr set1) set2))))))

Chapter 7

What is this function?

(define xxx
(lambda (set1 set2)

(cond
((null? set1) (quote ()))
((member? (car set1) set2)
(xxx (cdr set1) set2))

(else (cons (car set1)
(xxx (cdr set1) set2))))))

What i s (intersect all l-set)
where

l-set is ((a b c) (c a d e) (e f g h a b))

What is (intersect all l-set)
where

l-set is ((6 pears and)
(3 peaches and 6 peppers)
(8 pears and 6 plums)
(and 6 prunes with some apples))

Now, using whatever help functions you
need, write intersectall assuming that the list
of sets is non-empty.

Is this a pair?1
(pear pear)

1 A pair in Scheme (or Lisp) is a different but related object.

Friends and Relations

In our words:
"It is a function that returns all the atoms
in set1 that are not in set2."

That is, xxx is the (set) difference function.

(a) .

(6 and) .

(define intersectall
(lambda (l-set)

(cond
((null? (cdr l-set)) (car l-set))
(else (intersect (car l-set)

(intersectall (cdr l-set)))))))

Yes, because i t i s a list with only two atoms.

117

Is this a pair?
(3 7)

Is this a pair?
((2) (pa i r))

(a-pair? l)
where

l is (fu l l (house))

Define a-pair?

How can you refer to the first S-expression of
a pair?

How can you refer to the second S-expression
of a pair?

How can you build a pair with two atoms?

How can you build a pair with two
S-expressions?

Did you notice the differences between the
last two answers?

1 18

Yes.

Yes , because it is a list with only two
S-expressions.

#t ,
because it is a list with only two
S-expressions.

(define a-pair?
(lambda (x)

(cond
((atom ? x) #f)
((null? x) #f)
((null? (cdr x)) #f)
((null? (cdr (cdr x))) #t)
(else #f))))

By taking the car of the pair.

By taking the car of the cdr of the pair.

You cons the first one onto the cons of the
second one onto () . That is ,

(cons x1 (cons x2 (quote ()))) .

You cons the first one onto the cons of the
second one onto () . That is ,

(cons x1 (cons x2 (quote ()))) .

No, there aren't any.

Chapter 7

(define first
(lambda (p)

(cond
(else (car p)))))

(define second
(lambda (p)

(cond
(else (car (cdr p))))))

(define build
(lambda (sl s2)

(cond
(else (cons sl

(cons s2 (quote ())))))))

What possible uses do these three functions
have?

Can you write third as a one-liner?

Is l a rei where
l is (apples peaches pumpkin pie)

Is l a rei where
l is ((apples peaches)

(pumpkin pie)
(apples peaches))

Is l a rei where
l is ((apples peaches) (pumpkin pie))

Is l a rei where
l is ((4 3) (4 2) (7 6) (6 2) (3 4))

Friends and Relations

They are used to make representations of
pairs and to get parts of representations of
pairs. See chapter 6.

They will be used to improve readability,
as you will soon see.

Redefine first, second , and build as
one-liners.

(define third
(lambda (l)

(car (cdr (cdr l)))))

No, since l i s not a list of pairs. We use rei to
stand for relation .

No , since l is not a set of pairs .

Yes .

Yes .

119

Is rel a fun
where

rel is ((4 3) (4 2) (7 6) (6 2) (3 4))

What i s (fun ? rel)
where

rel is ((8 3) (4 2) (7 6) (6 2) (3 4))

What is (fun ? rel)
where

rel is ((d 4) (b 0) (b 9) (e 5) (g 4))

Write fun ? with set ? and firsts

Is fun ? a simple one-liner?

How do we represent a finite function?

What is (revrel rel)
where

rel is ((8 a) (pumpkin pie) (got sick))

You can now write revrel

120

No. We use fun to stand for function.

#t , because (firsts rel) is a set
-See chapter 3.

#f, because b is repeated.

(define fun ?
(lambda (rel)

(set? (firsts rel))))

I t sure is.

For us, a finite function is a list of pairs in
which no first element of any pair is the same
as any other first element .

((a 8) (pie pumpkin) (sick got)) .

(define revrel
(lambda (rel)

(cond
((null? rel) (quote ()))
(else (cons (build

(second (car rel))
(first (car rel)))

(revrel (cdr rel)))))))

Chapter 7

Would the following also be correct:

(define revrel
(lambda (rel)

(cond
((null? rel) (quote ()))
(else (cons (cons

(car (cdr (car rel)))
(cons (car (car rel))

(quote ())))
(revrel (cdr rel)))))))

Suppose we had the function revpair that
reversed the two components of a pair like
this :

(define revpair
(lambda (pair)

(build (second pair) (first pair))))

How would you rewrite revrel to use this help
function?

Can you guess why fun is not a fullfun
where

fun is ((8 3) (4 2) (7 6) (6 2) (3 4))

Why is #t the value of (fullfun ? fun)
where

fun is ((8 3) (4 8) (7 6) (6 2) (3 4))

What is (fullfun '? fun)
where

fun is ((grape ra isin)
(pl um prune)
(stewed prune))

Friends and Relations

Yes, but now do you see how representation
aids readability?

No problem, and it is even easier to read:

(define revrel
(lambda (rel)

(cond
((null? rel) (quote ()))
(else (cons (revpair (car rel))

(revrel (cdr rel)))))))

fun i s not a fullfun, since the 2 appears more
than once as a second item of a pair.

Because (3 8 6 2 4) is a set .

#f.

121

What is (fullfun ? fun)
where

fun is ((grape raisi n)
(p lum prune)
(stewed grape))

Define fullfun ?

Can you define seconds

What is another name for fullfun ?

Can you think of a second way to write
one-to-one ?

Is ((chocolate ch ip) (doughy cookie)) a
one-to-one function?

#t , because (rais in prune grape) is a set .

(define fullfun ?
(lambda (fun)

(set? (seconds fun))))

It i s just like firsts .

one-to-one ?.

(define one-to-one ?
(lambda (fun)

(fun ? (revrel fun))))

Yes, and you deserve one now!

Go and get one!

122 Chapter 7

Or better yet , make your own.

(define cookies

(lambda ()

Friends and Relations

(bake

(quote (350 degrees))

(quote (12 minutes))

(mix

(quote (walnuts 1 cup))

(quote (chocolate-ch ips 16 ounces))

(mix

(mix

(quote (flou r 2 cups))

(quote (oatmeal 2 cups))

(quote (salt .5 teaspoon))

(quote (baking-powder 1 teaspoon))

(quote (baking-soda 1 teaspoon)))

(mix

(quote (eggs 2 large))

(quote (van i l la 1 teaspoon))

(cream

(quote (butter 1 cup))

(quote (sugar 2 cups)))))))))

123

Remember what we did in rember and
inserlL at the end of chapter 5?

Can you write a function rember-t that
would use either eq? or equal?

How can you make rember remove the first a
from (b c a)

How can you make rember remove the first c
from (b c a)

How can you make rember-t use equal?
instead of eq?

What is (rember-t test ? a l)
where

test? is = 1
a is 5

and
l is (6 2 5 3)

1 L: (rember-f (function •) 5 ' (6 2 5 3)) ,
but there is more.

What is (rember-t test? a l)
where

test? is eq?
a is jel ly

and
l is Uel ly beans are good)

And what is (rember-t test? a l)
where

test ? is equal?
a is (pop corn)

and
l is (lemonade (pop corn) and (cake))

Lambda the Ultimate

We replaced eq? with equal?

No, because we have not yet told you how.

By passing a and (b c a) as arguments to
rember.

By passing c and (b c a) as arguments to
rember.

By passing equal? as an argument to
rember-t .

(6 2 3) .

(beans are good) .

(lemonade and (cake)) .

125

Try to write rember-f

What about the short version?

How does (rember-f test ? a l) act
where test? is eq?

And what about (rember-f test? a l)
where test? is equal?

Now we have four functions that do almost
the same thing.

126

(define rember-f
(lambda (test? a l)

(cond
((null? l) (quote ()))
(else (cond

((test ? (car l) a) 1 (cdr l))
(else (cons (car l)

(rember-f test ? a
(cdr l)))))))))

This is good!

1 L: (funcall test? (car 1) a) . Use funcall when
invoking a function argument or a function that has not
been defuned.

(define rember-f
(lambda (test ? a l)

(cond
((null? l) (quote ()))
((test? (car l) a) (cdr l))
(else (cons (car l)

(rember-f test ? a
(cdr l)))))))

(rember-f test? a l)
where test? i s eq?, acts like rember.

This is just rember with eq? replaced by
equal?.

Yes:
rember with =
rember with equal?
rember with eq?

and
rember-f .

Chapter 8

And rember-f can behave like all the others .

What kind of values can functions return?

What about functions themselves?

Can you say what (lambda (a l) . . .) is?

Now what is

(lambda (a)
(lambda (x)

(eq? x a)))

Is this called "Curry-ing?"

It is not called "Schonfinkel-ing."

Using (define . . .) give the preceding
function a name.

What is (eq?-c k)
where k is sa lad

Lambda the Ultimate

Let 's generate all versions with rember-f .

Lists and atoms.

Yes ,
but you probably did not know that yet .

(lambda (a l) . . .) is a function of two
arguments , a and l .

It is a function that , when passed an
argument a, returns the function

(lambda (x)
(eq? x a))

where a is just that argument .

Thank you, Moses Schonfinkel
(1889--1942) .

Thank you, Haskell B. Curry
(1900-1982) .

(define eq?-c1
(lambda (a)

(lambda (x)
(eq? x a))))

This i s our choice.

1 L: (defun eq?-c (a)
(function

(lambda (x)
(eq x a))))

Its value is a function that takes x as an
argument and tests whether it is eq? to sa lad .

127

So let 's give it a name using (define . . .)
I (define1 eq ?-salad (eq?-c k))

where k is sa lad

1 L: (setq eq?-salad (eq?-c ' salad) } .
Use setq to define a function that can be funcalled.

What is (eq? -salad y) 1
where y is sa lad

1 L: (funcall eq?-salad y) , since eq?-salad has not been
defuned.

And what is (eq ?-salad y)
where y is tuna

Do we need to give a name to eq?-salad

Now rewrite rember-t as a function of one
argument test? that returns an argument like
rember with eq? replaced by test?

128

Okay.

#t .

#f.

No, we may just as well ask
((eq?-c x) y) 1

where
x is sa lad

and
y is tuna.

1 L: (funcall (eq?-c x) y) , since (eq?-c x) i s a function
that has not been defuned.

(define rember-t
(lambda (test ?)

(lambda (a l)
(cond

((null? l) (quote ()))
((test ? (car l) a) (cdr l))
(else (cons (car l) . . .))))))

is a good start.

Chapter 8

Describe in your own words the result of
(rember-f test?)

where
test? is eq?

Give a name to the function returned by
(rember-f test ?)

where
test? is eq?

What is (rember-eq? a l)
where a is tuna
and

l is (tuna salad is good)

Did we need to give the name rember-eq? to
the function (rember-f test?)
where

test? is eq?

Now, complete the line
(cons (car l) . . .)

in rember-f so that rember-f works.

What is ((rember-f eq?) a l)
where a is tuna
and

l is (shrimp sa lad and tuna sa lad)

Lambda the Ultimate

It is a function that takes two arguments, a
and l. It compares the elements of the list
with a, and the first one that is eq? to a is
removed.

(define rember-eq? (rember-f test ?))

where
test ? is eq?.

(sa lad is good) .

No, we could have written
((rember-f test ?) a l)

where
test? is eq?
a is tuna

and
l is (tuna salad is good) .

(define rember-f
(lambda (test ?)

(lambda (a l)
(cond

((null? l) (quote ()))
((test ? (car l) a) (cdr l))
(else (cons (car l)

((rember-f test ?) a
(cdr l))))))))

(shrimp sa lad and sa lad) .

129

What is ((rember-f eq?) a l)
where a is eq?
and

l is (equa l? eq? eqan? eq l ist? eqpa i r?) 1

1 Did you notice the difference between eq? and eq?
Remember that the former is the atom and the latter is the
function.

And now transform insertL to insertL-f the
same way we have transformed rember into
rember-f

And, just for the exercise, do it to insertR

Are insertR and insertL similar?

Can you write a function insert-g that would
insert either at the left or at the right?

130

(equal? eqan? eq l ist? eqpair?) .

(define insertL-f
(lambda (test ?)

(lambda (new old l)
(cond

((null? l) (quote ()))
((test? (car l) old)
(cons new (cons old (cdr l))))

(else (cons (car l)
((insertL-f test?) new old
(cdr l))))))))

(define insertR-f
(lambda (test ?)

(lambda (new old l)
(cond

((null? l) (quote ()))
((test ? (car l) old)
(cons old (cons new (cdr l))))

(else (cons (car l)
((insertR-f test ?) new old
(cdr l))))))))

Only the middle piece is a bit different .

If you can, get yourself some coffee cake and
relax! Otherwise, don't give up. You'll see it
in a minute.

Chapter 8

Which pieces differ?

Put the difference in words!

So how can we get rid of the difference?

Define a function seqL that
1. takes three arguments, and
2. conses the first argument

onto the result of consing
the second argument onto

the third argument .

What is:

(define seqR
(lambda (new old l)

(cons old (cons new l))))

Do you know why we wrote these functions?

Lambda the Ultimate

The second lines differ from each other. In
insertL it is:

((eq? (car l) old)
(cons new (cons old (cdr l)))) ,

but in insertR it is:

((eq? (car l) old)
(cons old (cons new (cdr l)))) .

We say:
"The two functions cons old and new in a
different order onto the cdr of the list l ."

You probably guessed it: by passing in a
function that expresses the appropriate
cons ing.

(define seqL
(lambda (new old l)

(cons new (cons old l))))

A function that
1 . takes three arguments, and
2. conses the second argument

onto the result of cons ing
the first argument onto

the third argument .

Because they express what the two differing
lines in insertL and insertR express .

131

Try to write the function insert-g of one
argument seq

which returns insertL
where seq is seqL

and
which returns insertR

where seq is seqR

Now define insertL with insert-g

And insertR .

Is there something unusual about these two
definitions?

Is it necessary to give names to seqL and
seqR

Define insertL again with insert-g
Do not pass in seqL this time.

132

(define insert-g
(lambda (seq)

{lambda (new old l)
(cond

((null? l) (quote ()))
((eq? (car l) old)
(seq new old (cdr l)))

(else (cons (car l)
((insert-g seq) new old
(cdr l))))))))

(define insertL (insert-g seqL))

(define insertR (insert-g seqR))

Yes. Earlier we would probably have written
(define insertL (insert-g seq))

where
seq is seqL

and
(define insertR (insert-g seq))

where
seq is seqR.

But, using "where" is unnecessary when you
pass functions as arguments.

Not really. We could have passed their
definitions instead.

(define insertL
(insert-g

(lambda (new old l)
(cons new (cons old l)))))

Chapter 8

Is this better?

Do you remember the definition of subst

Does this look familiar?

Define a function like seqL or seqR for subst

And now define subst using insert-g

And what do you think yyy is

(define yyy
(lambda (a l)

((insert-g seqrem) #f a l)))

where

(define seqrem
(lambda (new old l)

l))

Lambda the Ultimate

Yes, because you do not need to remember as
many names. You can

(rember June-name "your-mind")
where June-name is seqL.

Here is one.

(define subst
(lambda (new old l)

(cond
((null? l) (quote ()))
((eq? (car l) old)
(cons new (cdr l)))

(else (cons (car l)
(subst new old (cdr l)))))))

Yes, i t looks like insertL or insertR . Just the
answer of the second cond-line is different .

What do you think about this?

(define seqS
(lambda (new old l)

(cons new l)))

(define subst (insert-g seqS))

Surprise! It is our old friend rember

Hint : Step through the evaluation of
(yyy a l)

where
a is sausage

and
l is (pizza with sausage and bacon) .

What role does # f play?

133

What you have just seen is the power of abstraction.

The Ninth Commandment

Abstract common patterns with a new function.

Have we seen similar functions before?

Do you remember value from chapter 6?

Do you see the similarities?

Can you write the function atom-to-function
which:

1 . Takes one argument x and
2. returns the function +

134

if (eq? x (quote +))
returns the function x

if (eq? x (quote x)) and
returns the function t

otherwise?

Yes, we have even seen functions with similar
lines.

(define value
(lambda (nexp)

(cond
((atom ? nexp) nexp)
((eq? (operator nexp)

(quote +))
(+ (value (1st-sub-exp nexp))

(value (2nd-sub-exp nexp))))
((eq? (operator nexp)

(quote x))
(x (value (1st-sub-exp nexp))

(value (2nd-sub-exp nexp))))
(else

(t (value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))

The last three answers are the same except
for the + , x , and t.

(define atom-to-function
(lambda (x)

(cond
((eq? x (quote +)) +)
((eq? x (quote x)) x)
(else t))))

Chapter 8

What is (atom-to-function (operator nexp))
where

nexp is (+ 5 3)

Can you use atom-to-function to rewrite
value with only two cond-lines?

Is this quite a bit shorter than the first
version?

Time for an apple?

Here is multirember again.

(define multirember
(lambda (a lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) a)
(multirember a (cdr lat)))

(else (cons (car lat)
(multirember a

(cdr lat)))))))

Write multirember-f

What is ((multirember-f test?) a lat)
where

test? is eq?
a is tuna

and
lat is (shrimp sa lad tuna sa lad and tuna)

Lambda the Ultimate

The function + , not the atom +.

Of course.

(define value
(lambda (nexp)

(cond
((atom ? nexp) nexp)
(else

((atom-to-function
(operator nexp))

(value (1 st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))

Yes, but that 's okay. We haven't changed its
meaning.

One a day keeps the doctor away.

No problem.

(define multirember-f
(lambda (test ?)

(lambda (a lat)
(cond

((null? lat) (quote ()))
((test? a (car lat))
((multirember-f test ?) a

(cdr lat)))
(else (cons (car lat)

((multirember-f test?) a
(cdr lat))))))))

(shrimp sa lad sa lad and) .

135

Wasn't that easy?

Define multirember-eq? using multirember-f

Do we really need to tell multirember-f
about tuna

Does test ? change as multirember-f goes
through lat

Can we combine a and test?

How would it do that?

Here is one way to write this function.

I
(define <q?-tuno

.
(eq?-c k))

where k i s tuna
Can you think of a different way of writing
this function?

Have you ever seen definitions that contain
atoms?

136

Yes.

(define multirember-eq?
(multirember-f test?))

where test? i s eq?.

As multirember-f visits all the elements in
lat , it always looks for tuna.

No, test? always stands for eq?, just as a
always stands for tuna.

Well , test? could be a function of just one
argument and could compare that argument
to tuna .

The new test? takes one argument and
compares it to tuna.

Yes, and here is a different way:

(define eq?-tuna
(eq? -c (quote tuna)))

Yes, 0, (quote x) , (quote +) , and many
more.

Chapter 8

Perhaps we should now write multiremberT
which is similar to multirember-f
Instead of taking testP and returning a
function, multiremberT takes a function like
eq?-tuna and a lat and then does its work.

What is (multiremberT test ? lat)
where

test? is eq?-tuna
and

lat is (shrimp sa lad tuna sa lad and tuna)

Is this easy?

How about this?

(define multirember&co
(lambda (a lat col)

(cond
((null? lat)
(col (quote ()) (quote ())))

((eqP (car lat) a)
(multirember&co a

(cdr lat)
(lambda (newlat seen)

(col newlat
(cons (car lat) seen)))))

(else
(multirember&co a

(cdr lat)
(lambda (newlat seen)

(col (cons (car lat) newlat)
seen)))))))

Lambda the Ultimate

This is not really difficult.

(define multiremberT
(lambda (test ? lat)

(cond
((null? lat) (quote ()))
((test ? (car lat))
(multiremberT test ? (cdr lat)))

(else (cons (car lat)
(multiremberT test?

(cdr lat)))))))

(shrimp sa lad sa lad and) .

It 's not bad.

Now that looks really complicated!

137

Here is something simpler:

(define a-friend
(lambda (a: y)

(null? y)))

What is the value of
(multirember&co a lat col)

where
a is tuna
lat is (strawberries tuna and swordfish)

and
col is a-friend

So let 's try a friendlier example. What is the
value of (multirember&co a lat col)
where

a is tuna
lat is ()

and
col is a-friend

And what is (multirember&co a lat col)
where

a is tuna
lat is (tuna)

and
col is a-friend

What are the other arguments that
multirember&co uses for the natural
recursion?

What is the name of the third argument?

Do you know what col stands for?

138

Yes, it is simpler. It is a function that takes
two arguments and asks whether the second
one is the empty list . It ignores its first
argnment .

This is not simple.

#t , because a-friend is immediately used in
the first answer on two empty lists, and
a-friend makes sure that its second argument
is empty.

multirember&co asks
(eqP (car lat) (quote tuna))

where
lat is (tuna) .

Then it recurs on () .

The first one is clearly tuna . The third
argument is a new function.

col.

The name col is short for "collector."
A collector is sometimes called a
"continuation."

Chapter 8

Here is the new collector:

(define new-friend
(lambda (newlat seen)

(col newlat
(cons (car lat) seen))))

where
(car lat) is tuna

and
col is a-friend

Can you write this definition differently?

Can we also replace col with a-friend in such
definitions because col is to a-friend what
(car lat) is to tuna

And now?

Which collector is this?

How does a-friend differ from new-friend

And what does the old collector do with such
arguments?

What is the value of
(multirember&co a lat a-friend)

where a is tuna
and

lat is (and tuna)

Lambda the Ultimate

Do you mean the new way where we put tuna
into the definition?

(define new-friend
(lambda (newlat seen)

(col newlat
(cons (quote tuna) seen))))

where
col is a-friend.

Yes, we can :

(define new-friend
(lambda (newlat seen)

(a-friend newlat
(cons (quote tuna) seen))))

multirember&co finds out that (null? lat) is
true, which means that it uses the collector
on two empty lists .

It is new-friend.

new-friend uses a-friend on the empty list
and the value of

(cons (quote tuna) (quote ())) .

I t answers #f, because its second argument
is (tuna) , which is not the empty list .

This time around multirember&co recurs
with yet another friend.

(define latest-friend
(lambda (newlat seen)

(a-friend (cons (quote and) newlat)
seen)))

139

And what is the value of this recursive use of
multirember&co

What does (multirember&co a lat f) do?

Final question: What is the value of
(multirember&co (quote tuna) ls col)
where

ls is (strawberries tuna and swordfish)
and

col is

(define last-friend
(lambda (x y)

(length x)))

Yes!

#f, since (a-friend ls1 ls2)
where

ls1 is (and)
and

ls2 is (tuna)
is #f.

It looks at every atom of the lat to see
whether it is eq? to a. Those atoms that are
not are collected in one list ls1 ; the others
for which the answer is true are collected in a
second list ls2 . Finally, it determines the
value of (! ls1 ls2) .

3, because ls contains three things that are
not tuna , and therefore last-friend is used on
(strawberries and swordfish) and (tuna) .

It's a strange meal , but we have seen foreign
foods before.

The Tenth Commandment

Build functions to collect more than one value at a time.

140 Chapter 8

Here is an old friend.

(define multiinsertL
(lambda (new old lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) old)
(cons new

(cons old
(multiinsertL new old

(cdr lat)))))
(else (cons (car lat)

(multiinsertL new old
(cdr lat)))))))

Do you also remember multiinsertR

Now try multiinsertLR
Hint : multiinsertLR inserts new to the left
of oldL and to the right of oldR in lat if
oldL are oldR are different .

The function multiinsertLR&co i s to
multiinsertLR what multirember&co is to
multirember

Yes, and what kind of argument is it?

Lambda the Ultimate

No problem.

(define multiinsertR
(lambda (new old lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) old)
(cons old

(cons new
(multiinsertR new old

(cdr lat)))))
(else (cons (car lat)

(multiinsertR new old
(cdr lat)))))))

This i s a way of combining the two functions.

(define multiinsertLR
(lambda (new oldL oldR lat)

(cond
((null? lat) (quote ()))
((eq? (car lat) oldL)
(cons new

(cons oldL
(multiinsertLR new oldL oldR

(cdr lat)))))
((eq? (car lat) oldR)
(cons oldR

(cons new
(multiinsertLR new oldL oldR

(cdr lat)))))
(else

(cons (car lat)
(multiinsertLR new oldL oldR

(cdr lat)))))))

Does this mean that multiinsertLR&co takes
one more argument than multiinsertLR?

It is a collector function.

141

When multiinsertLR&co is done, it will use
col on the new lat , on the number of left
insertions, and the number of right
insertions. Can you write an outline of
multiinsertLR&co

Why is col used on (quote ()) 0 and 0 when
(null? lat) is true?

So what is the value of
(multiinsertLR&co

(quote cranberries)
(quote fish)
(quote chips)
(quote ())
col)

Is it true that multiinsertLR&co will use the
new collector on three arguments when
(car lat) is equal to neither oldL nor oldR

142

Sure, it is just like multiinsertLR.

(define multiinsertLR&co
(lambda (new oldL oldR lat col)

(cond
((null? lat)
(col (quote ()) 0 0))

((eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR

(cdr lat)
(lambda (newlat L R)

. . .)))
((eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR

(cdr lat)
(lambda (newlat L R)

. . .)))
(else

(multiinsertLR&co new oldL oldR
(cdr lat)
(lambda (newlat L R)

. . .))))))

The empty lat contains neither oldL nor
oldR. And this means that 0 occurrences of
oldL and 0 occurrences of oldR are found and
that multiinsertLR will return () when lat is
empty.

It is the value of (col (quote ()) 0 0) , which
we cannot determine because we don't know
what col is .

Yes , the first is the lat that multiinsertLR
would have produced for (cdr lat) , oldL, and
oldR. The second and third are the number
of insertions that occurred to the left and
right of oldL and oldR, respectively.

Chapter 8

Is it true that multiinsertLR&co then uses
the function col on (cons (car lat) newlat)
because it copies the list unless an oldL or an
oldR appears?

Why are col's second and third arguments
just L and R

Here is what we have so far. And we have
even thrown in an extra collector:

(define multiinsertLR&co
(lambda (new oldL oldR lat col)

(cond
((null? lat)
(col (quote ()) 0 0))

((eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR

(cdr lat)
(lambda (newlat L R)

(col (cons new
(cons oldL newlat))

(add1 L) R))))
((eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR

(cdr lat)
(lambda (newlat L R)
. . .)))

(else
(multiinsertLR&co new oldL oldR

(cdr lat)
(lambda (newlat L R)

(col (cons (car lat) newlat)
L R)))))))

Can you fill in the dots?

So can you fill in the dots?

Lambda the Ultimate

Yes, it is true, so we know what the new
collector for the last case is:

(lambda (newlat L R)
(col (cons (car lat) newlat) L R)) .

If (car lat) i s neither oldL nor oldR, we do
not need to insert any new elements. So, L
and R are the correct results for both
(cdr lat) and all of lat .

The incomplete collector is similar to the
extra collector. Instead of adding one to L, it
adds one to R, and instead of consing new
onto consing oldL onto newlat , it conses oldR
onto the result of cons ing new onto newlat .

Yes, the final collector is
(lambda (newlat L R)

(col (cons oldR (cons new newlat))
L (add1 R))) .

143

What is the value of
(multiinsertLR&co new oldL oldR lat col)

where
new is sa lty
oldL is fish
oldR is chips

and
lat is (chips and fish or fish and chips)

Is this healthy?

Do you remember what *-functions are?

Now write the function evens-only* which
removes all odd numbers from a list of nested
lists. Here is even ?

(define even ?
(lambda (n)

(= (x (+ n 2) 2) n)))

What is the value of (evens-only* l)
where

l is ((9 1 2 8) 3 10 ((9 9) 7 6) 2)

144

It is the value of (col newlat 2 2)
where

newlat is (ch ips sa lty and sa lty fish
or sa lty fish and chips salty) .

Looks like lots of salt. Perhaps dessert is
sweeter.

Yes , all *-functions work on lists that are
either

- empty,
- an atom consed onto a list , or
- a list consed onto a list.

Now that we have practiced this way of
writing functions, evens-only* is just an
exercise:

(define evens-only*
(lambda (l)

(cond
((null? l) (quote ()))
((atom ? (car l))
(cond

((even ? (car l))
(cons (car l)

(evens-only* (cdr l))))
(else (evens-only* (cdr l)))))

(else (cons (evens-only* (car l))
(evens-only* (cdr l)))))))

((2 8) 10 (() 6) 2) .

Chapter 8

What is the sum of the odd numbers in l
where

l is ((9 1 2 8) 3 10 ((9 9) 7 6) 2)

What is the product of the even numbers in l
where

l is ((9 1 2 8) 3 10 ((9 9) 7 6) 2)

Can you write the function evens-only*&co
It builds a nested list of even numbers by
removing the odd ones from its argument
and simultaneously multiplies the even
numbers and sums up the odd numbers that
occur in its argument .

Here is an outline. Can you explain what
(evens-only*&co (car l) . . .) accomplishes?

(define evens-only*&co
(lambda (l col)

(cond
((null? l)
(col (quote ()) 1 0))

((atom? (car l))
fcond

((even ? (car l))
(evens-only*&co (cdr l)

(lambda (newl p s)
(col (cons (car l) newl)

(x (car l) p) s))))
(else (evens-only*&co (cdr l)

(lambda (newl p s)
(col newl

p (+ (car l) s)))))))
(else (evens-only*&co (car l)

. . .)))))

What does the function evens-only*&co do
after visiting all the numbers in (car l)

Lambda the Ultimate

9 + 1 + 3 + 9 + 9 + 7 = 38.

2 X 8 X 10 X 6 X 2 = 1920.

This is full of stars !

It visits every number in the car of l and
collects the list without odd numbers , the
product of the even numbers , and the sum of
the odd numbers.

It uses the collector , which we haven't
defined yet .

145

And what does the collector do?

Does this mean the unknown collector looks
roughly like this:

(lambda (al ap as)
(evens-only*&co (cdr l)

. . .))

And when (evens-only*&co (cdr l) . . .) is
done with its job, what happens then?

What does the collector for
(evens-only*&co (cdr l) . . .)

do?

Does this all make sense now?

What is the value of
(evens-only*&co l the-last-friend)

where
l is ((9 1 2 8) 3 10 ((9 9) 7 6) 2) and
the-last-friend is defined as follows:

(define the-last-friend
(lambda (newl product sum)

(cons sum
(cons product

newl))))

146

It uses evens-only*&co to visit the cdr of l
and to collect the list that is like (cdr l) ,
without the odd numbers of course, as well
as the product of the even numbers and the
sum of the odd numbers.

Yes.

The yet-to-be-determined collector is used,
just as before.

It conses together the results for the lists in
the car and the cdr and multiplies and adds
the respective products and sums. Then it
passes these values to the old collector:

(lambda (al ap as)
(evens-only*&co (cdr l)

(lambda (dl dp ds)
(col (cons al dl)

(x ap dp)
(+ as ds))))) .

Perfect .

(38 1920 (2 8) 10 (() 6) 2) .

Chapter 8

Whew! Is your brain twisted up now? Go eat a pretzel ; don't forget the mustard.

Lambda the Ultimate 147

Are you in the mood for caviar

What is (looking a lat)
where a is caviar
and

lat is (6 2 4 caviar 5 7 3)

(looking a lat)
where a is caviar
and

lat is (6 2 grits caviar 5 7 3)

Were you expecting something different?

True enough, but what is the first number
in the lat?

And what is the sixth element of lat

And what is the seventh element?

So looking clearly can't find caviar

Here is looking

(define looking
(lambda (a lat)

(keep-looking a (pick 1 lat) lat)))

Write keep-looking

(looking a lat)
where a is caviar
md

lat is (6 2 4 caviar 5 7 3)

. . . and Again, and Again, and Again, . . .

Then we must go looking for it.

#t ,
caviar is obviously in lat .

#f.

Yes, caviar is still in lat .

6.

7.

3.

True enough ,
because the third element is grits, which
does not even resemble caviar .

We did not expect you to know this .

#t ,
because (keep-looking a 6 lat) has the same
answer as (keep-looking a (pick 1 lat) lat) .

149

What is (pick 6 lat)
where

lat is (6 2 4 caviar 5 7 3)

So what do we do?

What is (pick 7 lat)
where

lat is (6 2 4 caviar 5 7 3)

So what is (keep-looking a 3 lat)
where a is caviar
and

lat is (6 2 4 caviar 5 7 3)

Which is?

Write keep-looking

Can you guess what sorn stands for?

What is unusual about keep-looking

We call this "unnatural" recursion.

150

7.

(keep-looking a 7 lat)
where a is caviar
and

lat is (6 2 4 caviar 5 7 3) .

3 .

It is the same as
(keep-looking a 4 lat) .

#t .

(define keep-looking
(lambda (a sorn lat)

(cond
((number? sorn)
(keep-looking a (pick sorn lat) lat))

(else (eq? sorn a)))))

Symbol or number.

It does not recur on a part of lat .

It is truly unnatural .

Chapter 9

Does keep-looking appear to get closer to its
goal?

Does it always get closer to its goal?

That is correct. A list may be a tup.

What is (looking a lat)
where a is caviar
and

lat is (7 1 2 caviar 5 6 3)

Yes, it is strange. What happens?

Functions like looking are called partial
functions. What do you think the functions
we have seen so far are called?

Can you define a shorter function that does
not reach its goal for some of its arguments?

For how many of its arguments does eternity
reach its goal?

Is eternity partial?

What is (shift x)
where

x is ((a b) c)

. . . and Again, and Again, and Again, . . .

Yes, from all available evidence.

Sometimes the list may contain neither caviar
nor grits.

Yes, if we start looking in (7 2 4 7 5 6 3), we
will never stop looking.

This is strange!

We keep looking and looking and looking . . .

They are called total .

(define eternity
(lambda (x)

(eternity x)))

None, and this i s the most unnatural
recursion possible.

It is the most partial function.

(a (b c)) .

151

What is (shift x)
where

x is ((a b) (c d))

Define shift

Describe what shift does.

Now look at this function:

(define align
(lambda (pora)

(cond
((atom? pora) pora)
((a-pair? (first pora))
(align (shift pora)))

(else (build (first pora)
(align (second pora)))))))

What does i t have in common with
keep-looking

Why are we not guaranteed that align makes
progress?

Which commandment does that violate?

152

(a (b (c d))) .

This i s trivial ; it's not even recursive!

(define shift
(lambda (pair)

(build (first (first pair))
(build (second (first pair))

(second pair)))))

Here are our words:
"The function shift takes a pair whose first
component is a pair and builds a pair by
shifting the second part of the first
component into the second component."

Both functions change their arguments for
their recursive uses but in neither case is the
change guaranteed to get us closer to the
goal.

In the second cond-line shift creates an
argument for align that is not a part of the
original argument .

The Seventh Commandment .

Chapter 9

Is the new argument at least smaller than
the original one?

Why not?

And?

Can you write a function that counts the
number of atoms in align 's arguments?

Is align a partial function?

Is there something else that changes about
the arguments to align and its recursive uses?

In what way is the first component simpler?

Doesn't this mean that length * is the wrong
function for determining the length of the
argument? Can you find a better function?

How much more attention should we pay to
the first component?

. . . and Again, and Again, and Again, . . .

It does not look that way.

The function shift only rearranges the pair it
gets.

Both the result and the argument of shift
have the same number of atoms.

No problem:

(define length *
(lambda (pora)

(cond
((atom ? pora) 1)
(else

(+ (length * (first porn))
(length * (second porn)))))))

We don 't know yet . There may be arguments
for which it keeps aligning things.

Yes , there is. The first component of a pair
becomes simpler, though the second
component becomes more complicated.

It is only a part of the original pair's first
component .

A better function should pay more attention
to the first component.

At least twice as much.

153

Do you mean something like weight*

(define weight*
(lambda (pora)

(cond
((atom ? pora) 1)
(else

(+ (x (weight* (first pora)) 2)
(weight* (second pora)))))))

What i s (weight* x)
where

x is ((a b) c)

And what is (weight* x)
where

x is (a (b c))

Does this mean that the arguments get
simpler?

Is align a partial function?

Here is shujjle which is like align but uses
revpair from chapter 7, instead of shift :

(define shujjle
(lambda (pora)

(cond
((atom ? pora) pora)
((a-pair? (first pora))
(shujjle (revpair pora)))

(else (build (first pora)
(shujjle (second pora)))))))

Does this mean that shujjle i s total?

154

That looks right .

7.

5 .

Yes, the weight* 's of align's arguments
become successively smaller.

No, it yields a value for every argument .

The functions shujjle and revpair swap the
components of pairs when the first
component is a pair.

We don't know.

Chapter 9

Let 's try it . What is the value of (shuffte x)
where

x is (a (b c))

(shuffte x)
where

x is (a b)

Okay, let 's try something interesting. What
is the value of (shuffte x)
where

x is ((a b) (c d))

And how are we going to do that?

Doesn't this mean that we need to know the
value of (shuffte (revpair pora))
where

(revpair pora) is ((a b) (c d))

And?

Is this function total?

(define C
(lambda (n)

(cond
((one ? n) 1)
(else

(cond
((even ? n) (C (+ n 2)))
(else (C (add1 (x 3 n)))))))))

. . . and Again, and Again, and Again, . . .

(a (b c)) .

(a b) .

To determine this value, we need to find out
what (shuffte (revpair pora)) is
where

pora is ((a b) (c d)) .

We are going to determine the value of
(shuffte pora)

where pora is ((c d) (a b)) .

Yes , we do.

The function shuffte is not total because it
now swaps the components of the pair again,
which means that we start all over.

It doesn 't yield a value for 0, but otherwise
nobody knows. Thank you, Lothar Collatz

(1910-1990) .

155

What is the value of (A 1 0)

(A 1 1)

(A 2 2)

Here is the definition of A

(define A
(lambda (n m)

(cond
((zero ? n) (addl m))
((zero ? m) (A (subl n) 1))
(else (A (subl n)

(A n (subl m)))))))

What does A have in common with shuffie
and looking

How about an example?

Does A always give an answer?

Then what is (A 4 3)

What does that mean?

156

2.

3 .

7 .

Thank you , Wilhelm Ackermann
(1853-1946) .

A's arguments, like shuffie's and looking's,
do not necessarily decrease for the recursion.

That 's easy: (A 1 2) needs the value of
(A 0 (A 1 1)) . And that means we need the
value of (A 0 3) .

Yes, i t i s total .

For all practical purposes , there is no answer.

The page that you are reading now will have
decayed long before we could possibly have
calculated the value of (A 4 3) .

But answer came there none-
And this was scarcely odd, because

They 'd eaten every one.

The Walrus and The Carpenter
-Lewis Carroll

Chapter 9

Wouldn't it be great if we could write a
function that tells us whether some function
returns with a value for every argument?

Okay, let 's write it .

Then let 's make it simpler. For a warm-up
exercise, let 's focus on a function that checks
whether some function stops for just the
empty list , the simplest of all arguments.

Here is the beginning of this function:

(define will-stop ?
(lambda U)

. . .))

Can you fill in the dots?

Does will-stop ? return a value for all
arguments?

Is will-stop ? total then?

Then let 's make up some examples. Here is
the first one. What is the value of
(will-stop ? f)
where

f is length

So?

. . . and Again, and Again, and Again, . . .

It sure would. Now that we have seen
functions that never return a value or return
a value so late that it is too late, we should
have some tool like this around.

It sounds complicated. A function can work
for many different arguments.

That would simplify it a lot .

What does it do?

That 's the easy part : we said that it either
returns #t or #f, depending on whether the
argument stops when applied to () .

Yes , i t i s . I t always returns #t or #f.

We know that (length l) is 0
where l is () .

Then the value of (will-stop ? length) should
be #t .

157

Absolutely. How about another example?
What is the value of (will-stop ? eternity)

Does this mean the value of
(will-stop ? eternity) is #f

Do we need more examples?

Okay, here is a function that could be an
interesting argument for will-stop ?

(define last-try
(lambda (x)

(and (will-stop ? last-try)
(eternity x))))

What i s (will-stop ? last-try)

We need to test it on ()

What is the value of

(and (will-stop ? last-try)
(eternity (quote ())))

There are only two possibilities . Let 's say
(will-stop ? last-try) is #f

So (last-try (quote ())) stopped, right?

But didn't will-stop ? predict just the
opposite?

158

(eternity (quote ())) doesn 't return a value.
We just saw that .

Yes , it does.

Perhaps we should do one more example.

What does it do?

If we want the value of (last-try (quote ())) ,
we must determine the value of

(and (will-stop ? last-try)
(eternity (quote ()))) .

That depends on the value of

(will-stop ? last-try) .

Okay, then (and #f (eternity (quote ()))) ,
i s #f, since (and #f . . .) i s always #f.

Yes, it did.

Yes, it did. We said that the value of
(will-stop ? last-try) was #f, which really
means that last-try will not stop.

Chapter 9

So we must have been wrong about
(will-stop ? last-try)

Fine. If (will-stop ? last-try) is #t
what is the value of (last-try (quote ()))

What i s the value of (eternity (quote ()))

But that means we were wrong again!

What do you think this means?

Is this unique?

Is there any way around this problem?

What is (define . . .)

. . . and Again, and Again, and Again, . . .

That 's correct . It must return #t , because
will-stop ? always gives an answer. We said it
was total .

Now we just need to determine the value of
(and #t (eternity (quote ()))) ,

which i s the same as the value of
(eternity (quote ())) .

It doesn't have a value. We know that it
doesn't stop.

True, since this time we said that
(will-stop ? last-try) was #t .

Here is our meaning:
"We took a really close look at the two
possible cases . If we can define will-stop ?,
then

(will-stop ? last-try)
must yield either #t or #f. But it
cannot-due to the very definition of what
will-stop ? is supposed to do. This must
mean that will-stop ? cannot be defined."

Yes , it is. It makes will-stop ? the first
function that we can describe precisely but
cannot define in our language.

No. Thank you ,
Alan M. Turing (1912-1954)

and
Kurt Godel (1906-1978) .

This is an interesting question . We just saw
that (define . . .) doesn't work for will-stop ? .

159

So what are recursive definitions?

Is this the function length

(define length
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

What if we didn't have (define . . .)
anymore? Could we still define length

What does this function do?

(lambda (l)
(cond

((null? l) 0)
(else (add1 (eternity (cdr l))))))

What happens when we use i t on a
non-empty list?

What does it mean for this function that
looks like length

Suppose we could name this new function.
What would be a good name?

How would you write a function that
determines the length of lists that contain
one or fewer items?

160

Hold tight , take a deep breath, and plunge
forward when you're ready.

It sure is.

Without (define . . .) nothing, and especially
not the body of length , could refer to length .

It determines the length of the emi,tY list
and nothing else.

No answer. If we give eternity an argument,
it gives no answer.

It just won't give any answer for non-empty
lists.

lengtho
because the function can only determine
the length of the empty list .

Well , we could try the following.

(lambda (l)
(cond

((null? l) 0)
(else (add1 (lengtho (cdr l))))))

Chapter 9

Almost, but (define . . .) doesn't work for
lengtho

And what 's a good name for this function?

Is this the function that would determine the
lenghts of lists that contain two or fewer
items?

(lambda (l)
(cond

((null? l) 0)
(else

(add1
((lambda (l)

(cond
((null? l) 0)
(else

(add1
((lambda (l)

(cond
((null? l) 0)
(else

(add1
(eternity
(cdr l))))))

(cdr l))))))
(cdr l))))))

Now, what do you think recursion is?

. . . and Again, and Again, and Again, . . .

So, replace length0 by its definition.

(lambda (l)
(cond

((null? l) 0)
(else

(add1
((lambda (l)

(cond
((null? l) 0)
(else (add1

(eternity (cdr l))))))
(cdr l))))))

That 's easy: length9 .

Yes, this is length�2 . We just replace eternity
with the next version of length .

What do you mean?

161

Well, we have seen how to determine the
length of a list with no items, with no more
than one item , with no more than two items,
and so on. How could we get the function
length back?

How long are the lists that we can make?

But we can 't write an infinite function .

And we still have all these repetitions and
patterns in these functions .

What do these patterns look like?

Let 's do it !

Do you mean this?

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

eternity)

162

If we could write an infinite function in the
style of lengtho , length9 , length9, . . . , then
we could write length00 , which would
determine the length of all lists that we can
make.

Well , a list is either empty, or it contains one
element , or two elements, or three, or four,
. . . , or 1001 , . . .

No, we can't .

Yes, we do.

All these programs contain a function that
looks like length . Perhaps we should abstract
out this function : see The Ninth
Commandment .

We need a function that looks just like length
but starts with (lambda (length) . . .) .

Yes, that 's okay. I t creates length0 .

Chapter 9

Rewrite length9 in the same style.

Do we have to use length to name the
argument?

How about length9

Close, but there are still repetitions.

Where should we start?

. . . and Again, and Again, and Again, . . .

((lambda (/)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (/ (cdr l)))))))

((lambda (g)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (g (cdr l)))))))

eternity))

No, we just used f and g. As long as we are
consistent , everything's okay.

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

eternity)))

True. Let 's get rid of them.

Name the function that takes length as an
argument and that returns a function that
looks like length .

163

What 's a good name for this function?

Okay, do this to lengtho

Is this length9

((lambda (mk-length)
(mk-length
(mk-length eternity)))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))

Can you write length9 in this style?

What is recursion like?

164

How about mk-length for "make length" ?

No problem.

((lambda (mk-length)
(mk-length eternity))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))

It sure is . And this is length9 .

((lambda (mk-length)
(mk-length
(mk-length
(mk-length eternity))))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))

Sure. Here i t is.

((lambda (mk-length)
(mk-length
(mk-length
(mk-length
(mk-length eternity)))))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))

It is like an infinite tower of applications of
mk-length to an arbitrary function.

Chapter 9

Do we really need an infinite tower?

Could we guess how many we need?

When do we find out that we didn't guess a
large enough number?

What if we could create another application
of mk-length to eternity at this point?

Well , since nobody cares what function we
pass to mk-length we could pass it mk-length
initially.

Then is this still lengtho

((lambda (mk-length)
(mk-length mk-length))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1

(length (cdr l))))))))

Why would we want to do that?

. . . and Again, and Again, and Again, . . .

Not really of course. Everytime we use length
we only need a finite number, but we never
know how many.

Sure, but we may not guess a large enough
number.

When we apply the function eternity that is
passed to the innermost mk-length .

That would only postpone the problem by
one, and besides , how could we do that?

That 's the right idea. And then we invoke
mk-length on eternity and the result of this
on the cdr so that we get one more piece of
the tower.

Yes, we could even use mk-length instead of
length .

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else (add1

(mk-length (cdr l))))))))

All names are equal , but some names are
more equal than others . 1

1 With apologies t o George Orwell (1903- 1950) .

165

True: as long as we use the names
consistently, we are just fine.

Now that mk-length is passed to mk-length
can we use the argument to create an
additional recursive use?

What is the value of
(((lambda (mk-length)

(mk-length mk-length))
(lambda (mk-length)

(lambda (l)

l)

(cond
((null? l) 0)
(else (add1

((mk-length eternity)
(cdr l))))))))

where
l is (app les)

Could we do this more than once?

166

And mk-length is a far more equal name than
length . If we use a name like mk-length , it is
a constant reminder that the first argument
to mk-length is mk-length .

Yes, when we apply mk-length once, we get
length9

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else (add1

((mk-length eternity)
(cdr l))))))))

This is a good exercise. Work i t out with
paper and pencil.

Yes , just keep passing mk-length to itself,
and we can do this as often as we need to!

Chapter 9

What would you call this function?

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else (add1

((mk-length mk-length)
(cdr l))))))))

How does i t work?

One problem is left : it no longer contains the
function that looks like length

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else (ad

.-
d1 ______ --,

<I< mk-length mk-length) I
(cdr l))))))))

Can you fix that?

Why?

. . . and Again, and Again, and Again, . . .

It is length , of course.

It keeps adding recursive uses by passing
mk-length to itself, just as it is about to
expire.

We could extract this new application of
mk-length to itself and call it length .

Because it really makes the function length .

167

How about this?

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
((lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

Yes, this looks just fine.

Let 's see whether it works. Okay.

What is the value of It should be 1 .

(((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
((lambda (length)

(lambda (l)

l)
where

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

l i s (apples)

First , we need the value of
((lambda (mk-length)

(mk-length mk-length))
(lambda (mk-length)

((lambda (length)
(lambda (l)

That 's true, because the value of this
expression is the function that we need to
apply to l where

168

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

l i s (apples)

Chapter 9

So we really need the value of
((lambda (mk-length)

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length)))
(lambda (mk-length)

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length))))

But then we really need to know the value of
((lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else (add1 (length (cdr l)))))))

((lambda (mk-length)
((lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length)))
(lambda (mk-length)

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length)))))

. . . and Again, and Again, and Again, . . .

True enough.

Yes , that 's true, too. Where is the end of
this? Don't we also need to know the value
of

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

((lambda (mk-length)
((lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length)))
(lambda (mk-length)

((lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))

(mk-length mk-length))))))

169

Yes, there is no end to it . Why?

Is this strange?

But now that we have extracted
(mk-length mk-length)

from the function that makes length
it does not return a function anymore.

Turn the application of mk-length to itself in
our last correct version of length into a
function :

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else (add1

(j'(m-k---le-ng_t_h -m-k--l-en-g-th---,) l
(cdr l))))))))

Here i s a different way. If f i s a function of
one argument , is (lambda (x) (f x)) a
function of one argument?

If (mk-length mk-length) returns a function
of one argument , does

(lambda (x)
((mk-length mk-length) x))

return a function of one argument?

170

Because we just keep applying mk-length to
itself again and again and again . . .

It is because mk-length used to return a
function when we applied it to an argument.
Indeed, it didn 't matter what we applied it
to.

No it doesn 't . So what do we do?

How?

Yes, it is.

Actually,
(lambda (x)

((mk-length mk-length) x))
i s a function!

Chapter 9

Okay, let 's do this to the application of
mk-length to itself.

Move out the new function so that we get
length back.

Is it okay to move out the function?

Can we extract the function in the box that
looks like length and give it a name?

. . . and Again, and Again, and Again, . . .

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
(lambda (l)

(cond
((null? l) 0)
(else

(add1
("'(1=-a-m-;-b--:d;-a'(-x);---------.,

((mk-length mk-length) x))
(cdr l))))))))

((lambda (mk-length)
(mk-length mk-length))

(lambda (mk-length)
((lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else

(add1 (length (cdr l)))))))
(lambda (x)

((mk-length mk-length) x)))))

Yes, we just always did the opposite by
replacing a name with its value. Here we
extract a value and give it a name.

Yes , it does not depend on mk-length at all !

171

Is this the right function?

((lambda (le)
((lambda (mk-length)

(mk-length mk-length))
(lambda (mk-length)

(le (lambda (x)
((mk-length mk-length) x))))))

(lambda (length)
(lambda (l)

(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))

Yes.

What did we actually get back? We extracted the original function mk-length.

Let 's separate the function that makes length That 's easy.
from the function that looks like length ,....------------------.,

Does this function have a name?

Does (define . . .) work again?

Do you now know why Y works?

172

(lambda (le)
((lambda (mk-length)

(mk-length mk-length))
(lambda (mk-length)

(le (lambda (x)
((mk-length mk-length) x))))))

Yes, i t i s called the applicative-order Y
combinator.

(define Y
(lambda (le)

((lambda (/) (/ f))
(lambda (/)

(le (lambda (x) ((/ f) x)))))))

Sure, now that we know what recursion is.

Read this chapter just one more time and
you will.

Chapter 9

What is (Y Y)

Does your hat still fit?

. . . and Again, and Again, and Again, . . .

Who knows, but it works very hard.

Perhaps not after such a mind stretcher.

Stop the World-/ Want to Get Off.
Leslie Bricusse and Anthony Newley

173

:[],(® €:)
� &5 � W�

� J�SJID � tij Cl1i00� �

An entry is a pair of lists whose first list is a
set . Also, the two lists must be of equal
length. Make up some examples for entries.

How can we build an entry from a set of
names and a list of values?

What is (lookup-in-entry name entry)
where name is entree
and

entry is ((appetizer entree beverage)
(food tastes good))

What i f name i s dessert

How can we accomplish this?

How many arguments do you think this extra
function should take?

What Is the Value of All of This?

Here are our examples:

((appetizer entree beverage)
(pate boeuf vin))

and
((appetizer entree beverage)
(beer beer beer))

and
((beverage dessert)
((food is) (number one with us))) .

(define new-entry build)

Try to build our examples with this function.

tastes.

In this case we would like to leave the
decision about what to do with the user of
lookup-in-entry .

lookup-in-entry takes an additional argument
that is invoked when name is not found in
the first list of an entry.

We think it should take one, name. Why?

175

Here is our definition of lookup-in-entry

(define lookup-in-entry
(lambda (name entry entry-f)

(lookup-in-entry-help name
(first entry)
(second entry)
entry-f)))

Finish the function lookup-in-entry-help

(define lookup-in-entry-help
(lambda (name names values entry-f)

(cond
()
()

())))

A table (also called an environment) i s a list
of entries. Here is one example: the empty
table, represented by ()
Make up some others.

Define the function extend-table which takes
an entry and a table (possibly the empty
one) and creates a new table by putting the
new entry in front of the old table.

What is
(lookup-in-table name table table-f)

where
name is entree
table is (((entree dessert)

(spaghetti spumoni))

and

((appetizer entree beverage)
(food tastes good)))

table-/ i s (lambda (name) . . .)

176

(define lookup-in-entry-help
(lambda (name names values entry-f)

(cond
((null? names) (entry-/ name))
((eq? (car names) name)
(car values))

(else (lookup-in-entry-help name
(cdr names)
(cdr values)
entry-f)))))

Here is another one:
(((appetizer entree beverage)

(pate boeuf vin))
((beverage dessert)
((food is) (number one with us)))) .

(define extend-table cons)

It could be either spaghetti or tastes, but
lookup-in-table searches the list of entries in
order. So it is spaghetti .

Chapter 1 0

Write lookup-in-table
Hint : Don't forget to get some help.

Can you describe what the following function
represents:

(lambda (name)
(lookup-in-table name

(cdr table}
table-f))

In the preface we mentioned that sans serif
typeface would be used to represent atoms.
To this point it has not mattered.
Henceforth, you must notice whether or not
an atom is in sans serif.

Did you notice that "sans serif" was not in
sans serif?

Have we chosen a good representation for
expressions?

What kind of functions?

Do you remember value from chapter 6?

What is the value of
(car (quote {a b c)))

What Is the Value of All of This?

(define lookup-in-table
(lambda (name table table-f)

(cond
((null? table) (table-! name))
(else (lookup-in-entry name

(car table}
(lambda (name)

(lookup-in-table name
(cdr table}
table-f)))))))

This function is the action to take when the
name is not found in the first entry.

Remember to be very conscious as to whether
or not an atom is in sans serif.

We hope so. This is "sa ns serif'
in sans serif.

Yes. They are all S-expressions so they can
be data for functions.

For example, value.

Recall that value is the function that returns
the natural value of expressions.

We don't even know what (quote {a b c)) is.

177

What is the value of
(cons rep-a

(cons rep-b
(cons rep-c

(quote ()))))

where
rep-a is a
rep-b is b

and
rep-c is c

Great . And what is the value of
(cons rep-car

(cons (cons rep-quote
(cons

(cons rep-a
(cons rep-b

(cons rep-c
(quote ()))))

(quote ())))
(quote ())))

where
rep-car is car
rep-quote is quote
rep-a is a
rep-b is b

and
rep-c is c

What is the value of
(car (quote (a b c)))

What i s (value e)
where

e is (car (quote (a b c)))

What is (value e)
where

e is (quote (car (quote (a b c))))

178

It is the same as (a b c) .

It is a representation of the expression:
(car (quote (a b c))) .

a .

a .

(car (quote (a b c))) .

Chapter 1 0

What is (value e)
where

e is (addl 6)

What is (value e)
where e is 6

What is (value e)
where

e is (quote nothing)

What is (value e)
where

e is nothing

What is (value e)
where

e is ((lambda (nothing)
(cons nothing (quote ())))

(quote
(from nothing comes something)))

What is (value e)
where

e is ((lambda (nothing)
(cond

(noth ing (quote something))
(else (quote nothing))))

#t)

What is the type of e
where

e is 6

What is the type of e
where

e is #f

What Is the Value of All of This?

7.

6, because numbers are constants .

nothing.

nothing has no value.

((from nothing comes something)) .

something.

*const .

*const .

179

What is {value e)
where

e is #f

What is the type of e
where e is cons

What is (value e)
where e is car

What is the type of e
where

e is {quote nothing)

What is the type of e
where

e is nothing

What is the type of e
where

e is (lambda (x y) (cons x y))

What is the type of e
where

e is ((lambda (nothing)
(cond

(nothing (quote something))
(else (quote nothing))))

#t)

What is the type of e
where

e is (cond

180

(nothing (quote something))
(else (quote noth ing)))

#f.

*const.

{primitive car) .

*quote .

*identifier.

*lambda.

*application.

*cond.

Chapter 10

How many types do you think there are?

How do you think we should represent types?

If actions are functions that do "the right
thing" when applied to the appropriate type
of expression, what should value do?

Do you remember atom-to-function from
chapter 8?

Below is a function that produces the correct
action (or function) for each possible
S-expression:

(define expression-to-action
(lambda (e)

(cond
((atom ? e) (atom-to-action e))
(else (list-to-action e)))))

Define the function atom-to-action1

1 Ill-formed S-expressions such as (quote a b), () ,
(lambda (#t) #t), (lambda (5) 5), (l ambda (car) car) ,
(lambda a) , (cond (3 c) (else b) (6 a)) , and (1 2) are not
considered here. They can be detected by an appropriate
function to which S-expressions are submitted before they
are passed on to value.

What Is the Value of All of This?

We found six:
*const
*quote
*identifier
*lambda
*cond

and
*application.

We choose functions. We call these functions
"actions."

You guessed it. It would have to find out the
type of expression it was passed and then use
the associated action .

We found . atom-to-function useful when we
rewrote value for numbered expresssions .

(define atom-to-action
(lambda (e)

(cond
((number? e) *const)
((eq? e #t) *const)
((eq? e #f) *const)
((eq? e (quote cons)) *const)
((eq? e (quote car)) *const)
((eq? e (quote cdr)) *const)
((eq? e (quote nu l l ?)) *const)
((eq? e (quote eq?)) *const)
((eq? e (quote atom?)) *const)
((eq? e (quote zero?)) *const)
((eq? e (quote add1)) *const)
((eq? e (quote sub1)) *const)
((eq? e (quote number?)) *const)
(else *identifier))))

181

Now define the help function list-to-action

Assuming that expression-to-action works,
we can use it to define value and meaning

(define value
(lambda (e)

(meaning e (quote ()))))

(define meaning
(lambda (e table)

((expression-to-action e) e table)))

What is (quote ()) in the definition of value

(define list-to-action
(lambda (e)

(cond
((atom ? (car e))
(cond

((eq? (car e) (quote quote))
*quote)

((eq? (car e) (quote lambda})
*lambda)

((eq? (car e) (quote cond}}
*cond}

(else *application)))
(else *application))))

It is the empty table. The function value, 1
together with all the functions it uses, is
called an interpreter.

1 The function value approximates the function eval
available in Scheme (and Lisp).

Actions do speak louder than words .

How many arguments should actions take
according to the above?

182

Two, the expression e and a table.

Chapter 1 0

Here is the action for constants.

(define *const
(lambda (e table)

(cond
((number? e) e)
((eq? e #t) #t)
((eq? e #f) #f)
(else (build (quote primitive) e)))))

Is it correct?

Here is the action for *quote

(define *quote
(lambda (e table)

(text-of e)))

Define the help function text-of

Have we used the table yet?

Why do we need the table?

Given that the table contains the values of
identifiers, write the action *identifier

Here is initial-table

(define initial-table
(lambda (name)

(car (quote ()))))

When is it used?

What is the value of (lambda (x) x)

What Is the Value of All of This?

Yes, for numbers, it just returns the
expression, and this is all we have to do for
0, 1 , 2, . . .
For #t , it returns true.
For #f , it returns false.
And all other atoms of constant type
represent primitives .

(define text-of second)

No, but we will in a moment .

To remember the values of identifiers.

(define *identifier
(lambda (e table)

(lookup-in-table e table initial-table)))

Let's hope never. Why?

We don't know yet , but we know that it
must be the representation of a non-primitive
function.

183

How are non-primitive functions different
from primitives?

So when we want to use a non-primitive we
need to remember its formal arguments and
its function body.

And what else do we need to remember?

And how do we represent this?

Here is the action *lambda

(define *lambda
(lambda (e table)

(build (quote non-prim itive)
(cons table (cdr e)))))

What is (meaning e table)
where

e is (l ambda (x) (cons x y))
and

table is (((y z) ((8) 9)))

I t i s probably a good idea to define some
help functions for getting back the parts in
this three element list (i .e. , the table, the
formal arguments, and the body) . Write
table-of formals-of and body-of

Describe (cond . . .) in your own words .

184

We know what primitives do; non-primitives
are defined by their arguments and their
function bodies.

At least. Fortunately this is just the cdr of a
l ambda expression.

We will also put the table in, just in case we
might need it later.

In a list , of course.

(non-primit ive
((((y z) ((8) 9))) (x) (cons x y)))

�---v----� � �

table formals body

(define table-of first)

(define formals-of second)

(define body-of third)

It is a special form that takes any number of
cond-lines . It considers each line in turn. If
the question part on the left is false, it looks
at the rest of the lines . Otherwise it proceeds
to answer the right part . If it sees an
else-line, it treats that cond-line as if its
question part were true.

Chapter 1 0

Here is the function evcon that does what we
just said in words:

(define evcon
(lambda (lines table)

(cond
((else? (question-of (car lines)))
(meaning (answer-of (car lines))

table))
((meaning (question-of (car lines))

table)
(meaning (answer-of (car lines))

table))
(else (evcon (cdr lines) table)))))

Write else? and the help functions
question-of and answer-of

Didn't we violate The First Commandment?

Now use the function evcon to write the
*cond action.

Aren't these help functions useful?

Do you understand *cond now?

How can you become familiar with it?

What Is the Value of All of This?

(define else ?
(lambda (x)

(cond
((atom ? x) (eq? x (quote else)))
(else #f))))

(define question-of first)

(define answer-of second)

Yes, we don 't ask (null? lines) , so one of the
questions in every cond better be true.

(define *cond
(lambda (e table)

(evcon (cond-lines-of e) table)))

(define cond-lines-of cdr)

Yes, they make things quite a bit more
readable. But you already knew that .

Perhaps not .

The best way is to try an example. A good
one is:

(*cond e table)
where

e is (cond (coffee klatsch) (else party))
and

table is (((coffee) (#t))
((k latsch party) (5 (6)))) .

185

Have we seen how the table gets used?

But how do the identifiers get into the table?

How is an application represented?

How does an application differ from a special
form, like (and . . .) (or . . .) or (cond . . .)

Before we can apply a function, do we have
to get the meaning of all of its arguments?

Write a function evlis that takes a list of
(representations of) arguments and a table,
and returns a list composed of the meaning
of each argument .

What else do we need before we can
determine the meaning of an application?

And what then?

Here is *application

(define *application
(lambda (e table)

(apply
(meaning (function-of e) table)
(evlis (arguments-of e) table))))

Is i t correct?

186

Yes, *lambda and *identifier use it .

In the only action we have not defined:
*application .

An application is a list of expressions whose
car position contains an expression whose
value is a function .

An application must always determine the
meaning of all its arguments.

Yes.

(define evlis
(lambda (args table)

(cond
((null? args) (quote ()))
(else

(cons (meaning (car args) table)
(evlis (cdr args) table))))))

We need to find out what its function-of
means.

Then we apply the meaning of the function
to the meaning of the arguments .

Of course. We just have to define apply,
function-of , and arguments-of correctly.

Chapter 1 0

Write function-of and arguments-of

How many different kinds of functions are
there?

What are the two representations of
functions?

Write primitive ? and non-primitive ?

Now we can write the function apply

What Is the Value of All of This?

(define function-of car)

(define arguments-of cdr)

Two: primitives and non-primitives .

(primitive primitive-name) and
(non-primitive (table formals body))

The list (table formals body) i s called a
closure record.

(define primitive ?
(lambda (l)

(eq? (first l) (quote primitive))))

(define non-primitive ?
(lambda (l)

(eq? (first l) (quote non-prim itive))))

Here i t is:

(define apply1
(lambda (fun vals)

(cond
((primitive ? fun)
(apply-primitive

(second fun) vals))
((non-primitive ? fun)
(apply-closure

(second fun) vals)))))

1 I f fu n does not evaluate to either a primitive o r a
non-primitive as in the expression ((l ambda (x) (x 5)) 3) ,
there i s n o answer. T h e function apply approximates the
function apply available in Scheme (and Lisp) .

187

This is the definition of apply-primitive

(define apply-primitive
(lambda (name vals)

(cond
((eq? name 1)
(cons (first vals) (second vals)))

((eq? name (quote car))
(car (first vals)))

((eq? name (quote cd r))
(2 (first vals)))

((eq? name (quote nu l l?))
(null? (first vals)))

((eq? name (quote eq?))
(3 (first vals) 4))

((eq? name (quote atom?))
(5 (first vals)))

((eq? name (quote zero?))
(zero ? (first vals)))

((eq? name (quote add1))
(add1 (first vals)))

((eq? name (quote sub1))
(sub1 (first vals)))

((eq? name (quote number?))
(number? (first vals))))))

Fill in the blanks.

Is apply-closure the only function left?

How could we find the result of (f a b)
where

f is (l ambda (x y) (cons x y))
a is 1

and
b is (2)

Why can we do this?

188

1. (quote cons)
2. cdr1
3. eq?
4. (second vals)
5. :atom ?

(define :atom ?
(lambda (x)

(cond
((atom ? x) #t)
((null? x) #f)
((eq? (car x) (quote prim itive))
#t)

((eq? (car x) (quote non-primit ive))
#t)

(else #f))))

1 The function apply·primitive could check for applications
of cdr to the empty list or sub1 to 0, etc.

Yes, and apply-closure must extend the table.

That 's tricky. But we know what to do to
find the meaning of

(cons x y)
where

table is (((x y)
(1 (2)))) .

Here, we don 't need apply-closure.

Chapter 1 0

Can you generalize the last two steps?

Have you followed all this?

This is a complicated function and it
deserves an example.

What will be the new arguments of meaning

What Is the Value of All of This?

Applying a non-primitive function-a
closure-to a list of values is the same as
finding the meaning of the closure's body
with its table extended by an entry of the
form

(formals values)
In this entry, formals is the formals of the
closure and values is the result of evlis .

If not , here is the definition of apply-closure.

(define apply-closure
(lambda (closure vals)

(meaning (body-of closure)
(extend-table

(new-entry
(formals-of closure)
vals)

(table-of closure)))))

In the following,
closure is ((((u v w)

(1 2 3))
((x y z)
(4 5 6)))

(x y)
(cons z x))

and
vals is ((a b c) (d e f)) .

The new e for meaning will b e (cons z x) and
the new table for meaning will be

(((x y)
((a b c) (d e f)))

((u v w)
(1 2 3))

((x y z)
(4 5 6))) .

189

What is the meaning of (cons z x)
where z is 6
and

x is (a b c)

Let 's find the meaning of all the arguments.
What is

(evlis args table)
where

args is (z x)
and

table is (((x y)
((a b c) (d e f)))

((u v w)
(1 2 3))

((x y z)
(4 5 6)))

What i s the (meaning e table)
where e is z

What is (meaning e table)
where e is x

So, what is the result of evlis

What is (meaning e table)
where e is cons

190

The same as
(meaning e table)

where
e is (cons z x)

and
table is (((x y)

((a b c) (d e f)))
((u v w)
(1 2 3))

((x y z)
(4 5 6))) .

In order to do this , we must find both
(meaning e table)

where
e is z

and
(meaning e table)

where
e is x.

6, by using *identifier.

(a b c) , by using *identifier.

(6 (a b c)) , because evlis returns a list of the
meanings.

(prim itive cons) , by using *const .

Chapter 1 0

We are now ready to (apply fun vals)
where

fun is (primitive cons)
and

vals is (6 (a b c))
Which path should we take?

Which cond-line is chosen for
(apply-primitive name vals)

where
name is cons

and
vals is (6 (a b c))

Are we finished now?

But what about (define . . .)

Is (define . . .) really not needed?

Does that mean we can run the interpreter
on the interpreter if we do the
transformation with the Y combinator?

What makes value unusual?

Should will-stop ? see representations of
expressions?

Does it help?

else

What Is the Value of All of This?

The apply-primitive path.

The third:
((eq? name (quote cons))
(cons (first vals) (second vals))) .

Yes , we are exhausted.

It isn 't needed because recursion can be
obtained from the Y combinator .

Yes , but see The Seasoned Schemer.

Yes, but don't bother.

It sees representations of expressions .

That may help a lot .

No, don't bother-we can play the same
game again. We would be able to define a
function like last-try ? that will show that we
cannot define the new and improved
will-stop ?.

Yes, it 's time for a banquet .

191

You've reached the intermission. What are your options? You could quickly run out and get the
rest of the show, The Seasoned Schemer, or you could read some of the books that we mention
below. All of these books are classics and some of them are quite old ; nevertheless they have
stood the test of time and are all worthy of your notice. Some have nothing whatsoever to do
with mathematics or logic, some have to do with mathematics , but only by way of telling an
interesting story, and still others are just worth discovering. There should be no confusion : these
books are not here to prepare you to read the sequel , they are just for your entertainment . At
the end of The Seasoned Schemer you can find a set of references to Scheme and the reference
to Common Lisp. Do not feel obliged to jump ahead to the next book. Take some time off and
read some of these books instead. Then, when you have relaxed a bit , perhaps removed some
of the calories that were foisted upon you, go ahead and dive into the sequel . Enjoy!

Abbott, Edwin A. Flatland . Dover Publications , Inc . , New York, 1952. (Original publica­
tion: Seeley and Co. , Ltd . , London, 1884.)

Carroll, Lewis . The Annotated Alice: Alice 's Adventures in Wonderland and Through the
Looking Glass. Clarkson M. Potter, Inc . , New York, 1960. Introduction and notes by
Martin Gardner. Original publications under different titles: Alice 's Adventures Under
Ground and Through the Looking Glass and What Alice Found There, Macmillan and
Company, London 1865 and 1872, respectively.

Halmos, Paul R. Naive Set Theory. Litton Educational Publishers , New York, 1960.

Hein, Piet . Grooks. The MIT Press, Cambridge, Massachusetts, 1960.

Hofstadter, Douglas R. Godel, Escher, Bach: an Eternal Golden Bmid. Basic Books, Inc . ,
New York, 1979.

Nagel, Ernest and James R. Newman. Godel 's Proof. New York University Press, New
York, 1958.

P6lya, Gyorgy. How to Solve It. Doubleday and Co. , New York, 1957.

Smullyan, Raymond. To Mock a Mockingbird And Other Logic Puzzles Including an
Amazing Adventure in Combinatory Logic. Alfred A. Knopf, Inc . , New York, 1985.

Suppes, Patrick. Introduction to Logic. Van Nostrand Co. , Princeton , New Jersey, 1957.

Intermission 193

Index

*application, 186 eq?-c , 127
*cond , 185 eq?-salad , 128
*const , 183 eq?-tuna, 136
*identifier, 183 eqan ?, 78
*lambda, 184 eqlist ?, 91 , 92, 94
*quote , 183 eqset ?, 1 14, 1 1 5
+, 60, 108 equal?, 93

= , 61 eternity , 151
x , 65 evcon, 185
+ , 75 even ?, 144
t, 74 evens-only * , 144
< , 73 evens-only *fjco , 145
= , 74 evlis , 186
> , 72, 73 expression-to-action , 181
???, 74 extend-table , 176
1st-sub-exp, 105, 106
2nd-sub-exp, 106 first , 1 19

firsts , 43, 44, 46
A, 156 formals-of , 184
a-friend , 138 fullfun ?, 122
a-pair?, 1 18 fun ?, 120
add1 , 59 function-of , 187
addtup, 64
align , 152 initial-table , 183
all-nums , 78 insert-g, 132
answer-of , 185 insertL, 5 1 , 132
apply , 187 insertL * , 86
apply-closure, 189 insertL-f , 130
apply-primitive , 188 insertR, 48-50, 132
arguments-of , 187 insertR *, 82
atom? , 10 insertR-f , 130
atom-to-action , 181 intersect , 116
atom-to-function, 134 intersect?, 1 15

intersect all , 1 1 7
body-of , 184
build , 1 19 keep-looking , 150

C, 155 last-friend , 140
cond-lines-of , 185 last-try , 158
cookies , 123 lat ?, 16, 19, 109

latest-friend , 139
difference, 1 1 7 leftmost , 88

edd1 , 108
length , 76, 160

else ? , 185
length * , 153

Index 195

list-to-action, 182
looking , 149
lookup-in-entry, 176
lookup-in-entry-help , 176
lookup-in-table , 177

makeset , 112
meaning , 182
member* , 87
member?, 22
multiinsertL, 56 , 57, 141
multiinsertLR , 141
multiinsertLR&co , 142, 143
multiinsertR, 56, 141
multirember, 53, 135
multirember&co , 137
multirember-eq?, 136
multirember-f , 135
multiremberT , 137
multisubst , 57

new-entry, 175
new-friend, 139
no-nums , 77
non-primitive ?, 187
numbered ?, 99-101

occur , 78
occur* , 85
one-to-one ?, 122
one ?, 79
operator, 106

pick , 76
primitive ?, 187

question-of , 185

rember, 34, 37, 41, 94, 95
rember* , 81
rember-eq?, 129

196

rember-f , 126 , 128, 129
rempick , 77, 79
revpair, 121
revrel, 120, 121

second , 119
seconds , 122
seqL, 131
seqR, 131
seqrem, 133
seqS, 133
sero ?, 108
set ?, 1 1 1
shift, 152
shuffle , 154
sub1 , 59
subset ?, 1 13 , 114
subst, 51 , 133
subst* , 85
subst2 , 52

table-of , 184
text-of , 183
the-last-friend , 146
third, 1 19
tup+ , 69, 71

union, 116

value, 102-104, 106, 134, 135, 182

weight* , 154
will-stop ?, 157

XXX , 117

Y , 172
yyy, 133

zub1 , 108

Index

	Cover������������
	The Ten Commandments���������������������������
	The Five Rules���������������������
	Contents���������������
	Foreword���������������
	Preface��������������
	1. Toys��������������
	2. Do It, Do It Again, and Again, and Again ...��
	3. Cons the Magnificent������������������������������
	4. Numbers Games�����������������������
	5. *Oh My Gawd* : It's Full of Stars���
	6. Shadows�����������������
	7. Friends and Relations�������������������������������
	8. Lambda the Ultimate�����������������������������
	9. ... and Again, and Again, and Again, ...��
	10. What Is the Value of All of This?��
	Intermission�������������������
	Index������������

