
CH4: A Dataflow Analysis Framework for
While3Addr

Jonathan Lam

9/11/21

Contents

1 Dataflow analysis fundamentals 2

2 Dataflow analysis for loops 3

3 Analysis execution strategy 4

1



1 Dataflow analysis fundamentals

• A dataflow analysis computes some dataflow information at each
program point in the CFG. We can represent it as a map from all
values to some abstract set, e.g., σ ∈ Var → L = {Z,N,>}.

– Z represents the set of zero values, N represents the set of nonzero
values, and > represents the set of unknown values (due to an
imprecision in the analysis); these are called abstract values

– In zero analysis, we have the abstraction function αZ :

αZ(n) =

{
Z if n = 0

N if n 6= 0
(1)

• Zero analysis can be used to determine if a value will be zero at some
point in the program.

• A flow function maps the dataflow information at the program point
immediately before an instruction to the dataflow information directly
after that instruction. It should represent the semantics of the in-
struction abstractly and in terms of the abstract values tracked by the
analysis.

– We define the flow function for zero analysis to be:

fZ [x := 0](σ) = σ[x 7→ Z] (2)
fZ [x := n](σ) = σ[x 7→ N ] where n 6= 0 (3)
fZ [x := y](σ) = σ[x 7→ σ(y)] (4)

fZ [x := y op z](σ) = σ[x 7→ >] (5)
fZ [goto n](σ) = σ (6)

fZ [if x = 0 goto n](σ) = σ (7)

• The flow function for assignments to arithmetic expressions can be
made more exact by breaking down different cases of operators and
operands.

• Recap: σ denotes the mapping of values to abstract values at a program
point (kind of like a "current state"); α denotes the function used to
map values in σ, and f denotes the transitions between the σ map at
consecutive program points (i.e., over a single instruction) in order to
maintain α

2



• More notation: we can get information about a variable depending on
whether a branch condition is true or false:

fZ [if x = 0 goto n]T (σ) = σ[x 7→ Z] (8)
fZ [if x = 0 goto n]F (σ) = σ[x 7→ N ] (9)

• We will need some kind of initial assumption (initial σ) for the values
of thee variables.

• When there are branch statements, then we have two incoming edges
to a statement. The top (>) value occurs when there are different
values coming from different branches.

• The process of combining analysis results along multiple paths is called
a join (␣) operation. Joining two abstract values results in an abstract
value that generalizes the two inputs. We first must define a partial
order (a relation that is reflexive, transitive, and anti-symmetric) over
the abstract values. A set of values L that is equipped with a partial
order v, and for which the least upper bound of any two values in that
ordering l1␣l2 is unique and also in L, is called a join-semilattice (or
simply lattice).

– For zero analysis, the partial order is defined with Z v > and
N v >. Thus Z␣N = >.

• > is the maximal element of a lattice. I.e., ∀l ∈ L.l v >.

• The initial dataflow assumptions for all of the values is thus σ0 : var →
>, unless there are some known initial conditions.

2 Dataflow analysis for loops

• Do a straight-line analysis, then merge the loop point until a fixpoint
(or fixed point) is reached. Then continue to the part after the loop.

• We sacrifice precision in exchange for coverage of all possible execu-
tions, a classic tradeoff.

• The intuition behind correctness is the invariant that at each program
point, the analysis results approximate all the possible program values
that could exist at that point. We can also state that it is true due to
induction, as long as the initial state and the flow functions are correct.

3



• When merging multiple program points, we join the dataflow analysis
from all instructions that could precede it. However, we may not have
encountered all statements that could have preceded it (as is true for
loops): thus we define the bottom (⊥) abstract value, which has the
following properties:

∀l ∈ L.⊥ v l (10)
⊥␣l = l (11)

This can be thought of as the most specific dataflow analysis, and thus
is always taken to be less general than the value it is joined with.

– A set of abstract values L with a partial order v and both a top
and bottom value is called a complete lattice.

3 Analysis execution strategy

• It doesn’t matter which order we evaluate branches; the fixed point
should be reached no matter which branch of an if statement is tra-
versed first.

• A simple algorithm:

for Node n in cfg
results[n] = K
results[0] = initialDataflowInformation

while not at fixed point
pick a node n in program
input = join { results[j] | j in predecessors(n) }
output = flow(n, input)
results[n] = output

To implement the abstract condition, we keep track of whether any
nodes have changed since the last iteration. When picking a node in
the program, we can either say that the nodes are chosen fairly. (This
is not the most efficient, of course – see below.)

• The intuition that this will always terminate (reach a fixpoint) is that
the analysis will always be more general than the previous iteration,
and the lattice is bounded by > (assuming a finite lattice).

4



• A more efficient worklist algorithm (Kildall’s algorithm) to perform
the analysis is shown below:

worklist = empty set

for Node n in cfg
input[n] = output[n] = K
add n to worklist

input[0] = initialDataflowInformation

while worklist is not empty
take a Node n off the worklist
output[n] = flow(n, input[n])
for Node j in succs(n)

newInput = input[j] \ output[n]
if newInput != input[j]

input[j] = newInput
add j to worklist

Here we have a set that keeps track of only the nodes that have changed
or undetermined inputs. When there are no more changes, then the
queue is empty and the algorithm terminates.

– The complexity of the Kildall algorithm is O(ceh), where c is the
cost of each operation (a flow function, a join operation, or a
comparison of dataflow values), e are the number of edges in the
CFG (related to the number of nodes), and h is the height of the
lattice.

– This doesn’t determine how to choose a node to analyze from
the worklist. For efficiency, we should choose strongly-connected
components (i.e., loops) and process them in topological order
(inner loops are solved before outer loops).

– To get the topological ordering, we perform a reverse post-order
traversal. This means that a node is visited before any of its
successor nodes has been visited, except when the successor is
reached by a back edge (Wikipedia: Data-flow analysis).

– These improvements (strongly-connected and reverse post-order)
dramatically improves performance in practice but does not change
the worst-case bound.

5


	Dataflow analysis fundamentals
	Dataflow analysis for loops
	Analysis execution strategy

