
Control flow analysis for functional languages

Jonathan Lam

10/10/21

Simplifying assumptions in previous analyses: easy to tell what func-
tion was being called, more difficult when there is dynamic dispatch or in
functional languages

1 A simple, labeled, functional language

• Grammar for a simple language:

e ∈ Expressions (1)
t ∈ Term (2)
l ∈ L (3)

(4)

e ::= tl (5)
t ::= λx.e | x | (e1)(e2) | let x = e1 in e2 (6)

| if e0 then e1 else e2 | n | e1 + e2 | . . . (7)

• Each expression is labeled (i.e., an expression is a labeled term, or a
term is an unlabeled expression)

– This is useful for keeping track of analysis information (similar to
program points in imperative analysis)

2 Simple control flow analysis

• What is a program point? We have nested expressions rather than
successors and predecessors.

• Functions are first-class and may be passed around as variables, making
it difficult to know which function is being called where.

1

• Control flow analysis (CFA) "seeks to statically determine which
functions could be associated with which variables. Because functional
languages are not based on statements but rather expressions, it is
appropriate to reason about both the values of variables and the values
expressions evaluate to"

• CFA and DFA are forms of abstract interpretation, an overall
framework of sound approximation of program semantics; at a high
level, abstract interpretation associates labels with properties by
manipulating sets of states using monotonic functions over ordered
sets defined by lattices

– Analysis information σ maps each variable and label to a lattice
value

2.1 0-CFA

• Simplest form of CFA, context-insensitive

• Track analysis information for variables and labels

• Abstract domain:

σ ∈ (V ar ∪ L) → L (8)
L = >+ P(λx.e) (9)

i.e., we perform the analysis on each label or variable, and the ab-
stract values are all of the possible set of functions that a variable can
represent

• 0-CFA is a constraint-based analysis: it is defined via inference
rules that generate constraints over the possible dataflow values for
each variable or labeled location; those constraints are then solved

– The judgment [e]l ↪→ C can be read "the analysis of expression e
with label l generates constraints C over dataflow state σ"

2

– Rules:

[x]l ↪→ σ(x) v σ(l)
var (10)

[e]l0 ↪→ C

[λx.el0]l ↪→ {λx.e} v σ(l) ∪ C
lambda (11)

[e1]
l1 ↪→ C1 [e2]

l2 ↪→ C2

[el11 el22]
l ↪→ C1 ∪ C2 ∪ fn l1 : l2 ⇒ l

apply (12)

λx.el00 ∈ σ(l1)

fn l1 : l2 ⇒ l ↪→ σ(l2) v (x) ∧ σ(l0) v σ(l)
function-flow (13)

∗ The notation fn l1 : l2 ⇒ l is called a function flow con-
straint, which generates additional constraints according to
the fourth rule

3 Questions

• What is PPA? (50, footnote)

3

	A simple, labeled, functional language
	Simple control flow analysis
	0-CFA

	Questions

