
Dataflow analysis termination and correctness,
and widening operators and collecting semantics

Jonathan Lam

09/25/21

1 Ch6: Dataflow analysis termination and correct-
ness

1.1 Termination

• At each program point, the dataflow values over time represent an
ascending chain: a sequence σk with the property n ≤ m⇔ σn v σm

– Ascending chain has finite height h if it contains h+ 1 elements

– A lattice (L,v) has finite height h if there is an ascending chain
in the lattice of height h (and none with larger height)

• Show that for a lattice of finite height, and monotonic flow functions,
the lattice algorithm is guaranteed to terminate (Theorem 1: datalow
analysis termination)

– Need to show that the output information σ′
o is at least as high

in the lattice as the old output information σo, which will be true
if our flow functions are monotonic, i.e., iff σ1 v σ2 ⇒ f(σ1) v
f(σ2).

– Consider the case fZ [x := 0](σ) = σ[x 7→ Z]; this can actually
narrow σ(x) from > to Z, but it is still monotonic from the defi-
nition

1.2 Correctness

• Correctness: the program analysis results correctly describe every
actual execution of the program

1



• Program trace: a trace T of a program P is a potentially infinite
sequence [c0, c1, . . . ] of program configurations, where c0 = E0, 1 is
called the initial configuration, and for every i ≥ 0 we have P ` ci →
ci+1

– Plain English (PE): program trace is a sequence of program con-
figurations that can be validly inferred

• Dataflow analysis soundness: The result {σn | n ∈ P} of a program
analysis running on program P is sound iff, for all traces T of P , for
all i such that 0 ≤ i < length(T ), we have α(ci) v σni .

– PE: a dataflow analysis is sound if, for all program traces, any
intermediate dataflow analysis never becomes more general than
its end result (the end result is the most general bound of all
instances of the program point in all possible program traces)

• Local soundness: A flow function f is locally found iff P ` ci → ci+1

and α(ci) v σni and f [P [ni]](σni) = σni+1 implies α(ci+1) v σni+1 .

– PE: a flow function is sound if it always produces the correct
analysis that produces a sound overall dataflow

• Fixed point: A dataflow analysis result {σi | i ∈ P} is a fixed point
iff σ0 v σ1 where σ0 is the initial analysis information and σ1 is the
information before the first instruction, and for each instruction i we
have

⊔
j∈preds(i) f [P [j]](σj) v σi

– PE: The fixed point represents a dataflow analysis that yields no
changes on the next iteration

– The worklist algorithm computes a fixed point when it terminates

• Theorem 2 (a fixed point of a locally sound analysis is globally sound):
If a dataflow analysis’s flow function f is monotonic and locally sound,
and for all traces T we have α(c0) v σ0 where σ0 is the initial analysis
information, then any fixed point {σn | n ∈ P} of the analysis is sound.

2



2 Ch7: Widening operators and collecting seman-
tics for dataflow analysis

2.1 Widening operators: dealing with infinite-height lattices

• Interval analysis: tracks the interval of values that each variable
might hold

– May be useful for arrays bounds checking

– Infinite range, with positive and negative infinity sentinels

• Widening analysis considers the most recent two elements in a chain.
If the second is higher than the first, the widening operator can choose
to jump up in a chain. We can jump up to the upper limit.

– Define the widening operator as follows:

W (⊥, lcurrent) = lcurrent (1)

W ([l1, h1], [l2, h2]) =

[
min
W

(l1, l2),max
W

(h1, h2)

]
(2)

whereminW (l1, l2) = l1 if l1 ≤ l2 and−∞ otherwise, andmaxW (h1, h2) =
h1 if h1 ≥ h2 and ∞ otherwise

– Require two properties of widening operators:

∗ Must return the upper bound of its operands
∗ When the widening operator is applied to an ascending chain
li, the resulting ascending chain lWi must be of finite height.
Define lW0 = l0 and ∀i > 0.lWi =W (lWi−1, li)

• Strategies for the widening operator:

– Only apply the widening operator when needed, since we lose
precision; can apply it only at the head of loops

– Don’t immediately jump to infinity, but jump to a finite number
of steps (e.g., the constants in the program)

• Unrelated note: ⊥ can be seen as a natural representation for dataflow
values that propagate along a path that is infeasible

3



2.2 Collecting semantics (reaching definitions)

• Collecting semantics: a version of program semantics that has been
augmented with additional information necessary for some particular
analysis

– Example: reaching definitions: collect information about where
variables were declared as well as which variables definitions reach

– Used for reasoning about correctness (??)

4


	Ch6: Dataflow analysis termination and correctness
	Termination
	Correctness

	Ch7: Widening operators and collecting semantics for dataflow analysis
	Widening operators: dealing with infinite-height lattices
	Collecting semantics (reaching definitions)


