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1 Exploiting format string vulnerabilities

scut /team teso (2001)

1.1 Overview

Buffer Overflow Format String
public since mid 1980’s 1999
danger realized 1990’s 2000
# exploits few thousand few dozen
considered as security threat programming bug
techniques evolved and advanced basic techniques
visibility sometimes very difficult to spot easy to find

e Impacted software: ftpd, rpc.statd, telnetd, php3, screen, chpass, fstat

e Easy to discover, even in binary format (look at "argument deficien-
cies")



If an attacker is able to provide the format string to an ANSI C format
function in part or in whole, a format string vulnerability is present

Don’t print user-supplied string as format string; use %s
Relevant functions:

— *printf family

— setproctitle — set argv[]

— syslog

— err*, Verrk, warn, vWarnk

Only the calling function knows how many parameters it pushes on the
stack (callee doesn’t know)

Channeling problem: two different types of information differenti-
ated by a special character, user-supplied strings

Easy to crash a program with custom format strings

If we can see the reply of the format function we can extract informa-
tion about the program
— View the stack by printing it out in hex

— The format function modifies the stack pointer, we can use that
to get the stack address

— Sample program:

/* gcc -o printf -m32 -fno-stack-protector -g printf.c */
#include <stdio.h>

int main() {
char buf[] = "AAA3BAAIC___D___%d.%8x.%8x.|%chchechel .. .. \n";

printf (buf, 123456789) ;

return O;

}

— As you can see, might need some padding to line up to a four-byte
boundary



— We can arbitrarily change the address in the string and dump the
contents at that address using %s: can coredump a program

e Like in buffer overflow, we want to modify the IP: can do this by
changing the format string in a sprintf to overflow the buffer (and
perhaps overwrite the IP)

e Even with fixed-length strings, we can write a small number (using %n)
to a determined location

— Have some degree over number with a length format specifier (but
only small numbers); can do this for each byte

2 Hacking blind

Bittau et al., 2013

e Standard return-oriented programming (ROP) requires knowledge
of where addresses are in the binary

e Blind ROP (BROP) is proposed in this paper and requires:

— A service that restarts after a crash
— A stack vulnerability
e BROP leaks a single bit of information based on whether a process

crashed or not when given a particular input string, and gets enough
information to write its own binary to the network

e Works against ASLR, NX, and stack canaries

e ROP is usually necessary on modern systems due to NX preventing
code injection

e Two new techniques:

— Generalized stack reading: technique known for leaking canaries
also leak saved return addresses to defeat ASLR even when PIE
is used

— Blind ROP: remotely locates ROP gadgets:

x Gadget: Carefully chosen machine instruction sequences that
are already present in the machine’s memory, usually ending
in a return instruction



3 Smashing the stack for fun and profit

Aleph One (1996)

Static arrays/buffers at data segment at load-time

Dynamic variables on the stack at run-time

We are mostly concerned with stack-based (dynamic) buffer overflows
Text is at low memory; stack at high memory; data in between

ESP refers to top of stack (lowest memory address); EBP refers to a
fixed point in the stack (beginning/base of current stack frame)

Function prologue: (save EIP — part of call instruction); save EBP,
write new EBP

Memory is only addressible in multiples of the word size, so each vari-
able is aligned to a word boundary

View of memory:
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JMP~/~CALL combination to get the address of a string in an arbitrary
piece of memory

The stack will start at the same address for every program (in the days
before ASLR/PIE?)

Program to print stack pointer:

// sp.c
unsigned long get_sp(void) {
__asm__("movl %esp,%eax");
}
void main() {
printf ("0x%x\n", get_sp());

}
"Use the source d00d"



4 Questions

e ASLR vs. PIE?

5 Review

e STRIDE: spoofing (authenticity), tampering (integrity), repudiability
(non-repudiability), information disclosure (confidentiality), denial of
service (availability), elevation of privilege (authorization)

— These threats can basically cause all or any of these, depending on
the program; at the most basic level crashing the program (DoS)

e Threat model: vulnerability, threats, malicious actors, risk

e Smashing the stack for fun and profit: buffer overflows: overflowing
a fixed-size dynamic buffer and injecting shellcode (difficult nowadays
with ASLR and NX)

e Return to libc (ROP): buffer overflows with NX bit: cannot inject
shellcode but instead use gadgets from libc

e Exploiting format string vulnerabilities: sometimes works like a buffer
overflow, but doesn’t even need an overflow; can "walk the stack" (%u)
and either dump it (%s) or write to it (%n) at arbitrary locations

e Hacking blind (BROP): more advanced method that defeats ASLR,
NX, and stack canaries; requires a program with stack vulnerabilities
and that automatically restarts; doesn’t require having the binary at
hand (as you usually need with ROP); instead extracts information
slowly until you can send the entire binary over the network to perform

regular ROP
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