
ECE455: Week 5 notes

Jonathan Lam

10/06/21

Contents

1 Exploiting format string vulnerabilities 1
1.1 Overview . 1

2 Hacking blind 3

3 Smashing the stack for fun and profit 4

4 Questions 5

5 Review 5

1 Exploiting format string vulnerabilities

scut/team teso (2001)

1.1 Overview
Buffer Overflow Format String

public since mid 1980’s 1999
danger realized 1990’s 2000
exploits few thousand few dozen
considered as security threat programming bug
techniques evolved and advanced basic techniques
visibility sometimes very difficult to spot easy to find

• Impacted software: ftpd, rpc.statd, telnetd, php3, screen, chpass, fstat

• Easy to discover, even in binary format (look at "argument deficien-
cies")

1

• If an attacker is able to provide the format string to an ANSI C format
function in part or in whole, a format string vulnerability is present

• Don’t print user-supplied string as format string; use %s

• Relevant functions:

– *printf family

– setproctitle – set argv[]

– syslog

– err*, verr*, warn*, vwarn*

• Only the calling function knows how many parameters it pushes on the
stack (callee doesn’t know)

• Channeling problem: two different types of information differenti-
ated by a special character, user-supplied strings

• Easy to crash a program with custom format strings

• If we can see the reply of the format function we can extract informa-
tion about the program

– View the stack by printing it out in hex

– The format function modifies the stack pointer, we can use that
to get the stack address

– Sample program:

/* gcc -o printf -m32 -fno-stack-protector -g printf.c */
#include <stdio.h>

int main() {
char buf[] = "AAA3BAA1C___D___%d.%8x.%8x.|%c%c%c%c|.... \n";

printf(buf, 123456789);

return 0;
}

– As you can see, might need some padding to line up to a four-byte
boundary

2

– We can arbitrarily change the address in the string and dump the
contents at that address using %s: can coredump a program

• Like in buffer overflow, we want to modify the IP: can do this by
changing the format string in a sprintf to overflow the buffer (and
perhaps overwrite the IP)

• Even with fixed-length strings, we can write a small number (using %n)
to a determined location

– Have some degree over number with a length format specifier (but
only small numbers); can do this for each byte

2 Hacking blind

Bittau et al., 2013

• Standard return-oriented programming (ROP) requires knowledge
of where addresses are in the binary

• Blind ROP (BROP) is proposed in this paper and requires:

– A service that restarts after a crash
– A stack vulnerability

• BROP leaks a single bit of information based on whether a process
crashed or not when given a particular input string, and gets enough
information to write its own binary to the network

• Works against ASLR, NX, and stack canaries

• ROP is usually necessary on modern systems due to NX preventing
code injection

• Two new techniques:

– Generalized stack reading: technique known for leaking canaries
also leak saved return addresses to defeat ASLR even when PIE
is used

– Blind ROP: remotely locates ROP gadgets:
∗ Gadget: Carefully chosen machine instruction sequences that

are already present in the machine’s memory, usually ending
in a return instruction

3

3 Smashing the stack for fun and profit

Aleph One (1996)

• Static arrays/buffers at data segment at load-time

• Dynamic variables on the stack at run-time

• We are mostly concerned with stack-based (dynamic) buffer overflows

• Text is at low memory; stack at high memory; data in between

• ESP refers to top of stack (lowest memory address); EBP refers to a
fixed point in the stack (beginning/base of current stack frame)

• Function prologue: (save EIP – part of call instruction); save EBP,
write new EBP

• Memory is only addressible in multiples of the word size, so each vari-
able is aligned to a word boundary

• View of memory:

bottom of top of
memory memory

buffer2 buffer1 sfp ret a b c
<------ [][][][][][][]
top of bottom of
stack stack

• JMP~/~CALL combination to get the address of a string in an arbitrary
piece of memory

• The stack will start at the same address for every program (in the days
before ASLR/PIE?)

• Program to print stack pointer:

// sp.c
unsigned long get_sp(void) {

__asm__("movl %esp,%eax");
}
void main() {

printf("0x%x\n", get_sp());
}

• "Use the source d00d"

4

4 Questions

• ASLR vs. PIE?

5 Review

• STRIDE: spoofing (authenticity), tampering (integrity), repudiability
(non-repudiability), information disclosure (confidentiality), denial of
service (availability), elevation of privilege (authorization)

– These threats can basically cause all or any of these, depending on
the program; at the most basic level crashing the program (DoS)

• Threat model: vulnerability, threats, malicious actors, risk

• Smashing the stack for fun and profit: buffer overflows: overflowing
a fixed-size dynamic buffer and injecting shellcode (difficult nowadays
with ASLR and NX)

• Return to libc (ROP): buffer overflows with NX bit: cannot inject
shellcode but instead use gadgets from libc

• Exploiting format string vulnerabilities: sometimes works like a buffer
overflow, but doesn’t even need an overflow; can "walk the stack" (%u)
and either dump it (%s) or write to it (%n) at arbitrary locations

• Hacking blind (BROP): more advanced method that defeats ASLR,
NX, and stack canaries; requires a program with stack vulnerabilities
and that automatically restarts; doesn’t require having the binary at
hand (as you usually need with ROP); instead extracts information
slowly until you can send the entire binary over the network to perform
regular ROP

5

	Exploiting format string vulnerabilities
	Overview

	Hacking blind
	Smashing the stack for fun and profit
	Questions
	Review

