
ECE455: Week 4 readings notes

Jonathan Lam

09/30/21

1 Security kernel design and implementation: an
introduction

Ames et. al (1983)

• "Security kernel technology provides a conceptual base on which to
build secure computer systems, thereby replacing this game of wits
with a methodoical design process"

• Security kernel is good because:

– Addresses size and complexity problem by limiting the protection
mechanism to a small portion of the system

– Clearly defines a security policy
– Following a rigorous metodology that includes developing a math-

ematical model, constructing a precise specification of behavior,
and coding in a high-level language

• Reference monitor: each access to information or change of autho-
rization must go through the reference monitor

• Three major engineering requirements:

– Completeness: cannot bypass security monitor
– Isolation: kernel is tamper-resistant
– Verifiability: mathematical evidence that it does what it is in-

tended to
– (Achieve first two through hardware)

• Important to clearly define security – system is only secure w.r.t. a
policy; other attempts have been much more lax and pathwork

1



– Model should not be created w.r.t. individual assertions, but
rather the entire system as a whole

– Bell and Lapadula model – FSM, each subject/object is given
an access class, lattice to give more possibilities.

∗ Two important non-discretionary rules:
· Simple security condition: subject cannot observe
contents of an object unless the access class of the subject
is greater than or equal to object

· Star property: subject may not modify an object less
unless object’s access class is greater than or equal to
access class of the subject – meant to avoid Trojan horse
software

· These don’t protect against/distinguish between different
users within the same access class – this requires discre-
tionary rules (which are of lower precedence)

• Three classes of formal verification techniques:

– Security flow analysis: prove that formal high-level interface
specification is secure w.r.t. policy model; does not check for
correctness of functionality, only security of API

– Second class: "verify the correspondence of mappings between
any intermediate specifications in the hierarchy and the interface
specification"

– Third class: "traditional" correctness proving

1.1 Implementation considerations

• Kernel/supervisor trade-offs: kernel must manage resources; may find
it difficult to unentangle code

• Trusted subjects: a set of interfaces with extended privileges, e.g.,
for maintenance purposes

– Usually implemented as trusted processes or trusted functions

• Hardware/software features: four general hardware areas required:

– Explicit processes: processes are the subject, thus we need these
identifiers to be correct; hardware support for context switching
is necessary for this to be efficient; also desire a race-free IPC
mechanism

2



– Memory protection: all memory access needs to have a descriptor

∗ "With a reference monitor, all information within the system
must be represeted in distinct, identifiable objects"

∗ Segment (as in segmentation fault): logically-distinct mem-
ory, can have multiple under the same process, has a defined
access level

∗ Each process should be able to have a relatively large number
of independent segments, and any segment should have a wide
range of possible sizes

∗ System performance can be improved by including a refer-
enced and motified flag for each block of physical memory
(caching?)

∗ Security kernel maintains segment descriptors, but the hard-
ware (MMU?) manages the actual permissions

∗ Control information: metadata may be leaked, should be
a security concern from the beginning

– Execution domains: usually two or three execution domains: user-
space, (supervisor), and kernel; mostly hierarchical; want efficient
calls between levels

– I/O mediation: two major ways to handle I/O:

∗ Programmed I/O: manually perform each small I/O opera-
tion

∗ Independent I/O controllers and processes: I/O controller
accesses data on its own; manage a descriptor to the I/O
directly rather than to the memory accessed by it (this part
was a little confusing)

∗ For removable/external I/O media, need a "trusted labeling
technique to ensure that the access classs of the medium is
correctly marked"

2 Engineering a security kernel for MULTICS

MIT 1975 (?)

• MULTICS: general-purpose, remotely-accessed, multiuser computer sys-
tem

• Want simple and efficient system that can be "verified by auditing"

3



• Want to implement "information release constraints of the military
security system"

• "System is secure if it is known to prevent all actions defined as unau-
thorized by the specification of its security properties"

• Security cannot be proven by testing, only by a logical verification

• One method for secure systems is a top-down approach via formal
specification

• Security kernel is a minimal, protected core of software whose cor-
rect operation is sufficient to guarantee enforcement of the claimed
constraints of access

– "A security kernel should be the least amount of common mecha-
nism necessary to implement the patterns of information sharing,
interprocess communication, and physical resource multiplexing
that are desired in the system"

• Common mechanisms are any mechanism that allows one compu-
tation to influence (communicate with) another

• Four categories of non-kernel software; these depend on the security
kernel and can will be protected against actions that break the spec-
ifications defined by the security kernel (but can still be a security
concern if the user-space code on top of these is incorrect and/or ma-
licious):

– System-provided software

– Programs constructed by the user

– Programs borrowed from other users

– Common mechanisms that a group of users sets up to implement
some function involving interuser communication or coordination.

• A high-level language and compiler may be useful for verifying the se-
curity kernel; while this adds additional complexity and requires the
compiler to be correct, it is easier for the compiler to perform veri-
fication than to do this manually, and we can perform translation
verification

4



2.1 Goal 1: Reduce size of kernel by moving things out of
kernel ring

• Original MULTICS system had protection rings implemented in soft-
ware

– Cross-ring calls were expensive and thus occasionally extra func-
tionality was implemented in lower layers; we undo this to keep
the size of the kernel small

– "Current" MULTICS system is Honeywell Level 68, which has
hardware protection for rings, where there is no performance hit

– Part of this moving between performance layers is difficult because
code is entwined

• Activities to reduce size of kernel:

– "Dynamic intersegment linking and direction of file system searches
to satisfy symbolic references"

– "Facilities for managing the association between reference names
and the segments in the address space of a process"

– System initialization from userspace

– Combining user login authorization and process authorization

2.2 Goal 2: Restructure mechanisms that must remain in
the kernel

• Examples:

– Generalizing I/O to standardized model

– Using the general vm architecture rather than a special-purpose
circular buffer for network input

– Separating the implementation of processes into a two-level scheme:
one to manage vm, the other for the use of it

∗ This simplifies things by making actions sequential (in the
context of a virtual processor) – the parallelization/asynchronous
behavior is handled by the process implementation

∗ This could also be used to implement interrupts, giving them
a dedicated virtual processor

5



2.3 Goal 3: Partition/modularize the kernel

• Divide the kernel into domains arranged so that each property is im-
plied by a subset of the domains

• Two specific methods:

– "Dividing part of kernel that is in address space of each process
into multiple layers in diffirent rings of protection"

– "Placing some of the kernel processes in separate addresses spaces
and also using the protection rings to layers them"

• General idea of separating policy from mechanism

3 Bypassing non-executable-stack during exploita-
tion using return-to-libc

c0ntex (year?)

• Assume non-executable stack, standard buffer overflow

4 Smashing the stack for fun and profit

Aleph One (year?)

• Shellcode: bytecode of executable code to be injected

• TODO: take more notes on this

5 Questions

5.1 MULTICS

• This paper never gets into the details of formal verification – all about
how to reduce the size of a system

5.2 Reference monitor

• Lattice is confusing – why inequalities go opposite ways for two non-
discretionary rules

6



5.3 return-to-libc

• When is stack executable?

• Why overwrite ebp with return address? Shouldn’t the eip be over-
written?

7


	Security kernel design and implementation: an introduction
	Implementation considerations

	Engineering a security kernel for MULTICS
	Goal 1: Reduce size of kernel by moving things out of kernel ring
	Goal 2: Restructure mechanisms that must remain in the kernel
	Goal 3: Partition/modularize the kernel

	Bypassing non-executable-stack during exploitation using return-to-libc
	Smashing the stack for fun and profit
	Questions
	MULTICS
	Reference monitor
	return-to-libc


