
A Learned Representation for Scalable Vector Graphics

Raphael Gontijo Lopes∗, David Ha, Douglas Eck, Jonathon Shlens

Google Brain

{iraphael, hadavid, deck, shlens}@google.com

Abstract

Dramatic advances in generative models have resulted

in near photographic quality for artificially rendered faces,

animals and other objects in the natural world. In spite of

such advances, a higher level understanding of vision and

imagery does not arise from exhaustively modeling an ob-

ject, but instead identifying higher-level attributes that best

summarize the aspects of an object. In this work we at-

tempt to model the drawing process of fonts by building se-

quential generative models of vector graphics. This model

has the benefit of providing a scale-invariant representation

for imagery whose latent representation may be systemati-

cally manipulated and exploited to perform style propaga-

tion. We demonstrate these results on a large dataset of

fonts and highlight how such a model captures the statisti-

cal dependencies and richness of this dataset. We envision

that our model can find use as a tool for graphic designers

to facilitate font design.

1. Introduction

The last few years have witnessed dramatic advances

in generative models of images that produce near photo-

graphic quality imagery of human faces, animals, and natu-

ral objects [4, 25, 27]. These models provide an exhaustive

characterization of natural image statistics [52] and repre-

sent a significant advance in this domain. However, these

advances in image synthesis ignore an important facet of

how humans interpret raw visual information [48], namely

that humans seem to exploit structured representations of

visual concepts [33, 21]. Structured representations may be

readily employed to aid generalization and efficient learning

by identifying higher level primitives for conveying visual

information [32] or provide building blocks for creative ex-

ploration [21, 20]. This may be best seen in human drawing,

where techniques such as gesture drawing [44] emphasize

parsimony for capturing higher level semantics and actions

with minimal graphical content [54].

∗Work done as a member of the Google AI Residency Program (g.

co/airesidency)

Learned Vector Graphics Representation Pixel Counterpart

moveTo (15, 25)
lineTo (-2, 0.3)
cubicBezier (-7.4, 0.2) (-14.5, 11.7), (-12.1, 23.4)
...

Conveying Different Styles

Figure 1: Learning fonts in a native command space. Un-

like pixels, scalable vector graphics (SVG) [11] are scale-

invariant representations whose parameterizations may be

systematically adjusted to convey different styles. All vec-

tor images are samples from a generative model of the SVG

specification.

Our goal is to train a drawing model by presenting it

with a large set of example images [16, 13]. To succeed,

the model needs to learn both the underlying structure in

those images and to generate drawings based on the learned

representation [2]. In computer vision this is referred to as

an “inverse graphics” problem [38, 31, 22, 41]. In our case

the output representation is not pixels but rather a sequence

of discrete instructions for rendering a drawing on a graph-

ics engine. This poses dual challenges in terms of learning

discrete representations for latent variables [57, 23, 37] and

performing optimization through a non-differential graphics

engine (but see [36, 31]). Previous approaches focused on

program synthesis approaches [32, 10] or employing rein-

forcement and adversarial learning [13]. We instead focus

17930



on a subset of this domain where we think we can make

progress and improves the generality of the approach.

Font generation represents a 30 year old problem posited

as a constrained but diverse domain for understanding

higher level perception and creativity [21]. Early research

attempted to heuristically systematize the creation of fonts

for expressing the identity of characters (e.g. a, 2) as well

as stylistic elements constituting the “spirit” of a font [20].

Although such work provides great inspiration, the results

were limited by a reliance on heuristics and a lack of a

learned, structured representation [47]. Subsequent work

for learning representations for fonts focused on models

with simple parameterizations [34], template matching [55],

example-based hints [63], or more recently, learning mani-

folds for detailed geometric annotations [5].

We instead focus the problem on generating fonts speci-

fied with Scalable Vector Graphics (SVG) – a common file

format for fonts, human drawings, designs and illustrations

[11]. SVG’s are a compact, scale-invariant representation

that may be rendered on most web browsers. SVG’s spec-

ify an illustration as a sequence of a higher-level commands

paired with numerical arguments (Figure 1, top). We take

inspiration from the literature on generative models of im-

ages in rasterized pixel space [15, 56]. Such models provide

powerful auto-regressive formulations for discrete, sequen-

tial data [15, 56] and may be applied to rasterized renderings

of drawings [16]. We extend these approaches to the gener-

ation of sequences of SVG commands for the inference of

individual font characters.

The goal of this work is to build a tool to learn a repre-

sentation for font characters and style that may be extended

to other artistic domains [7, 50, 16], or exploited as an in-

telligent assistant for font creation [6]. We aspire that our

methods could be applied generically, but we focus on font

generation as our main inspiration in hopes that it opens op-

portunities to work on more complex illustrations [7]. To

this end, our main contributions are as follows:

• Build a generative model for scalable vector graphics

(SVG) images and apply this to a large-scale dataset of

14 M font characters.

• Demonstrate that the generative model provides a per-

ceptually smooth latent representation for font styles

that captures a large amount of diversity and is consis-

tent across individual characters.

• Exploit the latent representation from the model to in-

fer complete SVG fontsets from a single (or multiple)

characters of a font.

• Identify semantically meaningful directions in the la-

tent representation to globally manipulate font style.

2. Related Work

2.1. Generative models of images

Generative models of images have generally followed

two distinct directions. Generative adversarial networks

[14] have demonstrated impressive advances [46, 14] over

the last few years resulting in models that generate high

resolution imagery nearly indistinguishable from real pho-

tographs [25, 4].

A second direction has pursued building probabilistic

models largely focused on invertible representations [8, 27].

Such models are highly tractable and do not suffer from

training instabilities largely attributable to saddle-point op-

timization [14]. Additionally, such models afford a true

probabilistic model in which the quality of the model may

be measured with well-characterized objectives such as log-

likelihood.

2.2. Autoregressive generative models

One method for vastly improving the quality of gener-

ative models with unsupervised objectives is to break the

problem of joint prediction into a conditional, sequential

prediction task. Each step of the conditional prediction

task may be expressed with a sequential model (e.g. [19])

trained in an autoregressive fashion. Such models are often

trained with a teacher-forcing training strategy, but more so-

phisticated methods may be employed [1].

Autoregressive models have demonstrated great success

in speech synthesis [42] and unsupervised learning tasks

[57] across multiple domains. Variants of autoregressive

models paired with more sophisticated density modeling [3]

have been employed for sequentially generating handwrit-

ing [15].

2.3. Modeling higher level languages

The task of learning an algorithm from examples has

been widely studied. Lines of work vary from directly mod-

eling computation [24] to learning a hierarchical composi-

tion of given computational primitives [12]. Of particular

relevance are efforts that learn to infer graphics programs

from the visual features they render, often using constructs

like variable bindings, loops, or simple conditionals [10].

The most comparable methods to this work yield impres-

sive results on unsupervised induction of programs usable

by a given graphics engine [13]. As their setup is non differ-

entiable, they use the REINFORCE [60] algorithm to per-

form adversarial training [14]. This method achieves im-

pressive results despite not relying on labelled paired data.

However, it tends to draw over previously-generated draw-

ings, especially later in the generation process. While this

could be suitable for modelling the generation of a 32x32

rastered image, SVGs require a certain level of precision in

order to scale with few perceptible issues.

7931



Modelling languages for image generation [13, 16],

which our work tackles, can be construed as a probabilistic

programming problem. What makes our problem unique,

however, is (a) models must be perceptually judged [13] and

(b) by working in the SVG format, we open the opportunity

to exploit a de-facto standard format for icons and graphics.

2.4. Learning representations for fonts

Previous work has focused on enabling propagation of

style between classes by identifying the class and style from

high level features of a single character [47, 21, 20] or by

finding correspondences between these features of different

characters [55]. These features are often simplifications,

such as character skeletons, which diminish the flexibility

of the methods. Other work directly tackles style manip-

ulation of generated full characters [34], but uses a simple

parametric model that allows the user to only adjust param-

eters like its weight or width. Finally, parallel work use a

generative model of rasterized fonts for augmenting hand-

writing classification in low-resource settings [45].

The most relevant works are those that attempt to learn

a manifold of font style. Some unpublished work has ex-

plored how probabilistic methods may model pixel-based

representations of font style [35]. The model learned

semantically-meaningful latent spaces which can manipu-

late rasterized font images. More directly comparable, re-

cent work learned energy models to capture the relation-

ship between discretized points along the outlines of each

character in order to address font generation and extrapola-

tion [5]. This method yields impressive results for extrap-

olating between very few examples, but is limited by the

need of having all characters of a certain class be composed

of equivalent shapes Additionally, the model discretely ap-

proximates points on a character’s outline which may lead

to visual artifacts at larger spatial scales.

3. Methods

3.1. Data

We compiled a font dataset composed of 14M examples

across 62 characters (i.e. 0-9, a-z, A-Z), which we term

SVG-Fonts. The dataset consists of fonts in a common

font format (SFD) 1, excluding examples where the unicode

ID does not match the targeted 62 character set specified

above. In spite of the filtering, label noise exists across the

roughly 220 K fonts examined.

We employed a one-to-one mapping from SFD to SVG

file format using a subset of 4 SVG commands: moveTo,

lineTo, cubicBezier and EOS. SVG commands were

normalized by starting from the top-most command and or-

dering in a clockwise direction. In preliminary experiments,

we found it advantageous to specify command arguments

1https://fontforge.github.io

Image Autoencoder SVG Decoder

style vector

image 
encoder

SVG 
decoder

M
D

N

“N”

temperature

image 
decoder

Figure 2: Model architecture. Visual similarity between

SVGs is learned by a class-conditioned, convolutional vari-

ational autoencoder (VAE) [30, 16] on a rendered repre-

sentation (blue). The class label and learned represen-

tation z are provided as input to a model that decodes

SVG commands (purple). The SVG decoder consists of

stacked LSTM’s [19] followed by a Mixture Density Net-

work (MDN) [15, 3]. See text for details.

using relative positioning information. See Appendix for

more details of the dataset collection and normalization.

The final dataset consists of a sequence of commands

specified in tuples. Each item in the sequence consists of

a discrete selection of an SVG command paired with a set

of normalized, floating-point numbers specifying command

arguments. We restricted the dataset to only 4 SVG com-

mand types and examples with fewer then 50 commands to

aid learning but these restrictions may be relaxed to repre-

sent the complete SVG language. In comparison, note that

[13] restricted inference to 20 actions for generating images.

Finally, we partitioned the dataset into 12.6M and 1.4M ex-

amples for training and testing 2

3.2. Network Architecture

The model consists of a variational autoencoder (VAE)

[30, 16] and an autoregressive SVG decoder implemented

in Tensor2Tensor [58]. Figure 2 provides a diagram of the

architecture but please see the Appendix for details. Briefly,

the VAE consists of a convolutional encoder and decoder

paired with instance normalization conditioned on the label

(e.g. a, 2, etc.) [9, 43]. The VAE is trained as a class-

conditioned autoencoder resulting in a latent code z that is

largely class-independent [28]. In preliminary experiments,

we found that 32 dimensions provides a reasonable balance

between expressivity and tractability. Note that the latent

code consists of µ and � - the mean and standard deviation

of a multivariate Gaussian that may be sampled at test time.

The SVG decoder consists of 4 stacked LSTMs [19]

trained with dropout [53, 62, 51]. The final layer is a Mix-

ture Density Network (MDN) [3, 15] that may be stochasti-

cally sampled at test time. The LSTM receives as input the

previous sampled MDN output, concatenated with the dis-

2We have open-sourced tools to reproduce the construction of a sub-

set of the dataset, as well as code to train the proposed model at

https://github.com/tensorflow/magenta.

7932



Figure 3: Selected examples of generated fonts. Exam-

ples generated by sampling a random latent representation

z and running the SVG decoder by conditioning on z and all

class labels. Each font character is selected as the best of 10

samples. See Figures 10 and 11 in Appendix for additional

examples.

crete class label and the latent style representation z. The

SVG decoder’s loss is composed of a softmax cross-entropy

loss over one-hot SVG commands plus the MDN loss ap-

plied to the real-valued arguments.

In principle, the model may be trained end-to-end, but

we found it simpler to train the two parts of the model

separately. The VAE is trained using pixel renderings of

the fonts using the Adam optimizer (✏ = 10−6) [26] for 3

epochs. We employ a high value of � [18], and tune the

number of free bits using cross-validation [29]. After con-

vergence, the weights of the VAE are frozen, and the SVG

decoder is trained to output the SVG commands from the

latent representation z using teacher forcing [61].

Note that both the VAE and MDN are probabilistic mod-

els that may be sampled many times during evaluation. The

results shown here are the selected best out of 10 samples.

Please see Appendix for modeling, training and evaluation

details.

Also note that our model is composed of standard archi-

tectures. This was an intentional choice to demonstrate that

standard methods may provide strong baselines, as we will

show in subsequent sections.

4. Results

We compiled a font dataset consisting of 14 M examples.

Individual font characters were normalized and converted

into SVG format for training and evaluation. We trained a

VAE and SVG decoder over 3 epochs of the data and eval-

uated the results on a hold-out test split. Figures 1 and 3

show selected results from the trained model, but please

see Appendix (Figures 10 and 11) for more exhaustive sam-

ples highlighting successes and failures. What follows is an

analysis of the representational ability of the model to learn

and generate SVG specified fonts.

4.1. Learning a smooth, latent representation of font
style

We first ask whether the proposed model may learn a la-

tent representation for font style that is perceptually smooth

and interpretable. To address this question, we visualize

the 32-dimensional font-style z for 1 M examples from the

training set and reduce the dimensionality to 2 using UMAP

[39]. We discretize this 2D space and visualize the pixel-

based decoding of the mean z within each grid location

(Figure 4). The purple boxes shows two separate locations

of this manifold, where we note the smooth transitions of

the characters: (A) represents a non-italics region, while

(B) represents an italics one. Further, local directions within

these regions also reveal visual semantics: within (A), from

left-to-right we note a change in the amount of serif, while

top-to-bottom highlights a change in boldness.

Next, we examine whether this smooth space translates

into perceptually meaningful decodings of SVGs. We vi-

sualize linear interpolations between z for pairs of SVGs

from the dataset (Figure 4, 1-6). Note the smooth transi-

tion between the decoded SVGs, despite the fact that each

SVG decoding is composed of a multitude of different com-

mands. For instance, note that in the top row, each SVG is

composed of 15-30 commands even though the perceptual

representation appears quite smooth.

4.2. Exploiting the latent representation for style
propagation

Because the VAE is conditioned on the class label, we

expect that the latent representation z would only encode

the font style with minimal class information [28]. We wish

to exploit this model structure to perform style propagation

across fonts. In particular, we ask whether a single charac-

ter from a font set is sufficient to infer the rest of the font

set in a visually plausible manner [47, 20].

To perform this task, we calculate the latent representa-

tion z for a single character and condition the SVG decoder

on z as well as the label for all other font characters (i.e. 0-

9, a-z, A-Z). Figure 5 shows the results of this experiment.

For each row, z is calculated from the character in the red

box. The other characters in that row are generated from the

SVG decoder conditioned on z.

We observe a perceptually-similar style consistently

within each row [47, 20]. Note that there was no require-

ment during training that the same point in latent space

would correspond to a perceptually similar character across

labels – that is, the consistency across class labels was

learned in an unsupervised manner [47, 20]. Thus, a sin-

gle value of z seems to correspond to a perceptually-similar

set of characters that resembles a plausible fontset.

7933



Learned Latent Space Detail View

A

B

Linear Interpolation Between Two Characters

1
21 30 28 28 28 24 25 15 15

2
12 12 12 12 12 12 12 12 12

3
12 12 12 12 12 14 29 28 22

4
19 19 22 24 24 24 17 17 17

5
19 19 13 13 21 19 19 19 19

6
34 33 36 33 21 18 18 19 19

Figure 4: Learning a smooth, latent representation of font style. UMAP visualization [39] of the learned latent space

z across 1 M examples (left). Purple boxes (A, B) provide a detail view of select regions. Blue lines (1-9) indicate linear

interpolations in the full latent space z between two characters of the dataset. Points along these linear interpolations are

rendered as SVG images. Number in upper-right corner indicates number of strokes in SVG rendering. Best viewed in

digital color.

Figure 5: Exploiting the latent representation for style

propagation. A single character may provide sufficient in-

formation for reconstructing the rest of a font set. The latent

representation z for a font is computed from a single char-

acter (purple box) and SVG images are generated for other

characters from z.

Additionally, we observe a large amount of style variety

across rows (i.e. different z) in Figure 5. The variety indi-

cates that the latent space z is able to learn and capture a

large diversity of styles observed in the training set as ob-

served in Figure 4.

Finally, we also note that for a given column the decoded

glyph does indeed belong to the class that was supplied to

the SVG decoder. These results indicate that z encodes style

information consistently across different character labels,

and that the proposed model largely disentangles class la-

bel from style.

A natural extension to this experiment is to ask if we

could systematically improve the quality of style propaga-

tion by employing more then a single character. We ad-

dress this question by calculating the latent representation z

for multiple characters and employ the average z for style

propagation to a new set of characters (Figure 6). We ob-

serve a systematic improvement in both style consistency

and quality of individual icon outputs as one conditions on

increasing numbers of characters.

To quantify this improvement in style consistency, we

render the generated characters and calculate the associated

style z for each character. If the method of style propagation

were perfectly self-consistent, we would expect that the z

across all generated characters would be identical. If, how-

ever, the style propagation were not consistent, the inferred

z would vary across each of the generated characters. To

calculate the observed improvement, we measure the vari-

7934



Figure 6: Conditioning on increasing numbers of char-

acters improves style propagation. Top: Layout follows

Figure 5. The average latent representation z for a font is

computed from a set of characters (purple boxes) and SVG

images are generated for other characters from z. Note that

increasing number of characters (purple boxes) improves

the consistency and quality of the style propagation. Bot-

tom: For all generated characters, we calculate a corre-

sponding z and measure the variance of z over all generated

characters within a font. Lower variance in z indicates a

more visually consistent font style. Each dot corresponds

to the observed variance in z when conditioned on 1 or 5

characters. Note that most fonts contain higher consistency

(i.e. lower variance) when conditioned on more characters.

ance of z across all generated characters for each of 19 fonts

explored with this technique when conditioned on on 1 or 5

characters (Figure 6, bottom). Indeed, we observe that con-

ditioning on more characters generally decreases the vari-

ance of the generated styles, indicating that this procedure

improves style consistency. Taken together, we suspect that

A

A
Bold

B
Italic

C
Condensed

Figure 7: Building style analogies with the learned rep-

resentation. Semantically meaningful directions may be

identified for globally altering font attributes. Top row:

Bold (blue) and non-bold (red) regions of latent space (left)

provide a vector direction that may be added to arbitrary

points in latent space (A) for decreasing or increasing the

strength of the attribute. Middle and bottom rows: Same

for italics (B) and condensed (C).

these results on style progagation suggest a potential direc-

tion for providing iterative feedback to humans for synthe-

sizing new fonts (see Discussion).

4.3. Building style analogies with the learned rep-
resentation

Given that the latent style is perceptually smooth and

aligned across class labels, we next ask if we may find se-

mantically meaningful directions in this latent space. In

particular, we ask whether these semantically meaningful

directions may permit global manipulations of font style.

Inspired by the work on word vectors [40], we ask

whether one may identify analogies for organizing the space

of font styles (Figure 7, top). To address this question, we

7935



select positive and negative examples for semantic concepts

of organizing fonts (e.g. bold, italics, condensed) and iden-

tify regions in latent space corresponding to the presence or

absence of this concept (Figure 7, left, blue and red, respec-

tively). We compute the average zred and zblue, and define

the concept direction c = zblue − zred.

We test if these directions are meaningful by taking an

example font style z
∗ from the dataset (Figure 7, right, yel-

low), and adding (or subtracting) the concept vector c scaled

by some parameter ↵. Finally, we compute the SVG decod-

ings for z∗ + ↵c across a range of ↵.

Figure 7 (right) shows the resulting fonts. Note that

across the three properties examined, we observe a smooth

interpolation in the direction of the concept modeled (e.g.:

first row v becomes increasingly bold from left to right).

We take these results to indicate that one may interpret se-

mantically meaningful directions in the latent space. Addi-

tionally, these results indicate that one may find directions

in the latent space to globally manipulate font style.

4.4. Quantifying the quality of the learned repre-
sentations

Almost all of the results presented have been assessed

qualitatively. This is largely due to the fact that the quality

of the results are assessed based on human judgements of

aesthetics. In this section, we attempt to provide some quan-

titative assessment of the quality of the proposed model.

Figure 8a (top) shows the training dynamics of the model

as measured by the overall training objective. Over the

course of training 3 epochs, we find that the model does

indeed improve in terms of likelihood and plateaus in per-

formance. Furthermore, the resulting model does not overfit

on the training set in any significant manner as measured by

the log-likelihood.

Figure 8a (bottom) shows the mean negative log likeli-

hoods for the examples in each class of the dataset. There

is a small but systematic spread in average likelihood across

classes. This is consistent with our qualitative results, where

certain classes would consistently yield lower quality SVG

decodings than others (e.g. 7 in Figure 5).

We can characterize the situations where the model per-

forms best, and some possible causes for its improved per-

formance. Figure 8b shows the negative log likelihoods of

examples from the test set of a given class, as a function of

their sequence lengths. With longer sequences, the variance

of log likelihoods increase. For the best performing class

(8, top) the loss values also trend downwards, whereas for

the worst performing (7, bottom), the trend stays relatively

level. This means that the model had a harder time reliably

learning characters especially with longer sequence lengths.

Finally, in order to see what makes a given character hard

or easy to learn, we examine test examples that achieved

high and low loss, at different sequence lengths. Figure 8b

reveals that for any class characters with high loss are gen-

erally highly stylized, regardless of their sequence lengths

(red, blue), whereas easier to learn characters are more com-

monly found styles (yellow, green).

4.5. Limitations of working with a learned, stochas-
tic, sequential representation

Given the systematic variability in the model perfor-

mance across class label and sequence length, we next ex-

amine how specific features of the modeling choices may

lead to these failures. An exhaustive set of examples of

model failures is highlighted in in Figure 11 of the Ap-

pendix. We discuss below two common modes for fail-

ure due to the sequential, stochastic nature of the generative

model.

At each stochastic sampling step, the proposed model

may select a low likelihood decision. Figure 9 (top left)

highlights how a mistake in drawing 3 early on leads to a

series of errors that the model was not able to error correct.

Likewise, Figure 9 (bottom left) shows disconnected start

and end points in drawing 6 caused by the accumulation of

errors over time steps. Both of these errors may be remedied

through better training schedules that attempt to teach forms

of error correction [1], but please see Discussion.

A second systematic limitation is reflected in the uncer-

tainty captured within the model. Namely, the proposed ar-

chitecture contains some notion of confidence in its own

predictions as measured by the variance �2 in the VAE la-

tent representation. We visualize the confidence by color-

coding the UMAP representation for the latent style z by �2

(Figure 9, right). Lighter green colors indicate high model

confidence reflected by lower VAE variance. Areas of high

confidence show sharp outputs and decode higher quality

SVGs (Figure 9 right, pink). Conversely, areas with lower

confidence correspond to areas with higher label noise or

more stylized characters. These regions of latent space de-

code lower quality SVGs (Figure 9 right, blue). Address-

ing these systematic limitations is a modeling challenge

for building next generation generative models for vector

graphics (see Discussion).

5. Discussion

In the work we presented a generative model for vector

graphics. This model has the benefit of providing a scale-

invariant representation for imagery whose latent represen-

tation may be systematically manipulated and exploited to

perform style propagation. We demonstrate these results

on a large dataset of fonts and highlight the limitations

of a sequential, stochastic model for capturing the statisti-

cal dependencies and richness of this dataset. Even in its

present form, the current model may be employed as an

assistive agent for helping humans design fonts in a more

time-efficient manner [6, 47]. For example, a human may

7936



Assessing Generalization

(a)

Effect of Sequence Length on Decoding Quality

(b)

Figure 8: Quantifying the quality of the learned representations. (a) Top: Negative log-likelihood for training and test

datasets over 3 epochs. Bottom: Negative log-likelihood for selected, individual classes within the dataset. (b, left) Test

negative log-likelihood of all characters with label 8 (top) and 7 (bottom) as a function of the number of SVG commands.

(b, right) Examples from 8 and 7 with few commands and high (red) or low loss (orange). Examples with many commands

and high (blue) or low loss (green).

Common

issues

Quantifying Model Confidence

Figure 9: Limitations of proposed sequential, stochastic

generative model. Left: Low-likelihood samples may re-

sult in errors difficult to correct. Color indicates ordering of

sequential sample (blue → red). Right: Regions of latent

space with high variance result in noisy SVG decodings.

Latent representation z color coded based on variance: light

(dark) green indicates low (high) variance. Visualization of

rendered and SVG decoded samples (purple, blue).

design a small set of characters and employ style propaga-

tion to synthesize the remaining set of characters (Figure 5,

6).

An immediate question is how to build better-performing

models for vector graphics. Immediate opportunities in-

clude new attention-based architectures [59] or potentially

some form of adversarial training [14]. Improving the

model training to afford the opportunity for error correction

may provide further gains [1].

A second direction is to employ this model architec-

ture on other SVG vector graphics datasets. Examples in-

clude icons datasets [7] or human drawings [50, 16]. Such

datasets reveal additional challenges above-and-beyond the

fonts explored in this work as the SVG drawings encom-

pass a larger amount of diversity and drawings containing

larger numbers of strokes in a sequence. Additionally, em-

ploying color, brush stroke and other tools in illustration as

a predicted features offers new and interesting directions for

increasing the expressivity of the learned models.

Acknowledgements

We’d like to thank the following people: Diederik

Kingma, Benjamin Caine, Trevor Gale, Sam Greydanus,

Keren Gu, and Colin Raffel for discussions and feedback;

Monica Dinculescu and Shan Carter for insights from de-

signers’ perspective; Ryan Sepassi for technical help us-

ing Tensor2Tensor; Jason Schwarz for technical help us-

ing UMAP; Joshua Morton for infrastructure help; Yaroslav

Bulatov, Yi Zhang, and Vincent Vanhoucke for help with the

dataset; and the Google Brain and the AI Residency teams.

7937



References

[1] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. Scheduled sampling for sequence prediction with

recurrent neural networks. In Advances in Neural Informa-

tion Processing Systems, pages 1171–1179, 2015. 2, 7, 8

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-

resentation learning: A review and new perspectives. IEEE

Trans. Pattern Anal. Mach. Intell., 35(8), 2013. 1

[3] Christopher M Bishop. Mixture density networks. Technical

report, Citeseer, 1994. 2, 3, 11

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018. 1, 2

[5] Neill DF Campbell and Jan Kautz. Learning a manifold

of fonts. ACM Transactions on Graphics (TOG), 33(4):91,

2014. 2, 3

[6] Shan Carter and Michael Nielsen. Using artificial in-

telligence to augment human intelligence. Distill, 2017.

https://distill.pub/2017/aia. 2, 7

[7] Louis Clouâtre and Marc Demers. Figr: Few-shot image

generation with reptile. arXiv preprint arXiv:1901.02199,

2019. 2, 8

[8] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-

gio. Density estimation using real nvp. arXiv preprint

arXiv:1605.08803, 2016. 2

[9] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. Proc. of ICLR, 2,

2017. 3, 11

[10] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and

Josh Tenenbaum. Learning to infer graphics programs from

hand-drawn images. In Advances in Neural Information Pro-

cessing Systems, pages 6062–6071, 2018. 1, 2

[11] Jon Ferraiolo. Scalable vector graphics (SVG) 1.0 specifica-

tion. 1, 2

[12] Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg,

Dawn Song, and Ion Stoica. Parametrized hierarchical pro-

cedures for neural programming. ICLR 2018, 2018. 2

[13] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Es-

lami, and Oriol Vinyals. Synthesizing programs for im-

ages using reinforced adversarial learning. arXiv preprint

arXiv:1804.01118, 2018. 1, 2, 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2, 8

[15] Alex Graves. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013. 2, 3, 11

[16] David Ha and Douglas Eck. A neural representation of

sketch drawings. arXiv preprint arXiv:1704.03477, 2017.

1, 2, 3, 8

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015. 12

[18] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. beta-vae: Learning basic visual con-

cepts with a constrained variational framework. In Interna-

tional Conference on Learning Representations, 2017. 4

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 2, 3

[20] Douglas Hofstadter and Gary McGraw. Letter spirit: An

emergent model of the perception and creation of alphabetic

style. 1993. 1, 2, 3, 4

[21] Douglas R Hofstadter. Fluid concepts and creative analo-

gies: Computer models of the fundamental mechanisms of

thought. Basic books, 1995. 1, 2, 3

[22] Varun Jampani, Sebastian Nowozin, Matthew Loper, and

Peter V Gehler. The informed sampler: A discriminative

approach to bayesian inference in generative computer vi-

sion models. Computer Vision and Image Understanding,

136:32–44, 2015. 1

[23] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016. 1

[24] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algo-

rithms. arXiv preprint arXiv:1511.08228, 2015. 2

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

arXiv preprint arXiv:1812.04948, 2018. 1, 2

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 4, 12

[27] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In Advances in Neural

Information Processing Systems, pages 10236–10245, 2018.

1, 2

[28] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende,

and Max Welling. Semi-supervised learning with deep gen-

erative models. In Advances in neural information process-

ing systems, pages 3581–3589, 2014. 3, 4

[29] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen,

Ilya Sutskever, and Max Welling. Improved variational infer-

ence with inverse autoregressive flow. In Advances in neural

information processing systems, pages 4743–4751, 2016. 4,

12

[30] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 3, 11

[31] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and

Josh Tenenbaum. Deep convolutional inverse graphics net-

work. In Advances in neural information processing systems,

pages 2539–2547, 2015. 1

[32] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B

Tenenbaum. Human-level concept learning through proba-

bilistic program induction. Science, 350(6266):1332–1338,

2015. 1

[33] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum,

and Samuel J Gershman. Building machines that learn and

think like people. Behavioral and Brain Sciences, 40, 2017.

1

7938



[34] Vincent MK Lau. Learning by example for parametric font

design. In ACM SIGGRAPH ASIA 2009 Posters, page 5.

ACM, 2009. 2, 3

[35] Bryan Loh and Tom White. Spacesheets: Interactive latent

space exploration through a spreadsheet interface. In Work-

shop on Machine Learning for Creativity and Design, 2018.

3

[36] Matthew M Loper and Michael J Black. Opendr: An ap-

proximate differentiable renderer. In European Conference

on Computer Vision, pages 154–169. Springer, 2014. 1

[37] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The

concrete distribution: A continuous relaxation of discrete

random variables. arXiv preprint arXiv:1611.00712, 2016.

1

[38] Vikash K Mansinghka, Tejas D Kulkarni, Yura N Perov, and

Josh Tenenbaum. Approximate bayesian image interpreta-

tion using generative probabilistic graphics programs. In

Advances in Neural Information Processing Systems, pages

1520–1528, 2013. 1

[39] Leland McInnes, John Healy, and James Melville. Umap:

Uniform manifold approximation and projection for dimen-

sion reduction. arXiv preprint arXiv:1802.03426, 2018. 4,

5, 12

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013. 6

[41] Vinod Nair, Josh Susskind, and Geoffrey E Hinton.

Analysis-by-synthesis by learning to invert generative black

boxes. In International Conference on Artificial Neural Net-

works, pages 971–981. Springer, 2008. 1

[42] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen

Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,

Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-

ative model for raw audio. arXiv preprint arXiv:1609.03499,

2016. 2

[43] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. In Thirty-Second AAAI Confer-

ence on Artificial Intelligence, 2018. 3, 11

[44] Pablo Picasso. The bull (le taureau), states i-x, 1946. Mu-

seum of Modern Art (MoMA). Mrs. Gilbert W. Chapman

Fund. Lithograph. 1

[45] Vinay Uday Prabhu, Sanghyun Han, Dian Ang Yap, Mihail

Douhaniaris, Preethi Seshadri, and John Whaley. Fonts-2-

handwriting: A seed-augment-train framework for universal

digit classification. arXiv preprint arXiv:1905.08633, 2019.

3

[46] Alec Radford, Luke Metz, and Soumith Chintala. Un-

supervised representation learning with deep convolu-

tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 2

[47] John A Rehling. Letter spirit(part two): modeling creativity

in a visual domain. Indiana University, 2001. 2, 3, 4, 7

[48] Daniel Reisberg and Sheri Snavely. Cognition: Exploring

the science of the mind. 2010. 1

[49] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-

stra. Stochastic backpropagation and approximate inference

in deep generative models. arXiv preprint arXiv:1401.4082,

2014. 11

[50] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James

Hays. The sketchy database: Learning to retrieve badly

drawn bunnies. ACM Transactions on Graphics (proceed-

ings of SIGGRAPH), 2016. 2, 8

[51] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth.

Recurrent dropout without memory loss. arXiv preprint

arXiv:1603.05118, 2016. 3, 11

[52] Eero P Simoncelli and Bruno A Olshausen. Natural image

statistics and neural representation. Annual review of neuro-

science, 24(1):1193–1216, 2001. 1

[53] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958, 2014. 3, 11

[54] Walt Stanchfield. Gesture drawing for animation. Washing-

ton: Leo Brodie, 2007. 1

[55] Rapee Suveeranont and Takeo Igarashi. Example-based au-

tomatic font generation. In International Symposium on

Smart Graphics, pages 127–138. Springer, 2010. 2, 3

[56] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,

Oriol Vinyals, Alex Graves, et al. Conditional image gen-

eration with pixelcnn decoders. In Advances in Neural In-

formation Processing Systems, pages 4790–4798, 2016. 2

[57] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete

representation learning. In Advances in Neural Information

Processing Systems, pages 6306–6315, 2017. 1, 2

[58] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois

Chollet, Aidan N Gomez, Stephan Gouws, Llion Jones,

Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, et al. Ten-

sor2tensor for neural machine translation. arXiv preprint

arXiv:1803.07416, 2018. 3, 11

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 8

[60] Ronald J Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992. 2

[61] Ronald J Williams and David Zipser. A learning algorithm

for continually running fully recurrent neural networks. Neu-

ral computation, 1(2):270–280, 1989. 4

[62] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.

Recurrent neural network regularization. arXiv preprint

arXiv:1409.2329, 2014. 3, 11

[63] Douglas E Zongker, Geraldine Wade, and David H Salesin.

Example-based hinting of true type fonts. In Proceedings of

the 27th annual conference on Computer graphics and in-

teractive techniques, pages 411–416. ACM Press/Addison-

Wesley Publishing Co., 2000. 2

7939


