
Chapter 8

Detection Theory

In this chapter we start our investigation of detection theory, also referred to as hypothesis testing or
decision theory. Our goal in these problems is to estimate or infer the value of an unknown “state of nature”
based on noisy observations. A general model of this process is shown in Figure 8.1. Nature generates an
unknown output H. By convention, we call this output a hypothesis. This outcome generated by nature then
probabilistically affects the quantities Y that we are allowed to observe. Based on the uncertain observation
Y , we must design a rule to decide what the unknown hypothesis was. In the theory of detection the set of
possible hypotheses is taken to be discrete. When the set of possibilities is continuous we are in the realm
of estimation, which is discussed in Chapter 10. From Figure 8.1 we see that we will need three components
in our model:

1. A model of generation processes that creates H – i.e. a model of nature.

2. A model of the observation process.

3. A decision rule D(y) that maps each possible observation y to an associated decision.

In general, the first two elements are set by “nature” or the restrictions of the physical data gathering
situation. For example, if we are trying to decide whether a tumor is cancerous or not, the true state of the
tumor is decreed by processes outside of our control and the uncertainty or noise in the observations may
arise from the physical processes in generating an X-Ray image. It is generally the last element, decision rule
design, where the engineer plays the strongest role. Such decision rules can be of two types: deterministic and
random. A deterministic decision rule always assigns the same decision or estimate to the same observation
– i.e. when a given observation is seen the same decision is always made. In particular, deterministic decision
rules can be viewed as a simple partitioning or labeling of the space of observations into disjoint regions
marked with the decision corresponding to each observation, as shown in Figure 8.2. In the case of random
decision rules, different decisions may arise from the same observation – i.e. when the same observation is
made twice, two different decision outcomes are possible. Such random decision rules play an important role
when the observed quantity y is discrete in nature. In general, however, our emphasis will be on the design
of deterministic decision rules.
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Figure 8.1: Detection problem components.

In Section 8.1 we discuss in detail the case that arises when there are only two possible hypotheses, termed
binary hypothesis testing. In Section 8.4 we discuss the more general case of M hypotheses. Throughout
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Figure 8.2: Illustration of a deterministic decision rule as a division of the observation space into disjoint
regions, illustrated here for the case of two possibilities.

this chapter we focus on the case of detection based on observations of random variables. In Chapter 9 we
examine the more complicated case of detection based on observations of random processes.

8.1 Bayesian Binary Hypothesis Testing

In this section we consider the simplest case when there are only two possible states of nature or hypotheses,
which by convention we label as H0 and H1. This situation is termed “binary hypothesis testing” and the
H0 hypothesis is usually termed the “null hypothesis,” due to its typical association with the absence of
some quantity of interest. The binary case is of considerable practical importance, as well as having a long
and rich history. To give a flavor of the possibilities, let us examine a few examples before proceeding to
more detailed developments.

Example 8.1 (Communications)
Consider the following simplified version of a communication system, where a source broadcasts one bit, (either 0 or 1)
The transmitter encodes this bit by a voltage, which is either 0 or E, depending on the bit. The receiver observes a noisy
version of the transmitted signal, where the noise is additive, and is represented by a random variable w with zero-mean,
variance σ2, and Gaussian distribution. The receiver knows the nature of the signal E, the statistics of the noise σ2, and
the apriori probability p(k) that the bit sent was k, where k = 0, 1. The receiver must take the received signal, y, and map
this using a rule D(y) into either 0 or 1, depending on the value of r. The problem is to determine the decision rule for
which the probability of receiver error is minimized.

In the above example there are two possible hypotheses, H0 and H1, only one of which can be true.
These hypotheses correspond to whether the transmitted bit was 0 or 1. There is a probabilistic relationship
between the observed variable y and the hypotheses Hi. In particular, the observed variable is y = w for
hypothesis H0, and y = E+w for hypothesis H1. The decision rule divides the space of possible observations
into two disjoint decision regions, Z0 and Z1, such that, whenever an observation falls into Zi, the decision
that Hi is the correct hypothesis is made. In the example, these regions correspond to the values of y for
which D(y) = 0 and the values of y for which D(y) = 1. These decision regions are established to maximize
an appropriate criterion of performance, corresponding to the probability of a correct decision.

Consider other examples:

Example 8.2 (Radar)
A simple radar system makes a scalar observation y to determine the absence or presence of a target at a given range
and heading. If a target is present (hypothesis H1), the observed signal is y = E + w, where E is a known signal level,
and w ∼ N(0, σ2). If no target is present (hypothesis H0), then only noise is received y = w. Find the decision rule for
maximizing the probability of detecting the target, given a bound on the probability of false alarm.
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Example 8.3 (Quality Control)
At a factory, an automatic quality control device is used to determine whether a manufactured unit is satisfactory (hypothesis
H0) or defective (hypothesis H1), by measuring a simple quality factor q. Past statistics indicate that one out of every
10 units is defective. For satisfactory units, q ∼ N(2, σ2), whereas for defective units, q ∼ N(1, σ2). The quality control
device is set to remove all units for which q < t, where t is a threshold to be designed. The problem is to determine
the optimal threshold setting in order to maximize the probability of detecting a defect, subject to the constraint that the
probability of removing a satisfactory unit is at most 0.005.

All of the above examples illustrate the problem of binary hypothesis testing. We will develop the relevant
theory next.

8.1.1 Bayes Risk Approach and the Likelihood Ratio Test

We are now interested in obtaining “good” decision rules for the binary hypothesis testing case. A rational
and common approach is to minimize a cost function given our models of the situation. Building on the
development of the introduction, the elements of this approach in the binary case are:

1. Model of Nature: In the binary case there are only two possibilities, denoted as H0 and H1. Our
knowledge of these possibilities is captured by the prior probabilities Pi = Pr(H = Hi). Note that
P1 = 1− P0.

2. Observation Model: As figure 8.1 indicates, the observation model captures the relationship between
the observed quantity y and the unknown hypothesis H. This relationship is given by the conditional

densities pY |H(y | Hi).

3. Decision Rule: Our decision rule D(y) is obtained by minimizing the average cost, called the “Bayes
risk.” Let Cij denote the cost of deciding hypothesis D(y) = Hi when hypothesis Hj is true, then the
Bayes risk of the decision rule is given by:

E
[
CD(y),H

]
=

1∑

i=0

1∑

j=0

CijPr (D(y) = Hi, Hj true) (8.1)

Note that the outcome of deciding Hi in (8.1) is random, even if the decision rule is deterministic, because y
itself is random. Thus the expectation in (8.1) averages over both the randomness in the true hypothesis Hj

(i.e. the randomness in the state of nature) as well as the randomness in the observation, and thus decision
outcome (i.e. the randomness in the data).

There are two key assumptions in the Bayes risk approach to the hypothesis testing problem which is
formulated above. First, apriori probabilities of each hypothesis occurring Pi can be determined. Second,
decision costs Cij can be meaningfully assigned. Under these two assumptions, the Bayes risk hypothesis
testing problem above is well posed. Clearly, the key is the minimization of the Bayes risk E

[
CD(y)

]
.

Let us now focus on finding the decision rule that minimizes the Bayes risk. Recall (Figure 8.2) that a
deterministic decision rule D(y) is nothing more than a division of the observation space Rn into disjoint
decision regions Z0 and Z1 such that when y ∈ Zi our decision is Hi. Thus finding a deterministic decision rule
in the binary case is simply a matter of figuring out which region to assign each observation to. Combining
this insight with Bayes rule we proceed by rewriting the Bayes risk as follows:

E
[
CD(y)

]
= E

[
E
[
CD(y) | y

]]
=

∫
E
[
CD(y) | y

]
pY (y) dy (8.2)

Now pY (y) is always non-negative and the value of E
[
CD(y) | y

]
only depends on the decision region to

which we assign the particular value y, so we can minimize (8.2) by minimizing E
[
CD(y) | y

]
for each value

of y. Thus, the optimal decision is to choose the hypothesis that gives the smallest value of the conditional
expected cost E

[
CD(y) | y

]
for the given value of y.

Now the conditional expected cost is given by:

E
[
CD(y) | y

]
=

1∑

i=0

1∑

j=0

CijPr (D(y) = Hi, Hj true | y) (8.3)
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But Pr (D(y) = Hi, Hj true | y) will either equal 0 or Pr (Hj true | y) for a deterministic decision rule, since
the decision outcome given y is non-random! In particular, for a given observation value y, the expected
value of the conditional cost if we choose to assign the observation to H0 is given by:

If D(y) = H0: E
[
CD(y)=H0

| y
]

= C00 pH|Y (H0 | y) + C01 pH|Y (H1 | y) (8.4)

where pH|Y (Hi | y) denotes Pr (Hi true | Y = y). Similarly, the expected value of the conditional cost if we
assign this value of y to H1 is given by:

If D(y) = H1: E
[
CD(y)=H1

| y
]

= C10 pH|Y (H0 | y) + C11 pH|Y (H1 | y) (8.5)

Given the discussion above, the optimal thing to do is to make the decision that results in the smaller of
the two conditional costs. We can compactly represent this comparison and its associated decision rule as
follows:

C00pH|Y (H0 | y) + C01pH|Y (H1 | y)
H1

≷
H0

C10pH|Y (H0 | y) + C11pH|Y (H1 | y) (8.6)

where
H1

≷
H0

denotes choosing H1 is the inequality is > and choosing H0 if the inequality is <. The decision

rule given in (8.6) represents the optimal Bayes risk decision rule in its most fundamental form.
Now from Bayes rule we have that:

pH|Y (Hi | y) =
pY |H(y | Hi)pH(Hi)

pY (y)
(8.7)

Substituting (8.7) into (8.6) and dividing through by pY (y) we obtain:

(C01 − C11) P1pY |H(y | H1)
H1

≷
H0

(C10 − C00) P0pY |H(y | H0) (8.8)

which expresses the optimum Bayes risk decision rule in terms of the prior probabilities Pi and the data
“likelihoods” pY |H(y | Hi). Note that the expressions (8.7) and (8.8) are valid for any assignments of the
costs Cij .

If we further make the reasonable assumption that errors are more costly than correct decisions, so that

(C01 − C11) > 0 (8.9)

(C10 − C00) > 0 (8.10)

we can rewrite the optimum Bayes risk decision rule D(y) in (8.8) as follows:

L(y) =

[
pY |H(y | H1)

pY |H(y | H0)

]
H1

≷
H0

(C10 − C00) P0

(C01 − C11) P1
≡ η (8.11)

The consequences of (8.11) are considerable and we will take some time to discuss them. First, examining
(8.11) we see that the form of the optimal Bayes risk decision rule is to compare the ratio L(y), which is
termed the likelihood ratio, to a threshold, which is given by η. The value of this threshold is determined,
in general, by both the prior probabilities and the assigned cost structure, both of which are known at the
outset of the problem (i.e. involve prior knowledge). The test (8.11) is called a likelihood ratio test or LRT,
for obvious reasons, and thus all optimal decision rules (in the Bayes risk sense) are LRTs (with perhaps
different thresholds). Thus, while as engineers we may disagree on such details as the assignment of costs
and prior probabilities, the form of the optimal test (i.e. the data processing) is always the same and given
by the LRT. Indeed, while the threshold η can be set by choosing costs and prior probability assignments,
it is also possible to view it simply as a tunable parameter.

Second, examining (8.11) we see that the data or observations enter the decision only through the
likelihood ratio L(y). Because it is a function of the uncertain observation y, it is itself a random variable.
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Since this scalar function of the data is all that is needed to perform the optimal test, it is a sufficient

statistic for the detection problem. That is, instead of making a decision based on the original observations
y, it is sufficient to make the decision based only on the likelihood ratio, which is a function of y.

Finally, note that the sufficient statistic L(y) is a scalar. Thus the LRT is a scalar test, independent of
the dimension of the observation space. This means we can make a decision in the binary case by making a
single comparison, independent of whether we have 1 observation or 1 million.

Before moving on to look at special cases we note that there is another form of (8.11) that is sometimes
used. In particular, taking logarithms of both sides of (8.11) does not change the inequality and results in
the following equivalent test:

ln [L(y)]
H1

≷
H0

ln

[
(C10 − C00) P0

(C01 − C11) P1

]
(8.12)

The quantity on the left hand side of (8.12) is called the log-likelihood ratio, and as we will see, is conveniently
used in Gaussian problems.

8.1.2 Special Cases

Let us now consider some common special cases of the Bayes risk and the associated decision rules corre-
sponding to them.

MPE cost assignment and the MAP rule

Suppose we use the following cost assignment:

Cij = 1− δij (8.13)

where δij = 1 if i = j and δij = 0 if i 6= j. Then the cost of all errors (C10 = C01 = 1) are the same and
there is no cost for correct decisions (C00 = C11 = 0). In this case, the Bayes risk is given by:

E
[
CD(y)

]
= C00Pr [Decide H0, H0 true] (8.14)

+C01Pr [Decide H0, H1 true]

+C10Pr [Decide H1, H0 true]

+C11Pr [Decide H1, H1 true]

= Pr [Decide H0, H1 true] + Pr [Decide H1, H0 true] (8.15)

= Pr [Error]

Thus the optimal detector for this cost assignment minimizes the probability of error. The corresponding
decision rule is termed the minimum probability of error (MPE) decision rule and is given by:

pY |H(y | H1)

pY |H(y | H0)

H1

≷
H0

P0

P1
(8.16)

Since pY |H(y | Hi)Pi = pH|Y (Hi | y)pY (y) we can rewrite the MPE decision rule (8.16) in the following
form:

pH|Y (H1 | y)
H1

≷
H0

pH|Y (H0 | y) (8.17)

This decision rule says that for minimum probability of error choose the hypothesis whose posterior prob-
ability is higher. This is termed the Maximum aposteriori probability or MAP rule. Thus we see that the
MAP rule is also the MPE rule independent of prior probabilities.
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The ML rule

Now suppose we again use the MPE cost criterion with Cij = 1− δij , but also have both hypotheses equally
likely apriori so that P0 = P1 = 1/2. In this case we essentially have no prior preference for one hypothesis
over the other. With these assignments we can see that the threshold in (8.11) is given by η = 1 so that the
decision rule becomes:

pY |H(y | H1)
H1

≷
H0

pY |H(y | H0) (8.18)

In this case the decision rule is to choose the hypothesis that gives the higher likelihood of the observation.
For this reason this rule is called the maximum likelihood or ML rule

Scalar Gaussian Detection

Here we consider the problem of deciding which of two possible Gaussian distributions a single scalar obser-
vation comes from. In particular, under hypothesis Hi the observation is distributed according to:

pY |H(y | Hi) = N (y;mi, σi) =
1√
2πσ2

i

e
− 1

2

(y−mi)
2

σ2
i (8.19)

These two possibilities are depicted in Figure 8.3. The likelihood ratio for this case is given by:

ym 1m 0

p Y | H ( y | H 1 )p Y | H ( y | H 0 )

Figure 8.3: General scalar Gaussian case

L(y) =




(
1√

2πσ2
1

)
e
− (y−m1)2

2σ2
1

(
1√

2πσ2
0

)
e
− (y−m0)2

2σ2
0




H1

≷
H0

η (8.20)

Now taking natural logs of both sides as in (8.12) and rearranging terms results in the following form of the
optimal decision rule:

− (y −m1)
2

2σ2
1

+
(y −m0)

2

2σ2
0

H1

≷
H0

ln

(
σ1

σ0
η

)
(8.21)

Same Variances, Different Means: Let us consider some special sub-cases. First, suppose σ0 = σ1 = σ
and m1 > m0. In this case the Gaussian distributions have the same variance but different means and the
task is to decide whether the observation came from the Gaussian with the greater or lesser mean. After
simplification, (8.21) can be reduced to the following form:

y
H1

≷
H0

m0 + m1

2
+

σ2 ln(η)

(m1 −m0)
≡ Γ (8.22)

This situation is depicted in Figure 8.4. There are some interesting things to note about this result. First
there are two decision regions separated by Γ. In general, the boundary between the decision regions is an
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adjusted threshold, which takes into account both the costs and the prior probabilities. For example, if we
consider the ML rule (i.e. the MPE cost structure with equally likely hypotheses), then Γ = (m0 + m1)/2
and the boundary between decision regions is halfway between the means. In particular, in this case η = 1
and we can write the decision rule in the form:

‖y −m0‖2
H1

≷
H0

‖y −m1‖2 (8.23)

which says to choose the hypothesis “closest” to the corresponding mean. If, however, instead, we use the
MPE cost structure, but P1 > P0 the decision boundary will move closer to m0, since we expect to see the
H1 case more frequently. In any case, the data processing is linear. This will not always be the case.

y

D e c l a r e  H 1D e c l a r e  H 0 G
m 0 m 1

p Y | H ( y | H 1 )p Y | H ( y | H 0 )

Figure 8.4: Scalar Gaussian case with equal variances

Different Variances, Same Means: Now consider what happens if we instead suppose σ0 < σ1 and
m1 = m0 = 0. In this case the Gaussian distributions have the same mean, but different variances and the
task is to decide whether the observation came from the Gaussian with the greater or lesser variance. After
simplification, (8.21) can be reduced to the following form:

y2
H1

≷
H0

2

(
σ2

1σ2
0

σ2
1 − σ2

0

)
ln

(
σ1

σ0
η

)
≡ Γ′ (8.24)

This situation is depicted in Figure 8.5. Note that the decision regions are no longer simple connected
segments of the real line. Further, the decision rule is a nonlinear function of the observation y.

y

D e c l a r e  H 1D e c l a r e  H 0

G 1 / 2

D e c l a r e  H 1

- G 1 / 2

p Y | H ( y | H 1 )

p Y | H ( y | H 0 )

Figure 8.5: Scalar Gaussian case with equal means

8.1.3 Examples

Let us consider some examples.
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Example 8.4 (Radar)
Consider the radar example, Example 8.2, discussed earlier. This is really just a scalar Gaussian detection problem. The
likelihood ratio for this example is given by:

L(y) =
e

−(y−E)2

2σ2

e
−(y)2

2σ2

= e
2Ey−E2

2σ2 (8.25)

Thus, the optimal decision rule is given by:

e
2Ey−E2

2σ2
H1

≷
H0

η (8.26)

Taking logarithms of both sides means that the new decision rule can be restated as:

y
H1

≷
H0

E

2
+

σ2 ln(η)

E
(8.27)

In the case that the cost criterion is minimum probability of error (MPE) so that C00 = C11 = 0, C01 = C10 = 1, and
the probability of each hypothesis is apriori equal (P0 = P1 = 1/2), we have that η = 1. Note that the optimal detection
test in this case is to compute which mean the measurement is closer to! This is just an example of the scalar Gaussian
detection problem treated above.

Example 8.5 (Multiple Observations)
Consider the radar detection example, except that N independent pulses are sent out, so that a vector of measurements is
collected. This is the typical situation in radar systems, where multiple pulses are processed to improve the signal-to-noise
ratio and thus obtain better detection performance. We assume that each pulse provides a measurement yi, where

yi =

{
ni if hypothesis H0 is true (no target present)

E + ni if hypothesis H1 is true (target present)

and ni is a set of independent, identically distributed N(0, σ2) random variables. In this case, the likelihood ratio is given
by:

L(y) =
pY1,···YN |H(y1, · · · , yN | H1)

pY1,···YN |H(y1, · · · , yN | H0)
=

N∏

i=1

e
−(yi−E)2

2σ2

e
−(yi)

2

2σ2

=
N∏

i=1

e
2Eyi−E2

2σ2 = e

2E




N∑

i=1

yi




−NE2

2σ2 (8.28)

By again taking logs of both sides the decision rule can be reduced to:

1

N

N∑

i=1

yi

H1

≷
H0

E

2
+

σ2 ln(η)

NE
(8.29)

Comparing with (8.27), the effect of using the extra measurements is to reduce the measurement covariance by a factor
of N1/2.

Before, we said that the likelihood ratio was a sufficient statistic. It may not be the simplest sufficient
statistic however. Whenever there is a function of the data, g(y) such that the likelihood ratio can be
computed strictly from g(y), this value is also a sufficient statistic. Thus sufficient statistics are not unique.

In the above example, it is clear that the sample mean, 1
N

∑N
i=1 yi, is a sufficient statistic for the detection

problem; note that this is a linear function of the measurement vector y and much simpler than the likelihood
ratio L(yi) in (8.28).

Example 8.6
Assume that, under hypothesis H0, we have a vector of N observations y, with independent, identically distributed
N(0, σ2

0) components yi. Under hypothesis H1, we have a vector of N observations y, with independent, identically dis-
tributed N(0, σ2

1) components yi. Thus, the two hypothesis correspond to multiple observations of independent identically
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distributed random variables with the same mean but different covariances. The likelihood ratio is given by:

L(y) =

e
−
∑N

i=1 y2
i

2σ2
1

(2πσ2
1)N/2

e
−
∑N

i=1
y2

i
2σ2

0

(2πσ2
0)N/2

=
σN

1

σN
2

e
−
∑N

i=1 y2
i

2σ2
1

+

∑N
i=1 y2

i
2σ2

0 (8.30)

Again, after taking logs the optimal decision rule can be rewritten in terms of a simpler test, as:

1

N

N∑

i=1

y2
i

H1

≷
H0

2
σ2

0σ2
1

σ2
1 − σ2

0

ln

(
η1/N σ1

σ0

)
(8.31)

Clearly, a sufficient statistic for this problem is the quadratic function of the measurements: 1
N

∑N
i=1 y2

i .

Before proceeding to another section, consider a problem which does not involve Gaussian random variables.

Example 8.7
Assume that we observe a random variable y which is Poisson distributed with mean m0 when H0 is true, and with mean
m1 when H1 is true. Thus the likelihoods are given by:

pY |H(y | Hi) =
my

i e−mi

k!
(8.32)

Note that the measurements are discrete-valued; thus, the likelihood ratios will involve probability distributions rather than
densities. The likelihood ratio is given by:

L(y) =
pY |H(y | H1)

pY |H(y | H0)
=

my
1e−m1

my
2e−m2

(8.33)

Thus, the optimal decision rule can be written as:

y
H1

≷
H0

(m1 −m0) + ln(η)

ln
(

m1
m0

) (8.34)

8.2 Performance and the Receiver Operating Characteristic

In the discussion so far we have focused on the form of the optimal test and on the nature of the data
processing involved. We have found that the optimum Bayes risk test is the likelihood ratio test, where a
function of the data (the likelihood ratio) is compared to a threshold. Let us now turn our attention to
characterizing the performance of decision rules in general and LRT-based decision rules in particular. To
aid in this discussion let us define the following standard terminology, arising from classical radar detection
theory:

PF ≡ Pr(Choose H1 | H0 True) = Probability of False Alarm (called a “Type I” Error)

PD ≡ Pr(Choose H1 | H1 True) = Probability of Detection

PM ≡ Pr(Choose H0 | H1 True) = Probability of Miss (called a “Type II” Error)

The quantity PF is the probability that the decision rule will declare H1 when H0 is true, while PD is the
probability that the decision rule will declare H1 when H1 is true and PM is the probability that the decision
rule will declare H0 when H1 is true. Note carefully that these are conditional probabilities!

Now there are two natural metrics to evaluate the performance of a decision rule. The first metric is
the expected value of the cost E[CD(y)], i.e. the value of the Bayes risk. Let us examine this cost in more
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detail. Following (8.14), and using Bayes rule and the definitions of the conditional densities PF , PM , and
PD above, the Bayes risk can is given by:

E
[
CD(y)

]
= C00Pr [Decide H0 | H0] P0 + C01Pr [Decide H0 | H1] P1 (8.35)

+C10Pr [Decide H1 | H0] P0 + C11Pr [Decide H1 | H1] P1

= C00(1− PF )P0 + C01(1− PD)P1 + C10PF P0 + C11PDP1

= C00P0 + C01P1︸ ︷︷ ︸
Fixed Cost

+(C10 − C00) P0PF − (C01 − C11) P1PD︸ ︷︷ ︸
Varies as function of decision rule

Note that this cost has two components. The first component is independent of the decision rule used, is
based only on the “prior” components of the problem, and represents a fixed cost. The second component
varies as a function of the decision rule (e.g. as the threshold η of the LRT is varied). In particular, of the
elements in this second component it is PF and PD that will vary as the decision rule is changed. Thus,
from a performance standpoint, we can say that E[CD(y)] can be expressed purely as a function of PF and
PD (where we assume Cij and Pi are fixed).

A second natural performance metric of decision rules is the probability of error Pr[error]. Starting from
(8.14) and again using Bayes rule and the definitions of PF , PM , and PD we find:

Pr [Error] = Pr [Decide H0, H1 true] + Pr [Decide H1, H0 true] (8.36)

= PMP1 + PF P0

= (1− PD)P1 + PF P0

Again, the parts of this expression that will vary as the decision rule is changed are PD and PF . Thus, we
can also express Pr[Error] as a function of just PD and PF (again, assuming Cij and Pi are fixed).

Let us summarize the development thus far. Given any decision rule we can determine its performance
(i.e. either its corresponding Bayes risk E

[
CD(y)

]
or its Pr[Error]) by calculating PD and PF for the decision

rule. Further, we know that “good” decision rules (i.e. those optimal in the Bayes risk sense) are likelihood
ratio test – i.e. they compare the likelihood ratio to a fixed threshold to make their decision. The only
undetermined quantity in a LRT is its threshold. Given this discussion it seems reasonable to limit ourselves
to consideration of LRT decision rules and to calculate PD and PF for every possible value of the threshold
η. Given this information, we have essentially characterized every possible “reasonable” decision rule. This
information may be conveniently and compactly represented as graph of PD(η) versus PF (η) – that is, a plot
of the points (PF , PD) as the parameter η is varied. Such an important plot for a decision rule has a special
name – it is called the Receiver Operating Characteristic or ROC for the detection problem. An illustration
of a ROC is given in Figure 8.6.
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P D

P F ( h 0 )

P D ( h 0 ) h = h 0

Figure 8.6: Illustration of ROC.

Let us emphasize some features of the ROC. First, note that the threshold η is a parameter along the
curve. Thus any one point on the ROC corresponds to a particular choice of threshold (and vice versa).
The ROC itself does not depend on the costs Cij or the apriori probabilities Pi. These terms can be used,
however, to determine a particular threshold, and thus a particular operating point corresponding to the
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optimal Bayes risk detector. Finding appropriate values of these costs and densities can be challenging, and
the ROC allows us to characterize the performance of all possible optimal detectors.

The key challenge in generating the ROC for a particular problem is finding the quantities PD and PF

as a function of a threshold parameter. To this end, note that a general LRT decision rule can always be
expressed in the following form:

`(y)
H1

≷
H0

Γ (8.37)

where `(y) is a sufficient statistic for the detection problem and Γ is a corresponding threshold. The sufficient
statistic might be the original likelihood ratio L(y) = pY |H(y | H1)/pY |H(y | H0) or it might be a simpler
function of the observations, as we saw in the radar example. The important thing is that it completely
captures the influence of the observations. Note that `(y) is itself a random variable, since it is a function of
y.

Now we can express PD and PF as follows:

PD = Pr(Choose H1 | H1 True) (8.38)

=

∫

{y|Choose H1}
pY |H(y | H1) dy (8.39)

=

∫

`>Γ

pL|H(` | H1) d` (8.40)

PF = Pr(Choose H1 | H0 True) (8.41)

=

∫

{y|Choose H1}
pY |H(y | H0) dy (8.42)

=

∫

`>Γ

pL|H(` | H0) d` (8.43)

The expressions (8.39) and (8.42) express the probabilities in terms of quantities in the space of the obser-
vations, i.e. in terms of the likelihoods. The expressions (8.40) and (8.43) express the probabilities in terms
of quantities in the space of the test statistic and its densities. Both expressions are correct, and the choice
of which to use is usually based on convenience, as we will see. Note that the region of integration (i.e. the
set of values of y or ` used in calculation) is the same for both PD and PF , it is just the densities used that
are different. We illustrate these ideas with an example.

Example 8.8 (Scalar Gaussian Detection)
Consider again the problem of determining which of two Gaussian densities of scalar observation comes from. In particular,
suppose y is scalar and distributed N(0, σ2) under H0 and distributed N(E, σ2) under H1. We have seen in (8.27) that
the optimal decision rule was:

`(y) = y
H1

≷
H0

E

2
+

σ2 ln(η)

E
= Γ

In this case `(y) = y so the observation space is the same as the space of the test statistic and it is easy to see that `(y)
will be a Gaussian random variable under either hypothesis. In particular, we have:

pL|H1
(` | H1) = N

(
`; E, σ2)

)
(8.44)

pL|H0
(` | H0) = N

(
`; 0, σ2)

)
(8.45)

Now we can combine these densities with (8.40) and (8.43) to find PD and PF as we vary Γ from (−∞,∞), which is the
range of Γ which results from variations in η. Explicitly, we have

PD =

∫ ∞

Γ

pL|H1
(` | H1) d` (8.46)

=

∫ ∞

Γ

1√
2πσ2

e
− (`−E)2

2σ2 d`
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PF =

∫ ∞

Γ

pL|H0
(` | H0) d` (8.47)

=

∫ ∞

Γ

1√
2πσ2

e
− `2

2σ2 d`

These calculations of PD and PF are illustrated in Figure 8.7. Since these probabilities depend on the integral of Gaussian

densities, we can express them in terms of the standard Q function Q(x) = 1
2π

∫∞
x

e−z2/2dz as follows:

PD = Q

(
Γ− E

σ

)
(8.48)

PF = Q

(
Γ

σ

)
(8.49)

p H p y HL H Y H| |( | ) ( | )0 00 0l = p H p y HL H Y H| |( | ) ( | )1 11 1l =

l ,  y0 E
D e c l a r e  H 1D e c l a r e  H 0

G

P F P D

Figure 8.7: Illustration of PD and PF calculation.

Note that for this Gaussian detection example the performance of the detection rule really only depends
on the separation of the means of the test statistic `(y) under each hypothesis relative to the variance of the
test statistic under each hypothesis – i.e. the normalized “distance” between the conditional densities. This
relative or normalized distance is often an important indicator of the difficulty of a detection problem. As a
result, this idea has been formalized in the definition of the so called “d2 statistic”:

d2 ≡ (E [` | H1]− E [` | H0])
2

√
Var (` | H1) Var (` | H0)

(8.50)

The quantity d2 can be seen to be a measure of the normalized distance between two hypotheses. In general,
larger values of d2 correspond to easier detection problems.

Example 8.9 (Scalar Gaussian Detection)
Let us continue Example 8.8. Note that:

d2 =
E2

σ2
(8.51)

which is a measure of the relative separation of the means under each hypothesis. Further we can express PD and PF in
terms of d as follows:

PF = Q

(
Γ

σ

)
PD = Q

(
Γ

σ
− d

)
(8.52)

Larger values of d result in higher values of PD for a given value of PF .

8.2.1 Properties of the ROC

If we examine the expressions for PD and PF for Example 8.8 in more detail we can see that the corre-
sponding ROC will possess a number of properties. First, PD ≥ PF for all thresholds Γ or η. In addition,
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limΓ→−∞ PD = limΓ→−∞ = 1. At the other extreme, limΓ→+∞ PD = limΓ→+∞ PF = 0. Finally, PD ≤ 1
and PF ≤ 1. Thus, the sketch in Figure 8.6 reasonably reflects this ROC. More interestingly, these proper-
ties (and others) are true for general ROC curves, and not just for the present example. We discuss these
properties of the ROC next, starting with those we have just seen for our Gaussian example. We consider
general likelihood ratio tests with threshold η as given in (8.11).

Property 1. The points (PF , PD) = (0, 0) and (PF , PD) = (1, 1) are always on the ROC. To see this,
suppose we set the threshold η = 0. In this case since the densities are non-negative, the decision
rule will always select H1. In this case, PD = PF = 1. At the other extreme, assume the threshold
η = +∞. In this case the hypothesis H0 is always selected1. Since H0 is always selected PF = 0 and
PD = 0.

Property 2. The ROC is the boundary between what is achievable by any decision rule and what is not.
In particular, the (PF , PD) curve of any detection rule (including detection rules that are not LRTs)
cannot lie in the shaded region shown in Figure 8.8.

Now, it is straightforward to see that we cannot get better PD for a given PF than that achieved by
the LRT for the problem, since that would imply a detection rule resulting in lower Bayes risk (which
would contradict our finding that the optimal Bayes risk decision rule is a LRT). What is perhaps less
immediately obvious is that no decision rule can perform worse than the performance corresponding
to the “reflection” of the ROC below the 45 degree line. The detector with this maximally bad
performance is obtained by simply switching the decision regions for each value of η (and thus is doing
the worst thing to do for every threshold). The reason is simple – if it were possible to design a decision
rule with arbitrarily bad performance, than by just exchanging the decision regions we could obtain a
decision rule with arbitrarily good performance. Note that the result of swapping the decision regions
is that PD ⇒ 1− PD and PF ⇒ 1− PF .

1

10 P F

P D

R O C  o f  L R T

P D ( h 0 ) h = h 0

P F ( h 0 )

S l o p e  =  h 0

Figure 8.8: Illustration ROC properties.

Property 3. For a LRT with threshold η, the slope of the (continuous) ROC at the corresponding (PF (η), PD(η))
point is η.

To show this, first note that we may express PD as follows:

PD =

∫

{y|L(y)>η}
pY |H(y | H1) dy =

∫

{y|L(y)>η}
L(y) pY |H(y | H0) dy (8.53)

=

∫ ∞

η

Z pL|H0
(Z | H0) dZ (8.54)

Now, differentiating (8.54) with respect to η we obtain:

dPD(η)

dη
= −η pL|H0

(η | H0) (8.55)

1Note that the only way that H1 would be selected is if we had an observation such that pY |H(y | H0) = 0. However, for
such observations there is no possibility of a false alarm, since those value cannot be generated under H0!
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Now we also know that

PD =

∫ ∞

η

pL|H1
(L | H1) dL (8.56)

PF =

∫ ∞

η

pL|H0
(L | H0) dL (8.57)

Differentiating these expressions with respect to η we also obtain:

dPD

dη
= −pL|H1

(η | H1) (8.58)

dPF

dη
= −pL|H0

(η | H0) (8.59)

Now equating (8.55) to (8.58) we obtain the result that:

pL|H1
(η | H1)

pL|H0
(η | H0)

= η (8.60)

Finally, the slope of the ROC is given by the derivative of PD with respect to PF :

dPD

dPF
=

dPD

dη

dPF

dη

=
−pL|H1

(η | H1)

−pL|H0
(η | H0)

= η (8.61)

which shows the result.

This property is illustrated in Figure 8.8. Note that a consequence of this property is that the ROC
has zero slope at the point (PF , PD) = (1, 1) (η = 0) and infinite slope at the point (PF , PD) = (0, 0)
(η =∞).

Property 4. The ROC of the LRT is convex downward. In particular, PD ≥ PF .

To show this property we use the concept of randomized decision rules, discussed in the following
section on detection from discrete-valued observations. Suppose we select the endpoints of a randomized
decision rule to be on the optimal ROC itself, as illustrated in Figure 8.9. Note that such a randomized
decision rule is not necessary optimal. As a result, the optimal test must have performance (i.e. PD

for a given PF ) that is better than any randomized test. In particular, if (P ∗
F , P ∗

D) are the points on
the ROC for the optimal Bayes decision rule, then we must have:

P ∗
D ≥ PD(p) when P ∗

F = PF (p) (8.62)

This argument shows that points on the optimal ROC between our chosen endpoints must lie above
the line connecting the endpoints, and thus that the optimal ROC is convex, as shown in Figure 8.9

To see how the ROC can be used to compare the performance of different problems and detection rules,
consider the following example, where we examine how the ROC changes as a function of the amount of
data.

Example 8.10
Suppose we observe N independent samples of a random variable: yi, i = 1, · · · , N . Under hypothesis H0, pYi|H0

(yi |
H0) ∼ N(0, σ2), and under H1, pYi|H0

(yi | H1) ∼ N(1, σ2). Define the vector y to be the collection of samples. Our
problem is to decide whether our vector of observations came from the H0 distribution or the H1 distribution. This problem
is similar to the N -pulse radar detection problem of Example 8.5. Using our analysis there we find that the optimal test
can be written as:

`(y) =
1

N

N∑

i=1

yi

H1

≷
H0

1

2
+

σ2 ln(η)

N
(8.63)
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Figure 8.9: Illustration ROC convexity using randomized decision rules.

Now note that since the observations yi are independent, the sufficient statistic for the test `(y) = 1
n

∑n
i=1 yi has the

following probability density functions under each hypothesis:

H0 : pL|H0
(` | H0) ∼ N(0, σ2/N) (8.64)

H1 : pL|H1
(` | H1) ∼ N(1, σ2/N) (8.65)

Thus, the probability of false alarm for a given threshold Γ = 1/2 + σ2 ln(η)
N

is given by

PF =
1√

2πσ2/n

∫ ∞

Γ

e
− Nx2

2σ2 dx = Q

(
N1/2Γ

σ

)
(8.66)

where Q(Γ) = 1√
2π

∫∞
Γ

e−x2/2dx. Similarly,

PD =
1√

2πσ2/N

∫ ∞

Γ

e
− N(x−1)2

2σ2 dx = Q

(
N1/2(Γ− 1)

σ

)
(8.67)

Note that, as N increases the ROC curves are monotonically increasing in PD for the same PF , and thus nest. In particular,
as we make more independent observations the curves move to the northwest and closer to their bounding box. In the
limit, we have limN→∞ PD = 1, limN→∞ PF = 0, which indicates that, as N →∞. This effect is shown in Figure 8.10.
Simply looking at the ROC curves for the different cases we can see the positive effect of using more observations.

Finally, note that the idea of using the ROC to evaluate the performance of decision rules is so powerful and
pervasive that it is used to evaluate decision rules even when they are not, strictly speaking LRT rules for
binary hypothesis testing problems.

8.2.2 Detection Based on Discrete-Valued Random Variables

The theory behind detection based on observations y that are discrete valued is essentially the same as when
y is continuous valued. In particular, the LRT (8.11) is still the optimal decision rule, as considered in
Example 8.7. There are some important unique characteristics of the discrete valued case that are worth
discussing, however. When the observations y are discrete-valued the likelihood ratio L(y) will also be
discrete-valued. In this case, varying the threshold η will have no effect on the values of PF , PD until the
threshold crosses one of the discrete values of L(y). After crossing this discrete-value, the values of PF , PD

will then change by a finite amount. As a result, the ROC “curve” in such a discrete observation case,
obtained by varying the value of the threshold, will be a series of disconnected and isolated points. This is
illustrated in the following examples.
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Figure 8.10: Illustration ROC behavior as we obtain more independent observations.

Example 8.11
Assume that y is a binomial random variable, resulting from the sum of two independent, identically distributed Bernoulli
random variables:

y = x1 + x2 (8.68)

The probabilities of the xi under each hypothesis are given by:

Under H0: Pr(xi = 1) =
1

4
; Pr(xi = 0) =

3

4
; (8.69)

Under H1: Pr(xi = 1) =
1

2
; Pr(xi = 0) =

1

2
; (8.70)

Note that y can only take 3 values: 0, 1, or 2. Under these conditions, the likelihood ratio for the problem is given by:

L(y) =
pY |H(y | H1)

pY |H(y | H0)
=

2!
y!(2−y)!

(
1
2

)y ( 1
2

)2−y

2!
y!(2−y)!

(
1
4

)y ( 3
4

)2−y =
1/4

(1/4)y(3/4)2−y
(8.71)

=
4

32−y
(8.72)

The LRT for this problem is then given by:

4

32−y

H1

≷
H0

η (8.73)

Now note that the likelihood ratio can only take the values:

L(y) =





4/9 if y = 0
4/3 if y = 1
4 if y = 2

(8.74)

Now let us examine how PD and PF vary as we change η. If η > 4, hypothesis H0 is always selected so that PD = 0
and PF = 0. Thus, these values of η correspond to the point (PF , PD) = (0, 0) on the ROC. As η is reduced so that
4/3 < η < 4, hypothesis H1 is selected only when y = 2. The probability of detection is PD = P (y = 2 | H1) = 1/4,
whereas the probability of false alarm is PF = P (y = 2 | H0) = 1/16. Note that PD and PF will have these values for any
value of η in the range 4/3 < η < 4. Thus, this entire range of η corresponds to the (isolated) point (PF , PD) = (1/16, 1/4)
on the ROC. Further reducing the threshold η so that 4/9 < η < 4/3 implies that H0 is selected only when y = 0.
In this case, the probability of detection is PD = 1 − P (y = 0 | H1) = 3/4, and the probability of false alarm is
1 − P (y = 0 | H0) = 7/16. Again, note that PD and PF will have these values for any value of η in the range
4/9 < η < 4/3. Again, this entire range of η thus corresponds to the (isolated) point (PF , PD) = (7/16, 3/4) on the
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Figure 8.11: Illustration ROC for a discrete valued problem of Example 8.11.

ROC. Finally, as the threshold is lowered so that η < 4/9, hypothesis H0 is never selected, so that PD = 1 and PF = 1.
These values of η therefore correspond to the point (PF , PD) = (1, 1) on the ROC. In summary, varying the threshold η
produces 4 isolated points for the ROC curve for this problem, as illustrated in Figure 8.11

Let us consider another discrete valued example, this time involving Poisson random variables.

Example 8.12
Consider observing a scalar value y, which is Poisson distributed under H0 with mean m0, and Poisson distributed under
H1 with mean m1. This situation was considered in Example 8.7. The optimal decision rule for this problem was found in
(8.34 to be given by:

y
H1

≷
H0

(m1 −m0) + ln(η)

ln
(

m1
m0

) = Γ (8.75)

Since y is discrete-valued, fractional parts of the effective threshold Γ on the right hand side of (8.75) will have no effect,
and the ROC will again have a countable number of points.

The probability of false alarm is thus a function of the integer part of the threshold Γ, and is given by:

PF (Γ) =

∞∑

y=dΓe

my
0

y!
e−m0 (8.76)

where dΓe denotes the smallest integer greater than Γ. Similarly, the probability of detection is given by:

PD(Γ) =
∞∑

y=dΓe

my
1

y!
e−m1 (8.77)

The ROC for this problem is illustrated in Figure 8.12

The discrete nature of the ROC when the observation is discrete-valued seems to suggest that we can
only obtain detection performance at a finite number of (PF , PD) pairs. While this observation is true if we
limit ourselves to deterministic decision rules, by introducing the concept of a randomized decision rule we
can get a much wider set of detection performance points (i.e. (PF , PD) points).

To introduce the idea of a randomized decision rule, suppose we have a likelihood ratio L(y) for an
arbitrary problem (i.e. not necessarily with discrete-valued observations) and two thresholds η0 and η1. We
then essentially have two likelihood ratio decision rules. Assume the decision rule corresponding to η0 has
performance (PF0

, PD0
) and the decision rule corresponding to η1 has performance (PF1

, PD1
). Suppose

we now define a new (random) decision rule by deciding between H0 and H1 according to the following
probabilistic scheme:

1. Select a Bernoulli random variable Z with Pr(Z = 1) = p. This is equivalent to flipping a biased coin
with Pr(heads) = p.
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Figure 8.12: Illustration ROC for a discrete valued problem of Example 8.12.

2. If Z = 1 use a LRT with the threshold η = η1 to make the decision.

L(y)
H1

≷
H0

η1 (8.78)

If Z = 0 use a LRT with the threshold η = η0 to make the decision.

L(y)
H1

≷
H0

η0 (8.79)

Note that the resulting overall rule will result in a random decision. The PD(p), PF (p) performance of the
overall new detection rule as a function of p can be found as:

PD(p) = Pr(Decide H1 | H1) (8.80)

= Pr(Decide H1 | H1, Z = 1)Pr(Z = 1) + Pr(Decide H1 | H1, Z = 0)Pr(Z = 0)

= pPD1
+ (1− p)PD0

PF (p) = Pr(Decide H1 | H0) (8.81)

= Pr(Decide H1 | H0, Z = 1)Pr(Z = 1) + Pr(Decide H1 | H0, Z = 0)Pr(Z = 0)

= pPF1
+ (1− p)PF0

Thus, the performance of the randomized decision rule is on the line connecting the points (PF1
, PD1

) and
(PF0

, PD0
). These ideas are illustrated for a generic decision problem in Figure 8.13. By varying p we

can obtain a decision rule with performance given by any (PF , PD) pair on the line connecting the points
(PF1

, PD1
) and (PF0

, PD0
).

Now, let us return to the discrete-valued observation case. By using such randomized decision rules with
the isolated points of the ROC of the deterministic decision rule as endpoints, we can obtain any (PF , PD)
performance on the lines connecting these points. For example, the resulting ROC for Example 8.11 would
be as shown in Figure 8.14. In general, we can obtain an ROC curve which is a piecewise-linear concave
curve connecting the isolated points of the deterministic decision rule ROC. Further, c.f. ROC Property 2,
it is impossible to get performance that is above this piecewise-linear curve (or below its mirror image).

Finally, note that ROC Property 3 can also be extended to discrete-valued random variables. Note that
in this case the ROC curve is not differentiable at the discrete-valued points so the slope of the ROC curve
is not defined at these points. At such points of non-differentiability, there is a range of possible slopes,
defined by the slopes of the straight lines to the right and to the left of the isolated points. At these points,
the value of η must be included in this range of possible slopes.
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Figure 8.13: Illustration of the performance of a randomized decision rule.
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Figure 8.14: Illustration of the overall ROC obtained for a discrete valued observation problem using ran-
domized rules.

8.3 Other Threshold Strategies

We have now determined that the form of the optimal Bayes risk test is the likelihood ratio test and have
studied the performance of decision rules through use of the ROC. We have seen that the ROC compactly
represents the performance of the LRT for all choices of the threshold η. In the general Bayes formulation
the specific threshold η used for a given detection problem (and thus the specific operating point chosen on
the ROC) is a function of the prior probabilities Pi = Pr(Hi) and the cost assignment Cij :

η ≡ (C10 − C00) P0

(C01 − C11) P1
(8.82)

If we have knowledge of all these elements, then this is obviously the right (and easy) thing to do. Often,
however, determining either the Pi or the Cij is fraught with difficulties and an alternative strategy for
picking the operating point is used. We discuss two such alternatives next.
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8.3.1 Minimax Hypothesis Testing

For a given detection problem suppose that we have a cost assignment Cij we believe in, but are unsure of
the true prior probabilities used by nature, which are P ∗

1 and P ∗
0 . Now suppose we design a decision rule (i.e.,

choose a threshold) based on the costs Cij and a set of assumed (but possibility incorrect) prior probabilities
P1 and P0 = 1 − P1. Let the performance of the resulting decision rule be given by the operating point
(PF (P1), PD(P1)), which, as we have indicated, will be a function of our choice of P1. Since, in general, the
Pi we use to design our decision rule will be different from the true underlying P ∗

i , our test will not have the
minimum cost or Bayes risk for this problem. One reasonable approach in such a situation is to assume that
nature will do the worst thing possible and to choose our design values of Pi (i.e. choose our threshold η) to
minimize the maximum value of the cost or Bayes risk as a function of the true values P ∗

i . Such a strategy
leads to the minimax decision rule.

Now, from (8.36), the resulting cost (i.e. the Bayes risk) of a decision rule using assumed values Pi when
truth is P ∗

i is given by:

E (C,P1, P
∗
1 ) = C00P

∗
0 + C01P

∗
1 + (C10 − C00) P ∗

0 PF (P1)− (C01 − C11) P ∗
1 PD(P1) (8.83)

= [(C01 − C00)− (C10 − C00) PF − (C01 − C11) PD] P ∗
1 + C00 + (C10 − C00) PF

where we have used the fact that P ∗
0 = (1− P ∗

1 ).

On the left in Figure 8.15 we illustrate how the expected cost changes as the true prior probability P ∗
1

is varied. When an arbitrary fixed value of P1 is used, the threshold is fixed, so the corresponding values of
PF and PD are fixed. In this case we see from (8.83) that E(C) will be a linear function of the true prior
probability P ∗

1 . This is plotted as the upper curve in Figure 8.15 (left). Now if we knew P ∗
1 we could design

an optimal LRT using an optimal threshold. In this case the threshold would change as P ∗
1 varied and thus

so would PF and PD and the resulting cost. The cost of this optimal decision rule is the lower curve in
Figure 8.15 (left). The two curves touch when the design value of P1 matches the true value of P ∗

1 . Thus,
they will always be tangent at this matched point. For the example in the figure, the maximum value of the
expected cost for the non-optimal rule is obtained at the left endpoint of the curve.

C 0 0

1 P 1 *

E ( C )

C 1 1

P 1 * = P 10

C o s t  i f  f i x e d  h  u s e d
M a x i m u m  c o s t  o f
t h i s  d e c i s i o n  r u l e

O p t i m u m  L R T  d e c i s i o n  
r u l e  i f   P 1 *  k n o w n

C 0 0

1 P 1 *

E ( C )

C 1 1

0

T h i s  c h o i c e  m i n i m i z e s  
t h e  m a x i m u m  c o s t

P 1 m m

Figure 8.15: Left: Illustration of the expected cost of a decision rule using an arbitrary fixed threshold as
a function of the true prior probability P ∗

1 . The maximum cost of this decision rule is at the left endpoint.
The lower curve is the corresponding expected cost of the optimal LRT. Right: The expected cost of the
minimax decision rule as a function of the true prior probability P ∗

1 .

In general, we would like to minimize the maximum value of (8.83). Examining Figure 8.15, we can see
that this goal is accomplished if we choose our value of P1 (or equivalently, our operating point on the ROC)
so that the line (8.83) is tangent to the optimal Bayes risk curve at its maximum, as shown on the right in
the figure. This happens when the slope of the curve is zero, i.e. when:

[(C01 − C00)− (C10 − C00) PF − (C01 − C11) PD] = 0 (8.84)
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This result is valid as long as the maximum of the optimal Bayes cost curve is interior to the interval. When
the maximum is at the boundary of the interval, then that is value of P1 to choose.

Equation (8.84) is sometimes termed the minimax equation and defines the general minimax operating
point. We can rewrite (8.84) in the following form:

PD =

(
C01 − C00

C01 − C11

)
−
(

C10 − C00

C01 − C11

)
PF (8.85)

which is just a line in (PF , PD) space. Thus the minimax choice of operating point can be found as the
intersection of the straight line (8.85) with the ROC for the optimal LRT, as shown in Figure 8.16. For
example, if we use the MPE cost assignment, C01 = C10 = 1, C00 = C11 = 0, then (8.85) reduces to
PD = 1− PF and the minimax line is just the −45 degree line.

1

10 P F

P D

P C C
C C

C C
C C PD F= -

- - -
-

F
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I
KJ
F
HG

I
KJ

0 1 0 0

0 1 1 1

1 0 0 0

0 1 1 1

R O C  o f  O p t i m a l  L R T

h m i n i m a x

Figure 8.16: Finding the minimax operating point by intersecting (8.85) with the ROC for the optimal LRT.

8.3.2 Neyman-Pearson Hypothesis Testing

In the minimax case we assume that the costs Cij can be meaningfully assigned, but that we do not know
the prior probabilities. In many cases, finding such meaningful costs assignments can be difficult. This raises
the question of how to choose an operating point when neither the prior probabilities Pi or the costs Cij

can be found. In general, we would like to make PF as small as possible and PD as large as possible. As
the ROC shows, these two desires work in opposition to each other. What is often done is practice is to
constrain PF and then to maximize PD subject to this constraint. Mathematically, one wants to solve:

max PD subject to PF ≤ α (8.86)

The solution of this problem is called a Neyman-Pearson detection rule or “NP rule”.
Note that the optimal Bayes LRT has the highest PD for any PF , and thus the solution of the Neyman-

Pearson problem must be an optimal LRT for some choice of threshold η. So we are again in the position of
needing to find an appropriate operating point on the optimal ROC. Since the ROC of the optimal LRT has
PD as a monotonically non-decreasing function of PF , the solution of the NP problem must correspond to
the point (α, PD(α)). In the continuous-observation case, the corresponding optimal threshold η is then the
slope of the ROC at this point. When the observations are discrete, we can use randomized decision rules
to obtain the best PD for any PF = α and the corresponding threshold η can be found from the thresholds
of the endpoint. Indeed, the desire to perform NP decision rules is one motivation for randomized decision
rules in the discrete case!
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Example 8.13 (Neyman-Pearson)
Suppose that the likelihoods under each hypothesis for a binary detection problem are as given in Figure 8.17. We want
to find the decision rule that maximizes PD subject to PF ≤ 1/2.

y0

p y HY H| ( | )
0 0 p y HY H| ( | )

1 1

y0
0 1 0 1 2

11

Figure 8.17: Likelihoods for a Neyman-Pearson problem.

This decision rule will be a Neyman-Pearson rule. The observation is continuous valued, so the ROC will be as well.
Thus the optimal NP rule will be a LRT with threshold η chosen so that PF = 1/2. We can write this rule as follows:

pY |H(y | H1)
H1

≷
H0

η pY |H(y | H0) (8.87)

Figure 8.18 shows pY |H(y | H1) and η pY |H(y | H0) on the same axes when η < 1. The corresponding decision regions
are also shown. On the right of Figure 8.18 the corresponding value of PF = (1− η) is shown. Now we want PF = 1/2,
thus we have:

η = 1− 1/2 = 1/2 (8.88)

The resulting decision rule is given by:

pY |H(y | H1)

pY |H(y | H0)

H1

≷
H0

1

2
(8.89)

y0

h p y HY H| ( | )
0 0

p y HY H| ( | )
1 1

0 1 2

1

hH 0 H 1

p y HY H| ( | )
0 0
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0 1

1

H 1

P F

h

Figure 8.18: Scaled densities, decision regions and PF for the problem of Example 8.13.

In practical problems, the bound α on PF is determined by engineering considerations, and includes
such constraints as the amount of computing power or other resources available to process false alarms. For
example, a common situation we have all experienced relating to false alarm rate is in connection with car
alarms. If the threshold of the car alarm is set too high, it will not trigger when the car is assaulted by
thieves. On the other hand, if the threshold is set too low, the alarm will often go off even when no thief is
present – creating a false alarm. If too many false alarms are generated people become exhausted and cease
to check them out.
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8.4 M-ary Hypothesis Testing

The exposition so far has focused on binary hypothesis testing problems. When there are M possibilities or
hypotheses, we term the problem an M -ary detection or hypothesis testing problem. We can again take a
minimum Bayes risk approach, with the same 3 three problem elements we had in the binary case:

1. Model of Nature: In the M -ary case there are M possibilities, denoted as Hi, i = 0, · · · ,M − 1.
Our knowledge of these possibilities is captured by the prior probabilities Pi = Pr(H = Hi), i =
0, · · · ,M − 1. Note that

∑
i Pi = 1.

2. Observation Model: This relationship is given in the M -ary case by the M conditional densities
pY |H(y | hi).

3. Decision Rule: Our decision rule D(y) will again be obtained by minimizing the average cost or Bayes
risk. Again, Cij denotes the cost of deciding hypothesis D(y) = Hi when hypothesis Hj is true and
the Bayes risk is given by E

[
CD(y),H

]
.

Note that in the M -ary case, the decision rule D(y) is nothing more than a labeling of each point in the
observation space with one of the corresponding possible decision outcomes Hi.

In an identical argument to the binary case, we have that the expected value of the cost is given by:

E
[
CD(y)

]
=

∫
E
[
CD(y) | y

]
pY (y) dy (8.90)

and as before the expression is minimized by minimizing E
[
CD(y) | y

]
. In particular, we should choose the

decision resulting in the smallest value of this quantity. Now the expected cost of deciding Hk given y is:

E
[
CD(y)=Hk

| y
]

=
M−1∑

j=0

CkjpH|Y (Hj | y) (8.91)

Thus the optimal decision rule is to choose hypothesis Hk given the observation y if:

M−1∑

j=0

CkjpH|Y (Hj | y) ≤
M−1∑

j=0

CijpH|Y (Hj | y) ∀ i (8.92)

The left hand side of (8.92) is the conditional cost of assigning y to the Hk decision region and the right hand
side of (8.92) is the conditional cost of assigning y to the Hi decision region. Note that if the left hand side
is the smallest, than assigning the given observation y to Hk is the best thing to do. Unlike the binary case,
however, if the left hand side is not the smallest, we do not immediately know what the optimal hypothesis
assignment is. All we know is that it is not Hk. Using this insight we can recast (8.92) in the following form,
which is similar in spirit to (8.6):

M−1∑

j=0

CkjpH|Y (Hj | y)
Not Hk

≷
Not Hi

M−1∑

j=0

CijpH|Y (Hj | y) ∀unique i, k pairs (8.93)

where
Not Hk

≷
Not Hi

denotes eliminating hypothesis Hk if the inequality is > and eliminating hypothesis Hi if the

inequality is <. In the binary case there is only one comparison needed to define the optimal decision rule.

In contrast, in the M -ary case, we need M(M−1)
2 comparisons to define the optimal decision rule. Each such

comparison eliminates one of the hypotheses.
We can make (8.93) more similar to the binary case through some manipulations. In analogy with (8.11),

let us define the following set of likelihood ratios:

Lj(y) =
pY |H(y | Hj)

pY |H(y | H0)
j = 0, · · · ,M − 1 (8.94)
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where we take L0(y) = 1. Then, combining these likelihood ratios with Bayes rule (8.7) we have the following
form for the optimal Bayes M -ary decision rule:

M−1∑

j=0

CkjPjLj(y)
Not Hk

≷
Not Hi

M−1∑

j=0

CijPjLj(y) ∀unique i, k pairs (8.95)

Note that quantities Lj(y) form a set of sufficient statistics for the M -ary detection problem. Further, this
set of inequalities defines M(M−1)/2 linear decision boundaries in the space of the sufficient statistics Li(y).

For example, consider the three-hypothesis case where M = 3. In this case, there are three comparisons
that need to be performed:

k = 0, i = 1 : P1 (C01 − C11)L1(y)
Not H0

≷
Not H1

P0 (C10 − C00) + P2 (C12 − C02)L2(y) (8.96)

k = 1, i = 2 : P1 (C11 − C21)L1(y)
Not H1

≷
Not H2

P0 (C20 − C10) + P2 (C22 − C12)L2(y) (8.97)

k = 2, i = 0 : P1 (C21 − C01)L1(y)
Not H2

≷
Not H0

P0 (C00 − C20) + P2 (C02 − C22)L2(y) (8.98)

These comparisons are shown for a generic case in Figure 8.19. Each comparison eliminates one hypothesis.
Taken together the set of comparisons labels the space of the test statistics. Note that in the space of the
likelihood ratio test statistics the decision regions are always linear. In the space of the observations y this
will not be true, in general. Further, the dimension of the “likelihood space” is dependent on number of
hypotheses, not the dimension of the observation, which may be greater than or less than the likelihood
dimension.

L 1 ( )y

L 2 ( )y

N o t  H 0N o t  H 1

N o t  H 2

H 0 H 1

H 2

N o t  H 1N o t  H 0

N o t  H 2

Figure 8.19: Decision boundaries in the space of the likelihoods for an M -ary problem.

8.4.1 Special Cases

Let us now consider some common special cases of the Bayes risk and the associated decision rules corre-
sponding to them for the M -ary case.

MPE cost assignment and the MAP rule

Suppose we use the following “zero-one” cost assignment for an M -ary problem:

Cij = 1− δij (8.99)
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where δij = 1 if i = j and δij = 0 if i 6= j. Then the cost of all errors (C10 = C01 = 1) are the same and
there is no cost for correct decisions (C00 = C11 = 0). As in the binary case, this cost assignment results in
the Bayes risk also equaling the probability or error:

E
[
CD(y)

]
=

M−1∑

j=0

M−1∑

i = 0
i 6= j

Pr [Decide Hi, Hj true] = Pr [Error] (8.100)

Thus the optimal decision rule for this cost assignment in the M -ary case also minimizes the probability
of error. The corresponding decision rule (again termed the minimum probability of error (MPE) decision
rule) is to choose hypothesis Hk given the observation y if:

pH|Y (Hk | y) ≥ pH|Y (Hi | y) ∀ i (8.101)

This decision rule says that for minimum probability of error choose the hypothesis with the highest posterior
probability. As in the binary case, this is termed the Maximum aposteriori probability or MAP rule. So
again, the MPE cost assignment results in the MAP rule (independent of prior probabilities).

The MAP decision rule can also be expressed in terms of a series of comparisons of likelihood ratios,
as in (8.95). By substituting the MPE cost structure into (8.95) and simplifying we obtain the following
equivalent expression of the Bayes optimal M -ary MAP rule:

PiLi(y)
Not Hk

≷
Not Hi

PkLk(y) ∀unique i, k pairs (8.102)

Note that the details of the densities are hidden in the expressions for the likelihood ratios Li(y).

The ML rule

Now suppose we again use the MPE cost criterion with Cij = 1− δij , but also have both hypotheses equally
likely apriori so that Pi = 1/M . In this case we essentially have no prior preference for one hypothesis over
the other. Applying these conditions together with Bayes rule to (8.101), this decision rule is to choose
hypothesis Hk given the observation y if:

pY |H (y | Hk) ≥ pY |H (y | Hi) ∀ i (8.103)

In this case the decision rule is to choose the hypothesis that gives the highest likelihood of the observation,
which is again the maximum likelihood or ML rule.

As for the MAP rule, the ML decision rule can also be expressed in terms of a series of comparisons of
likelihood ratios, as in (8.102). Note that the expression (8.102) already reflects the impact of the MPE cost
structure. If we further incorporate the fact that Pi = Pj into (8.102), we obtain the following equivalent
expression of the Bayes optimal M -ary ML rule:

Li(y)
Not Hk

≷
Not Hi

Lk(y) ∀unique i, k pairs (8.104)

8.4.2 Examples

Let us now consider some examples.

Example 8.14 (Known means in White Gaussian Noise)
Suppose we want to detect which of three possible N -dimensional signals is being received in the presence of noise. In
particular, suppose that under hypothesis Hk the observation is given by:

Under Hk: y = mk + w k = 0, 1, 2 (8.105)
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where w ∼ N(0, I). Note that this implies that the observation densities under the different hypotheses are Gaussian,
given by:

pY |H
(
y | Hk

)
= N

(
y; mk, I

)
k = 0, 1, 2 (8.106)

Assume that we want a minimum probability of error decision rule, which means we want the cost assignment Cij =
1 − δij and results in the MAP rule (8.101). We can also express this rule in the form (8.95). Substituting the densities
given in (8.106) and simplifying, we obtain for the optimal decision rule for this example:

`ik(y) = yT

(
mk −mi

‖mk −mi‖

)
Not Hi

≷
Not Hk

1

‖mk −mi‖

[
mT

k mk −mT
i mi

2
+ ln

(
Pi

Pk

)]
= Γik (8.107)

where we perform the comparisons over all unique i, k pairs.

Note a number of things. First, the set of `ik(y) are a set of sufficient statistics for the problem (as are the set of
likelihood ratios Li(y)). In addition, the computation of these sufficient statistics (i.e. the processing of the data) consists
of projecting the data vector onto the line between the different means and then comparing the result to a threshold. These
ideas are illustrated in Figure 8.20 for a two-dimensional case. Note that the dimension of the space of the observation is
independent of the number of hypotheses. Further, in this example of Gaussian densities with identical covariance matrices
but different means, the decision boundaries of each comparison in (8.107) are lines (or hyperplanes, when the observations
are higher dimensional). In general (i.e. when the likelihood densities are not Gaussian), these decision boundaries will not
be simple linear/planar shapes.

l

N o t  H i

y 1

y 2

N o t  H k

y
m k

m i
G i k / | | m k - m i | |

y T ( m k - m i ) / | | m k - m i | |

Figure 8.20: Illustration of the decision rule in the original data space.

Of course, we can also depict the decision rule for the MAP decision problem in the space of the likelihood ratios Li,
as was done in Figure 8.19. In particular, if we express the MAP rule in the space of the original likelihood ratios for this
3 hypothesis case (i.e. by specializing (8.102) to the three hypotheses) we can express this rule as:

k = 0, i = 1 : L1(y)
Not H0

≷
Not H1

P0

P1
(8.108)

k = 1, i = 2 : L2(y)
Not H1

≷
Not H2

(
P1

P2

)
L1(y) (8.109)

k = 2, i = 0 : L2(y)
Not H0

≷
Not H2

P0

P2
(8.110)

In Figure 8.21 we show this decision rule in the likelihood space. When expressed in this way, the decision boundaries are
independent of the specific likelihoods of the problem! That is, the decision regions for MAP rule for any 3-ary decision
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Figure 8.21: Illustration of the decision rule in the likelihood space.

problems is as given Figure 8.21. What has happened is that these likelihood details have been hidden in the likelihood
ratios L(y)i.

Continuing with this example, suppose we additionally believe that each hypothesis is equally likely, so that Pi = Pj =
1/3. In this case, the decision rule will be the ML rule (8.103). Examining (8.107) and Figure 8.20, we can see that for
our Gaussian example the ML rule but decision boundaries in the observation space halfway between each pair of means.
Overall, the ML decision rule for this example becomes: Choose Hk if, for all i:

∥∥y −mk

∥∥ ≤
∥∥y −mi

∥∥ (8.111)

In particular, the decision rule chooses the hypothesis whose mean is closest to the given observation, resulting in the
decision regions in the observation space shown in Figure 8.22 for a two-dimensional case. The decision boundaries are
the bisectors of the lines connecting the means under the different hypotheses. In general, this type of decision strategy
is called a nearest neighbor classifier or a minimum distance receiver in the literature. It is a strategy that is used rather
widely in practice, even when it is not the optimum detector, due to its ease of implementation and understanding.

y 1

y 2

H 0

m 0

m 1

m 2

H 1

H 2

Figure 8.22: Illustration of the ML decision rule in the observation space.

Example 8.15 (Gaussians with different variances)
In this example, suppose we observe a one-dimensional random variable y and wish to determine which one of three-possible
densities it could have come from. Under each of the three hypotheses the likelihoods are given by:

pY |H(y | Hi) = N(y; 0, σ2
i ) i = 0, 1, 2 (8.112)
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where σ0 < σ1 < σ2. Further, suppose the hypotheses are equally likely and we wish to minimize the probability of error.
In this case the decision rule will be the ML rule. Applying (8.104) and simplifying we obtain the following decision rule
for this case:

y2
Not Hk

≷
Not Hi

2

(
σ2

i σ2
k

σ2
i − σ2

k

)
ln

(
σi

σk

)
= Γik ∀ unique i, k pairs (8.113)

This decision rule is shown in Figure 8.23. The decision rule in the space of the likelihoods is essentially the same as that
in Figure 8.21 with Pi/Pj = 1.

y
N o t  H 1

p Y | H ( y | H 0 )

p Y | H ( y | H 1 )p Y | H ( y | H 2 )

N o t  H 2 N o t  H 0 N o t  H 1 N o t  H 1 N o t  H 0 N o t  H 2 N o t  H 1

H 1 H 1H 0 H 2H 2

Figure 8.23: Illustration of decision rule in the observation space.

8.4.3 M-Ary Performance Calculations

The two performance metrics of the binary hypothesis testing problem were the expected value of the cost
E(CD(y) and the probability of error Pr(Error). Both these criteria still make sense in the M -ary case,
though the expressions are a bit different. In particular, whereas in the binary case we could express both
the metrics in terms of only two conditional densities (PD and PF ), in the M -ary case we need M(M − 1)
conditional densities to express them.

First let us consider the expected value of the cost:

E
[
CD(y)

]
=

M−1∑

i=1

M−1∑

j=1

CijPr (Decide Hi | Hj) Pj (8.114)

Thus, we now need M(M − 1) conditional densities to express the expected cost or Bayes risk versus the
two needed in the binary case (i.e. PD and PF ). So the situation is more complicated, but the idea is the
same. To find the expected value of the cost (that is, the Bayes risk), we have to find a set of conditional
probabilities, as before.

Consider the problem of Example 8.14 with the ML decision rule, shown in Figure 8.22. To find
Pr (Decide H0 | H1) in the observation space we need to integrate the conditional density pY |H(y | H1)
over the region of the space where we would choose hypothesis H0. The density pY |H(y | H1) is a circularly
symmetric Gaussian centered at the mean m1. Referring to Figure 8.22, the H0 region of the space is the
shaded region on the left. The term Pr (Decide H0 | H1) is thus the area of the Gaussian in the H0 part of
the space, as shown in Figure 8.24. The calculation of the other conditional densities is similar, where, in
general, both the region of integration changes and the density being integrated changes.

Of course, if it is more convenient, we can also find these conditional densities in the space of a sufficient
statistic. The basic idea is the same. Consider again the Example 8.14 with the ML decision rule, shown
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Figure 8.24: Illustration of the calculation of Pr (Decide H0 | H1) in the observation space.

this time in the space of the sufficient statistic provided by the likelihood ratios Li(y) in Figure 8.21. To
find Pr (Decide H0 | H1) we need to integrate the joint conditional density for the likelihood ratio sufficient
statistics pL1(y),L2(y)|H(L1(y),L1(y) | H0) over that part of the space of the likelihood ratios where we decide
H1. While the region of the likelihood space space is simply determined in this case, the required density may
not be. In Example 8.14, even though the observations are Gaussian under any hypothesis, the likelihood

ratios, being of the form eyT Σy, will not be Gaussian random variables! All sufficient statistics are not equal,
however, and a different choice of sufficient statistic may make the problem easier. Note for this example
that the sufficient statistics `ik(y) defined in (8.107) are simply linear functions of the observations, and thus
are themselves Gaussian random variables under any hypothesis. The decision regions are also relatively
simple for these particular sufficient statistics. This discussion illustrates the issues we face in general when
performing such calculations. The challenge is to find a sufficient statistic whose combination of decision
regions and densities lead to a tractable set of calculations.

Our other performance metric was the probability of error Pr [Error]. In the M -ary case this is given as:

Pr [Error] =

M−1∑

j=0

M−1∑

i = 0
i 6= j

Pr [Decide Hi | Hj truePj ] (8.115)

As in the calculation of the expected cost, the key is again the calculation of the conditional densities
Pr [Decide Hi | Hj truePj ]. These probabilities can be calculated as illustrated in Figure 8.24 for Exam-
ple 8.14. In the case of the Pr [Error] calculation there is an alternative form to the expression that is
sometimes useful. It is based on the fact that the sum in (8.115) includes all the conditional densities except
the “self term” Pr [Decide Hi | Hi truePj ]. As a result we may rewrite (8.115) as follows:

Pr [Error] =

M−1∑

j=0

(1− Pr [Decide Hj | Hj truePj ]) (8.116)

Consider again the problem of Example 8.14 with the ML decision rule, shown in Figure 8.22. To
find a self term, for example Pr (Decide H1 | H1), in the observation space we need to integrate the condi-
tional density pY |H(y | H1) over the region of the space where we would choose hypothesis H1. The term
Pr (Decide H1 | H1) is thus the area of the Gaussian in the H1 part of the space, as shown in Figure 8.25.
The calculation of the other terms is similar. As in the case of the expected cost calculation, we may also
perform such calculations in the space of a sufficient statistic if that is more convenient.
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Figure 8.25: Illustration of the calculation of Pr (Decide H1 | H1) in the observation space.

8.5 Gaussian Examples

Gaussian detection problems are of general interest in many applications. In this section, several additional
examples are discussed.

The general Gaussian likelihood ratio test is straightforward to compute. Let y be the n-dimensional
observation vector, with hypothesized density pY |H(y | H0) ∼ N(m0,Σ0) under H0 and density pY |H(y |
H1) ∼ N(m1,Σ1) under H1. Then the likelihood ratio test for the general Gaussian case is given by:

L(y) =
pY |H(y | H1)

pY |H(y | H0)
=

1√
(2π)N |Σ1|

e−
1
2 (y−m1)

T Σ−1
1 (y−m1)

1√
(2π)N |Σ0|

e−
1
2 (y−m0)

T Σ−1
0 (y−m0)

H1

≷
H0

η (8.117)

where |Σi| is the determinant of Σi. Taking logarithms of both sides and clearing out factors of 1/2, one
obtains the following form of the LRT:

`(y) = −(y −m1)
T Σ−1

1 (y −m1) + (y −m0)
T Σ−1

0 (y −m0)
H1

≷
H0

2 ln(η) + ln(|Σ1|)− ln(|Σ0|) (8.118)

The above expression indicates that a sufficient statistic is `(y) = (y−m0)
T Σ−1

0 (y−m0)−(y−m1)
T Σ−1

1 (y−
m1).

Example 8.16
Consider now the detection of known signals in additive Gaussian noise, where the elements yj of the observation vector
y are given by the following expression under each hypothesis:

Hi : yj = mij + wj (8.119)

where the values of mij are known, and wj is an independent, identically distributed sequence of Gaussian random variables
with distribution N(0, σ2). Note that, in this case, Σ1 = Σ0 = σ2I, so that the sufficient statistic becomes:

`(y) =
2

σ2
(m1 −m0)

T y +
mT

0 m0 −mT
1 m1

σ2
(8.120)

The optimal detector can be written as

yT (m1 −m0)
H1

≷
H0

mT
1 m1 −mT

0 m0

2
+ σ2 ln(η) (8.121)
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Example 8.17 (Uniformly Most Powerful Test)
One can also detect unknown signals in Gaussian noise, as follows: Assume that the observations are distributed as

yj =

{
wj if H0 is true
xj + wj otherwise

(8.122)

where xj is the j-th coefficient of a Gaussian vector x which is independent of w, with distribution N(mx , Σx). Again,
this is a Gaussian detection problem, with m1 = mx, Σ1 = Σx + σ2I, Σ0 = σ2I, m0 = 0. In this case, the sufficient
statistic becomes

`(y) = σ−2(yT y)− (y −mx)T Σ−1
1 (y −mx) = yT [σ−2y − Σ−1

1 (y −mx) + Σ−1
1 mx]−mT

x Σ−1
1 mx (8.123)

Thus, the optimal detector is to declare H1 whenever

yT [σ−2y − Σ−1
1

(
y −mx

)
+ Σ−1

1 mx

] H1

≷
H0

2 ln(η) + mT
x Σ−1

1 mx + ln (|det(Σ1)|)− ln (|det(Σ0)|) (8.124)

It is interesting to examine the term on the right-hand side. In particular, note the following relationships which hold true
under H1:

Σyy = E
[(

y −mx

) (
y −mx

)T ∣∣∣H1

]
= Σ1 = Σx + σ2I (8.125)

Σxy = E[(x−mx)(y −mx)T | H1] = Σx (8.126)

Thus,
σ−2y − Σ−1

1 y = Σ−1
1 (σ−2(Σx + σ2I)− I) = σ−2Σ−1

1 Σx

The above expression can be given an interesting interpretation. Consider the case where mx = 0. Then, using the
expression for Gaussian estimation,

E[x | y, H1] = Σ−1
1 Σxy (8.127)

and the optimal detection rule selects H1 whenever

yT E[x | y, H1] > 2σ2[ln(T ) + ln(|det(Σ1)|)− ln(|det(σ2I)|)] (8.128)

In particular, this decision rule is similar to the known signal case, except that the known difference in the means is replaced
by E[x | y, H1].
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